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Abstract. In this paper, we present exact and approximate solutions of the Stefan problems in
ellipsoidal coordinates. We consider two models of electrical contact heating for melting process.
The �rst problem describes the contact heating for liquid and solid zones based on the two-phase
Stefan problem, where time t is present as a parameter. Contact heating including softening processes
are described by a mathematical model based on the three-phase Stefan problem for the ellipsoidal
heat equation. Numerical results are presented and discussed.
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1 Introduction

The mathematