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Abstract. In this work, we give estimates for the norm of the integral operator

H : Lp,v → Lq,u, (Hf)(x) :=

∫ x

a

k(x, t)f(t)dt (0.1)

with the so-called Oinarov's kernel k(x, t) in the weighted Lebesgue spaces

Lp,v = {f : ‖f‖pp,v :=

∫ b

a

|f(t)|pv(t)dt <∞}

and

Lq,u = {f : ‖f‖qq,u :=

∫ b

a

|f(t)|qu(t)dt <∞},

in the case 1 < q < p <∞.

DOI: https://doi.org/10.32523/2077-9879-2022-13-3-67-81

1 Introduction

Let (a, b) ⊂ R and u, v be weight functions in (a, b), i.e., positive measurable functions de�ned a.e.
in (a, b). If k(x, t) ≡ 1 then V.G. Mazya and A.L. Rozin [7, Theorem 5, p. 47] proved that the
condition

B =

(∫ b

a

(∫ t

a

v1−p′(τ)dτ

) r
q′
(∫ b

t

u(τ)dτ

) r
q

v1−p′(t)dt

) 1
r

<∞

is necessary and su�cient for the boundedness of operator (0.1) and that the following estimates
hold (

p− q
p

) 1
q′

B ≤ ‖H‖ ≤ (p′)
1
pq′ q

1
qB,

where 1 < q < p < ∞, p′ = p/(p − 1) and 1/r = 1/q − 1/p. This case is well studied and other
conditions and estimates have also been found by various scholars, e.g., by Persson-Stepanov in [13]
and by Kufner-Kuliev in [5].

The problem of boundedness of operator (0.1) with di�erent type of kernels in the weighted
Lebesgue spaces began to be studied in the last decades of the last century. Let us now give some
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results concerning operators of this type. For example, F.J. Martin-Reyes and E. Sawyer [10] con-
sidered the operator with the kernel k(x, t) = ϕ

(
t
x

)
, where ϕ : (0, 1)→ (0,∞) is non-increasing and

satis�es the following inequality: for some C0 > 0

ϕ(ab) ≤ C0(ϕ(a) + ϕ(b)) for 0 < a, b < 1,

and V.D. Stepanov [15] considered Volterra convolution operators, i.e., operator (0.1) with the kernel
k(x, t) = ϕ(x− t), where ϕ satis�es the following conditions:

(a) ϕ(x) ≥ 0 is non-decreasing on (0,∞),
(b) for some C > 0, ϕ(x+ y) ≤ C(ϕ(x) + ϕ(y)) for all x, y ∈ (0,∞).
S. Bloom and R. Kerman [2] and R. Oinarov [11, 12] gave equivalent conditions for the bound-

edness of operator (0.1) for kernels k(x, t) which are continuous nonnegative functions increasing in
the �rst argument, decreasing in the second argument and satisfying the condition: there exists a
number h ≥ 1 such that

k(x, s) ≤ h(k(x, t) + k(t, s))

for all a < s ≤ t ≤ x < b. Functions k(x, t) satisfying the above conditions are called Oinarov's
kernels, which includes also the above kernels. In works [1] and [4] the boundedness of a certain
class of integral operators (Riemann-Liouville operators) in various spaces are considered, as well as
in the multidimensional case [14]. In [16] was studied properties of discrete operators with a kernel
that satisfy the discrete analogue of the Oinarov-type condition.

In works on this topic, the main focus was on �nding equivalent conditions for the boundedness
of operator (0.1), while exact estimates for the operator norms are very rare. However, in the theory
of di�erential equations and in other �elds of mathematics it is very important to obtain exact
estimates. In [6] the main purpose was to study another object, but the authors also gave estimates
for the norm of the operator with a kernel of a polynomial function.

It should also be noted that recently, in 2021 A. Kalybay and A. Baiarystanov [3] gave estimates
for the norm of operator (0.1) with Oinarov's kernel in the case 1 < p ≤ q < ∞. In this work we
consider the remaining case 1 < q < p <∞.

The paper is organized as follows. The �rst section is introduction. In the second section we give
the main results. The proofs of the results are given in the third section.

2 Main results

In this section, we give our main results about the lower and upper estimates for the norm of operator
(0.1). Therefore, we �rst pay attention to the boundedness of the operator. In [11] R. Oinarov proved
that the �niteness of

B0 :=

(∫ b

a

(∫ b

x

kq(t, x)u(t)dt

) r
q
(∫ x

a

v1−p′(t)dt

) r
q′

v1−p′(x)dx

) 1
r

and

B1 :=

(∫ b

a

(∫ b

x

u(t)dt

) r
p
(∫ x

a

kp
′
(x, t)v1−p′(t)dt

) r
p′

v1−p′(x)dx

) 1
r

,

where p′ = p
p−1

, q′ = q
q−1

and 1
r

= 1
q
− 1

p
, is equivalent to the boundedness of operator (0.1). So, we

further suppose that
B0 <∞, B1 <∞. (2.1)

Then our �rst result reads:
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Theorem 2.1. Let 1 < q < p < ∞ and (2.1) hold. Then the norm of operator H satis�es the
inequality

max

{
q

(
p′

r

) 1
q′

B0, p
′
(q
r

) 1
p
B1

}
≤ ‖H‖ ≤ X, (2.2)

where X is the unique positive solution of the equation

Xq′ − hq
1
q−1 (p′)

1
p′(q−1) (q′)

1
p(q−1)B

1
q−1X = hq

1
q−1p′(p− 1)

2
pBq′ (2.3)

and B = max{B0, B1}.

Remark 1. Equation (2.3) has a unique positive solution, since

h(x) =
xq
′

q
1
q−1p′(p− 1)

2
pBq′ + q

1
q−1 (p′)

1
p′(q−1) (q′)

1
p(q−1)B

1
q−1x

is a continuous and monotonically increasing function of x in (0,∞), h(0) = 0 and h(∞) =∞.

Example. Let q = 2 and h ≥ 1. Then equation (2.3) and its positive solution take the forms

X2 − 2
p+1
p h(p′)

1
p′BX = 2hp′(p− 1)

2
pB2

and

X =

(
2

1
p (p′)

1
p′ h+

√
2

2
p (p′)

2
p′ h2 + 2hp′(p− 1)

2
p

)
B,

respectively.

Remark 2. Similarly, the above results can be given for the following integral operator

H∗ : Lp,v → Lq,u, (H∗f)(x) :=

∫ b

x

k(t, x)g(t)dt. (2.4)

For H∗

max

{
q

(
p′

r

) 1
q′

B∗0 , p
′
(q
r

) 1
p
B∗1

}
≤ ‖H∗‖ ≤ X,

where X is the unique positive solution of (2.3) with B = max{B∗0 , B∗1},

B∗0 =

(∫ b

a

(∫ x

a

kq(x, t)u(t)dt

) r
q
(∫ b

x

v1−p′(t)dt

) r
q′

v1−p′(x)dx

) 1
r

,

B∗1 =

(∫ b

a

(∫ x

a

u(t)dt

) r
p
(∫ b

x

kp
′
(t, x)v1−p′(t)dt

) r
p′

u(x)dx

) 1
r

.

Theorem 2.2. Let 1 < q < p < ∞ and (2.1) hold. Then the norm of operator H satis�es the
inequality

min

{
q

(
p′

r

) 1
q′

, p′
(q
r

) 1
p

}
B ≤ ‖H‖ ≤ q

(
hp′ + hq(p′)

q′
p′ (q′)

q′
p

) 1
q′

B.
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3 Proofs

In this section we give proofs of the main results. The assumptions in (2.1) imply the boundedness
of operator (0.1), i.e., the following Hardy type inequality: for some C > 0(∫ b

a

(∫ x

a

k(x, t)f(t)dt

)q
u(x)dx

) 1
q

≤ C

(∫ b

a

fp(t)v(t)dt

) 1
p

(3.1)

for all f ∈ Lp(v).

Proof of Theorem 2.1. (The lower estimate.) If we choose

f̄(t) =

(∫ b

t

kq(x, t)u(x)dx

) r
pq
(∫ t

a

v1−p′(x)dx

) r
pq′

v1−p′(t),

then B
r
p

0 = ‖f̄‖p,v and substituting f̄ into (3.1) we have

CB
r
p

0 = C‖f̄‖p,v ≥ ‖Hf̄‖q,v =

(∫ b

a

(∫ x

a

k(x, t)f̄(t)dt

)q
u(x)dx

) 1
q

=

(
q

∫ b

a

(∫ x

a

k(x, t)f̄(t)

(∫ t

a

k(x, s)f̄(s)ds

)q−1

dt

)
u(x)dx

) 1
q

= q
1
q

(∫ b

a

f̄(t)

(∫ b

t

k(x, t)u(x)

(∫ t

a

k(x, s)f̄(s)ds

)q−1

dx

)
dt

) 1
q

,

where we have used Fubini's theorem. Since k(x, t) is monotonically decreasing with respect to the
second argument we get

CB
r
p

0 ≥ q
1
q

(∫ b

a

f̄(t)

(∫ b

t

k(x, t)u(x)

(∫ t

a

k(x, t)f̄(s)ds

)q−1

dx

)
dt

) 1
q

= q
1
q

(∫ b

a

f̄(t)

(∫ b

t

kq(x, t)u(x)dx

)(∫ t

a

f̄(s)ds

)q−1

dt

) 1
q

= q
1
q

(∫ b

a

f̄(t)

(∫ b

t

kq(x, t)u(x)dx

)

×

(∫ t

a

(∫ b

s

kq(x, s)u(x)

) r
pq
(∫ s

a

v1−p′(x)dx

) r
pq′

v1−p′(s)ds

)q−1

dt

 1
q

≥ q
1
q

∫ b

a

f̄(t)

(∫ b

t

kq(x, t)u(x)dx

)1+
r(q−1)
pq

×

(∫ t

a

(∫ s

a

v1−p′(x)dx

) r
pq′

v1−p′(s)ds

)q−1

dt

 1
q
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= q
1
q

(
1

r
pq′

+ 1

) 1
q′
∫ b

a

f̄(t)

(∫ b

t

kq(x, t)u(x)dx

)1+
r(q−1)
pq

×
(∫ t

a

v1−p′(s)ds

)(1+
r(q−1)
pq )(q−1)

dt

 1
q

= q

(
p′

r

) 1
q′
(∫ b

a

(∫ b

t

kq(x, t)u(x)dx

) r
q
(∫ t

a

v1−p′(s)ds

) r
q′

v1−p′(t)dt

) 1
q

= q

(
p′

r

) 1
q′

B
r
q

0 .

Therefore,

C ≥ q

(
p′

r

) 1
q′

B0.

To prove an analogous assertion for B1, we use the equivalent inequality (the so-called conjugate
inequality, see [8, pp. 78-79]) to (3.1) with the same constant C:(∫ b

a

(∫ b

x

k(t, x)g(t)dt

)p′
v1−p′(x)dx

) 1
p′

≤ C

(∫ b

a

gq
′
(x)u1−q′(x)dx

) 1
q′

, (3.2)

for all g ∈ Lq′(u1−q′). Let

ḡ(t) =

(∫ b

t

u(x)dx

) r
pq′
(∫ t

a

kp
′
(t, x)v1−p′(x)dx

) r
p′q′

u(t)

then B
r
q′
1 = ‖ḡ‖q′,u1−q′ and substituting ḡ into (3.2), we have

CB
r
q′
1 = C‖ḡ‖q′,u1−q′ ≥

(∫ b

a

(∫ b

x

k(t, x)ḡ(t)dt

)p′
v1−p′(x)dx

) 1
p′

=

(
p′
∫ b

a

(∫ b

x

k(t, x)ḡ(t)

(∫ b

t

k(τ, x)ḡ(τ)dτ

)p′−1

dt

)
v1−p′(x)dx

) 1
p′

,

where we have used Fubini's theorem. Since the function k(x, t) is monotonically increasing with the
�rst argument we get

CB
r
q′
1 ≥ (p′)

1
p′

(∫ b

a

ḡ(t)

(∫ t

a

k(t, x)v1−p′(x)

(∫ b

t

k(t, x)ḡ(τ)dτ

)p′−1

dx

)
dt

) 1
p′

= (p′)
1
p′

(∫ b

a

ḡ(t)

(∫ t

a

kp
′
(t, x)v1−p′(x)dx

)(∫ b

t

ḡ(τ)dτ

)p′−1

dt

) 1
p′

= (p′)
1
p′

(∫ b

a

ḡ(t)

(∫ t

a

kp
′
(t, x)v1−p′(x)dx

)
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×

(∫ a

t

(∫ b

τ

u(x)dx

) r
pq′
(∫ τ

a

kp
′
(τ, x)v1−p′(x)dx

) r
p′q′

u(τ)dτ

)p′−1

dt

 1
p′

≥ (p′)
1
p′

∫ b

a

ḡ(t)

(∫ t

a

kp
′
(t, x)v1−p′(x)dx

)1+
r(p′−1)

p′q′

×

(∫ b

t

(∫ b

τ

u(x)dx

) r
pq′

u(τ)dτ

)p′−1

dt

 1
p′

= (p′)
1
p′

(
1

r
pq′

+ 1

) 1
p

∫ b

a

ḡ(t)

(∫ t

a

kp
′
(t, x)v1−p′(x)dx

)1+
r(p′−1)

p′q′

×
(∫ b

t

u(τ)dτ

)(1+ r
pq′

)
(p′−1)

dt

 1
p′

= p′
(q
r

) 1
p

(∫ b

a

(∫ b

t

u(τ)dτ

) r
p
(∫ t

a

k1−p′(t, x)v1−p′(x)dx

) r
p′

u(t)dt

) 1
p′

= p′
(q
r

) 1
p
B

r
p′
1 .

Therefore,

C ≥ p′
(q
r

) 1
p
B1.

So, we �nally obtain that

C ≥ max

{
q

(
p′

r

) 1
q′

B0, p
′
(q
r

) 1
p
B1

}
,

which implies the lower estimate for the norm, i.e.,

max

{
q

(
p′

r

) 1
q′

, p′
(q
r

) 1
p

}
B ≤ max

{
q

(
p′

r

) 1
q′

B0, p
′
(q
r

) 1
p
B1

}

≤ ‖H‖ = inf{C ≥ 0 : ‖Hf‖q,u ≤ C‖f‖p,v for all f ∈ Lp,v}.

(The upper estimate.) Let us denote

I =

∫ b

a

(∫ x

a

k(x, t)f(t)dt

)q
u(x)dx,

then we get

I =

∫ b

a

(∫ x

a

d

dt

(∫ t

a

k(x, s)f(s)ds

)q
dt

)
u(x)dx

= q

∫ b

a

(∫ x

a

k(x, t)f(t)

(∫ t

a

k(x, s)f(s)ds

)q−1

dt

)
u(x)dx
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= q

∫ b

a

f(t)

(∫ b

t

k(x, t)u(x)

(∫ t

a

k(x, s)f(s)ds

)q−1

dx

)
dt

≤ q‖f‖p,v

∫ b

a

v1−p′(t)

(∫ b

t

k(x, t)u(x)

(∫ t

a

k(x, s)f(s)ds

)q−1

dx

)p′

dt

1/p′

= q‖f‖p,vJ1/p′ . (3.3)

We now proceed by estimating J . To do this, we estimate its inner integral separately. Using H�older's
inequality with the exponents [q]

q−1
and [q]

1−{q} we have∫ b

t

k(x, t)u(x)

(∫ t

a

k(x, s)f(s)ds

)q−1

dx

=

∫ b

t

[
k{q}(x, t)u(x)

(∫ t

a

k(x, s)f(s)ds

)[q]
] q−1

[q]

× [kq(x, t)u(x)]
1−{q}

[q] dx

≤

(∫ b

t

k{q}(x, t)u(x)

(∫ t

a

k(x, s)f(s)ds

)[q]

dx

) q−1
[q] (∫ b

t

kq(x, t)u(x)dx

) 1−{q}
[q]

.

We derive the following estimate by using the properties of Oinarov's kernel and then Newton's
binomial formula

≤ hq−1

(∫ b

t

k{q}(x, t)u(x)

(
k(x, t)

∫ t

a

f(s)ds+

∫ t

a

k(t, s)f(s)ds

)[q]

dx

) q−1
[q]

×
(∫ b

t

kq(x, t)u(x)dx

) 1−{q}
[q]

= hq−1

∫ b

t

k{q}(x, t)u(x)

 [q]∑
n=0

Cn
[q]k

n(x, t)

(∫ t

a

f(s)ds

)n

×
(∫ t

a

k(t, s)f(s)ds

)[q]−n
)
dx

) q−1
[q] (∫ b

t

kq(x, t)u(x)dx

) 1−{q}
[q]

= hq−1

 [q]∑
n=0

Cn
[q]

(∫ b

t

k{q}+n(x, t)u(x)dx

)(∫ t

a

f(s)ds

)n

×
(∫ t

a

k(t, s)f(s)ds

)[q]−n

dx

) q−1
[q] (∫ b

t

kq(x, t)u(x)dx

) 1−{q}
[q]

. (3.4)

Using the H�older inequality to the �rst integral of the sum for 0 < n < [q] we have∫ b

t

k{q}+n(x, t)u(x)dx =

∫ b

t

(kq(x, t)u(x))
n−1+{q}
q−1 (k(x, t)u(x))

[q]−n
q−1 dx

≤
(∫ b

t

kq(x, t)u(x)dx

)n−1+{q}
q−1

(∫ b

t

k(x, t)u(x)dx

) [q]−n
q−1

.
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Then (3.4) is estimated as follows:

≤ hq−1

 [q]∑
n=0

Cn
[q]

(∫ b

t

kq(x, t)u(x)dx

)n−1+{q}
q−1

(∫ b

t

k(x, t)u(x)dx

) [q]−n
q−1

(∫ t

a

f(s)ds

)n

×
(∫ t

a

k(t, s)f(s)ds

)[q]−n

dx

) q−1
[q] (∫ b

t

kq(x, t)u(x)dx

) 1−{q}
[q]

= hq−1

 [q]∑
n=0

Cn
[q]

(∫ b

t

kq(x, t)u(x)dx

) n
q−1
(∫ b

t

k(x, t)u(x)dx

) [q]−n
q−1

×
(∫ t

a

f(s)ds

)n (∫ t

a

k(t, s)f(s)ds

)[q]−n

dx

) q−1
[q]

= hq−1

((∫ b

t

kq(x, t)u(x)dx

) 1
q−1
(∫ t

a

f(s)ds

)

+

(∫ b

t

k(x, t)u(x)dx

) 1
q−1
(∫ t

a

k(t, s)f(s)ds

))q−1

.

Therefore, we obtain ∫ b

t

k(x, t)u(x)

(∫ t

a

k(x, s)f(s)ds

)q−1

dx

≤ hq−1

[(∫ b

t

kq(x, t)u(x)dx

) 1
q−1
(∫ t

a

f(s)ds

)

+

(∫ b

t

k(x, t)u(x)dx

) 1
q−1
(∫ t

a

k(t, s)f(s)ds

)]q−1

.

From this we get

J =

∫ b

a

v1−p′(t)

(∫ b

t

k(x, t)u(x)

(∫ t

a

k(x, s)f(s)ds

)q−1

dx

)p′

dt

≤ h(q−1)p′
∫ b

a

v1−p′(t)

[(∫ b

t

kq(x, t)u(x)dx

) 1
q−1
(∫ t

a

f(s)ds

)

+

(∫ b

t

k(x, t)u(x)dx

) 1
q−1
(∫ t

a

k(t, s)f(s)ds

)](q−1)p′

dt.

Using the Minkowski inequality, we obtain

≤ h(q−1)p′

[∫ b

a

v1−p′(t)

(∫ b

t

kq(x, t)u(x)dx

)p′ (∫ t

a

f(s)ds

)(q−1)p′

dt

] 1
(q−1)p′
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+

[∫ b

a

v1−p′(t)

(∫ b

t

k(x, t)u(x)dx

)p′ (∫ t

a

k(t, s)f(s)ds

)(q−1)p′

dt

] 1
(q−1)p′

(q−1)p′

= h(q−1)p′
(
I

1
(q−1)p′

1 + I
1

(q−1)p′

2

)(q−1)p′

,

where

I1 =

∫ b

a

v1−p′(t)

(∫ b

t

kq(x, t)u(x)dx

)p′ (∫ t

a

f(s)ds

)(q−1)p′

dt,

I2 =

∫ b

a

v1−p′(t)

(∫ b

t

k(x, t)u(x)dx

)p′ (∫ t

a

k(t, s)f(s)ds

)(q−1)p′

dt.

From this we have that

I ≤ q‖f‖p,vJ1/p′ ≤ q‖f‖p,vhq−1

(
I

1
(q−1)p′

1 + I
1

(q−1)p′

2

)q−1

,

I
1
q−1 ≤ q

1
q−1‖f‖

1
q−1
p,v h

(
I

1
(q−1)p′

1 + I
1

(q−1)p′

2

)
. (3.5)

Next we estimate I1 and I2, separately. Let us begin with I1, for which we use the following Hardy
inequality

I
1

(q−1)p′

1 =

(∫ b

a

v1−p′(t)

(∫ b

t

kq(x, t)u(x)dx

)p′ (∫ t

a

f(s)ds

)(q−1)p′

dt

) 1
(q−1)p′

≤ Cp,(q−1)p′

(∫ b

a

fp(t)v(t)dt

) 1
p

, (3.6)

since (q − 1)p′ < p if the corresponding equivalent condition is satis�ed:

A1 =

∫ b

a

(∫ b

t

v1−p′(s)

(∫ b

s

kq(x, s)u(x)dx

)p′
ds

) r̃
(q−1)p′

×
(∫ t

a

v1−p′(s)ds

) r̃
((q−1)p′)′

v1−p′(t)dt

) 1
r̃

<∞,

where 1
r̃

= 1
(q−1)p′

− 1
p
. Now we show that A1 <∞. Let denote p̄ = r̃

(q−1)p′
,

ū(t) =

(∫ t

a

v1−p′(s)ds

) r̃
((q−1)p′)′

v1−p′(t)

and

v̄(t) = v
rp′

p2q′ (t)

(∫ t

a

v1−p′(t)dt

) r
q′

.

Then using the Hardy inequality for the function f̄(t) = v1−p′(t)
(∫ b

t
kq(x, t)u(x)dx

)p′
we obtain

A
(q−1)p′

1 =

(∫ b

a

(∫ b

t

f̄(s)ds

)p̄
ū(t)dt

) 1
p̄

≤ C̄

(∫ b

a

f̄ p̄(t)v̄(t)dt

) 1
p̄

(3.7)
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= C̄

(∫ b

a

(∫ b

x

kq (t, x)u (t) dt

) r
q
(∫ x

a

v1−p′ (t) dt

) r
q′

v1−p′ (x) dx

) qp′
r

= C̄Bqp′

0 <∞.

An estimate for the constant C̄ follows from the following calculations:

Ā = sup
a<s<b

(∫ s

a

ū(t)dt

) 1
p̄
(∫ b

s

v̄1−p̄′(t)dt

) 1
p̄′

= sup
a<s<b

(∫ s

a

(∫ t

a

v1−p′(s)ds

) r̃
((q−1)p′)′

v1−p′(t)dt

) qp′
r

×

∫ b

s

(
v
rp′

p2q′ (t)

(∫ t

a

v1−p′(t)dt

) r
q′
)1−( r

qp′ )
′

dt

 1
( r
qp′ )
′

= sup
a<s<b

(
p− q

(p− 1)(q − 1)

) qp′
r
(∫ s

a

v1−p′(t)dt

)q−1

×

(∫ b

s

v1−p′(t)

(∫ t

a

v1−p′(t)dt

)−p
dt

) 1
( r
qp′ )
′

= sup
a<s<b

(
p− q

(p− 1)(q − 1)

) qp′
r

(p− 1)
q−1
p−1

(∫ s

a

v1−p′(t)dt

)q−1(∫ s

a

v1−p′(t)dt

)1−q

=

(
p− q

(p− 1)(q − 1)

) p−q
p−1

(p− 1)
1−q
p−1 =

(
p− q
q − 1

) p−q
p−1

(p− 1)
1
p−1 <∞.

Hence for the constant C̄ in (3.7) the following estimate holds

C̄ ≤ p̄
1
p̄ (p̄)′

1
(p̄)′ Ā

=

(
p− 1

p− q

) p−q
p−1
(
p− 1

q − 1

) q−1
p−1
(
p− q
q − 1

) p−q
p−1

(p− 1)
1
p−1 = (q − 1)

q−p
p−1 .

Hence,

A1 ≤ (C̄)
1

(q−1)p′B
q
q−1

0 ≤ (q − 1)
q−p

(q−1)pBq′

0

and the best constant Cp,(q−1)p′ in (3.6) satis�es the inequality

Cp,(q−1)p′ ≤ ((q − 1)p′)
1

(q−1)p′ (p′)
1

((q−1)p′)′A1

≤ ((q − 1)p′)
1

(q−1)p′ (p′)
1

((q−1)p′)′ (q − 1)
q−p

(q−1)pBq′

0

= p′(q − 1)
1
pBq′

0 .

Thus, we have that

I
1

(q−1)p′

1 ≤ p′(q − 1)
1
pBq′

0 ‖f‖p,v. (3.8)
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Let us estimate the second integral I2. Using integrating by parts we have

I2 =

∫ b

a

v1−p′ (t)

(∫ t

a

k (t, s) f (s) ds

)(q−1)p′(∫ b

t

k (x, t)u (x) dx

)p′
dt

=

∫ b

a

(∫ t

a

k (t, s) f (s) ds

)(q−1)p′

d

(
−
∫ b

t

(∫ b

s

k (x, s)u (x) dx

)p′
v1−p′ (s) ds

)

=

∫ b

a

(∫ b

t

(∫ b

s

k (x, s)u (x) dx

)p′
v1−p′ (s) ds

)
d

(∫ t

a

k (t, s) f (s) ds

)(q−1)p′

.

For the inner integral applying the Minkowski inequality we obtain

≤
∫ b

a

(∫ b

t

u (x)

(∫ x

a

kp
′
(x, s) v1−p′ (s)ds

) 1
p′

dx

)p′

d

(∫ t

a

k (t, s) f (s) ds

)(q−1)p′

.

We write the inner integral of the last inequality in the form:∫ b

a

(∫ b

t

[(∫ b

x

u (s) ds

) 1
p
(∫ x

a

kp
′
(x, s) v1−p′ (s)ds

) 1
p′

u1− q
p (x)

]

×

[(∫ b

x

u (s) ds

)− 1
p

u
q
p (x)

]
dx

)p′

d

(∫ t

a

k (t, s) f (s) ds

)(q−1)p′

and then using the H�older inequality with the exponents p
p−q and

p
q
we get

≤
∫ b

a

[∫ b

t

(∫ b

x

u(s)ds

) 1
p−q
(∫ x

a

kp
′
(x, s)v1−p′(s)ds

) p
p′(p−q)

u (x) dx

] p′(p−q)
p

×

[∫ b

t

(∫ b

x

u(s)ds

)− 1
q

u(x)dx

] q
p−1

d

(∫ t

a

k(t, s)f(s)ds

)(q−1)p′

= (q′)
q
p−1 (q − 1)p′

×
∫ b

a

(∫ b

t

(∫ b

x

u(s)dt

) 1
p−q
(∫ x

a

kp
′
(x, s)v1−p′(s)ds

) p
p′(p−q)

u (x) dx

) p′(p−q)
p

×
(∫ b

t

u(s)ds

) q−1
p−1
(∫ t

a

k(t, s)f(s)ds

)(q−1)p′−1

d

(∫ t

a

k (t, s) f (s) ds

)
= p′ (q − 1) (q′)

q
p−1 ×∫ b

a

(∫ b

t

(∫ b

x

u (s) ds

) 1
p−q
(∫ x

a

kp
′
(x, s)v1−p′(s)ds

) p−1
p−q

u(x)dx

) p−q)
p−1

×
(∫ t

a

k(t, s)f(s)ds

) (p−q)(q−2)
p−1
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×

(∫ b

t

u(s)ds

) q−1
p−1
(∫ t

a

k(t, s)f(s)ds

) (q−1)2

p−1

 d(∫ t

a

k(t, s)f(s)ds

)
.

Applying the H�older inequality with the exponents p−1
p−q and

p−1
q−1

yields

≤ p′ (q − 1) (q′)
q
p−1

×

[∫ b

a

(∫ b

t

(∫ b

x

u(s)ds

) 1
p−q
(∫ x

a

kp
′
(x, s)v1−p′(s)ds

) p−1
p−q

u(x)dx

)

×
(∫ t

a

k(t, s)f(s)ds

)q−2

d

(∫ t

a

k(t, s)f(s)ds

)] p−qp−1

×

[∫ b

a

(∫ b

t

u(s)ds

)(∫ t

a

k(t, s)f(s)ds

)q−1

d

(∫ t

a

k(t, s)f(s)ds

)] q−1
p−1

.

Using Fubini's theorem, we have

= q
1−q
p−1p′ (q − 1) (q′)

q
p−1

×

[∫ b

a

(∫ b

t

(∫ b

x

u (s) ds

) 1
p−q
(∫ x

a

kp
′
(x, s)v1−p′(s)ds

) p−1
p−q

u(x)dx

)

×
(∫ t

a

k(t, s)f(s)ds

)q−2

d

(∫ t

a

k(t, s)f(s)ds

)] p−qp−1

×
(∫ b

a

u(t)

(∫ t

a

k(t, s)f(s)ds

)q
dt

) q−1
p−1

= q
1−q
p−q (q − 1) p′(q′)

q
p−1 (q − 1)

q−p
p−1 I

q−1
p−1

×

(∫ b

a

(∫ b

t

(∫ b

x

u(s)ds

) 1
p−q
(∫ x

a

kp
′
(x, s)v1−p′(s)ds

) p−1
p−q

u(x)dx

)

× d
(∫ t

a

k(t, s)f(s)ds

)q−1
) p−q

p−1

= (q′)p
′−1p′I

q−1
p−1

[∫ b

a

(∫ t

a

k (t, s) f (s) ds

)q−1

×
(∫ b

t

u(s)ds

) 1
p−q
(∫ t

a

kp
′
(t, s) v1−p′ (s)ds

) p−1
p−q

u(t)dt

] p−q
p−1

= p′(q′)
p′−1

I
q−1
p−1×

×

(∫ b

a

[(∫ b

t

u (s) ds

) 1
p−q
(∫ t

a

kp
′
(t, s) v1−p′(s)ds

) p
p′(p−q)

u
1
q (t)

]
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×

[(∫ t

a

k(t, s)f(s)ds

)q−1

u
1
q′ (t)

]
dt

) p−q
p−1

.

Here we apply the H�older inequality with the exponents q and q′

≤ p′(q′)
p′−1

I
q−1
p−1

[∫ b

a

(∫ b

t

u(s)ds

) r
p
(∫ t

a

kp
′
(t, s)v1−p′(s)ds

) r
p′

u(t)dt

] 1
q

×
[∫ b

a

(∫ t

a

k(t, s)f(s)ds

)q
u(t)dt

] 1
q′
) p−q

p−1

= p′(q′)p
′−1I

q−1
p−1 I

p−q
q′(p−1)Bp′

1

≤ p′(q′)p
′−1Bp′

1 I
p′
q′ .

Therefore,

I2 ≤ p′(q′)p
′−1Bp′

1 I
p′
q′ .

According to the estimate in (3.5) we obtain

I
1
q−1 ≤ hq

1
q−1‖f‖

1
q−1
p,v

(
I

1
(q−1)p′

1 + I
1

(q−1)p′

2

)

≤ hq
1
q−1‖f‖

1
q−1
p,v

(
p′(q − 1)

1
pBq′

0 ‖f‖p,v + (p′)
1

p′(q−1) (q′)
1

p(q−1)B
1
q−1

1 I
1
q

)
.

Taking into account that I
1
q ≤ ‖H‖‖f‖p,v we get

I
1
q−1 ≤ hq

1
q−1‖f‖

q
q−1
p,v

(
p′(q − 1)

1
pBq′

0 + (p′)
1

p′(q−1) (q′)
1

p(q−1)B
1
q−1

1 ‖H‖
)
.

So, we have the following upper estimate for the operator norm(
sup
f 6=0

I
1
q

‖f‖p,v

)q′

= ‖H‖q′ ≤ hq
1
q−1

(
p′(q − 1)

1
pBq′ + (p′)

1
p′(q−1) (q′)

1
p(q−1)B

1
q−1‖H‖

)
,

i.e.
‖H‖q′ − hq

1
q−1 (p′)

1
p′(q−1) (q′)

1
p(q−1)B

1
q−1‖H‖ ≤ hq

1
q−1p′(p− 1)

2
pBq′ . (3.9)

Consequently, we obtain

‖H‖q′

q
1
q−1p′(q − 1)

1
pBq′ + q

1
q−1 (p′)

1
p′(q−1) (q′)

1
p(q−1)B

1
q−1‖H‖

≤ h.

By Remark 1 we have that the corresponding equation h(x) = h has exactly one positive solution.
If X is the solution of the equation, i.e.,

Xq′

q
1
q−1p′(q − 1)

1
pBq′ + q

1
q−1 (p′)

1
p′(q−1) (q′)

1
p(q−1)B

1
q−1X

= h,

then
‖H‖ ≤ X.
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Proof of Theorem 2.2. Using the Young inequality to the second term in the left hand side of (3.9)
we have:

‖H‖q′ − hqq
q
q−1 (p′)

q
p′(q−1) (q′)

q
p(q−1)B

q
q−1

q
− ‖H‖

q′

q′
≤ hq

1
q−1p′Bq′ .

This implies that
‖H‖q′

q
≤ hq

1
q−1p′Bq′ + hqqq

′−1(p′)
q′
p′ (q′)

q′
p Bq′ ,

i.e.,

‖H‖q′ ≤ hqq
′
p′Bq′ + hqqq

′
(p′)

q′
p′ (q′)

q′
p Bq′ .

Therefore, we get the following estimate for the norm:

‖H‖ ≤ q

(
hp′ + hq(p′)

q′
p′ (q′)

q′
p

) 1
q′

B.
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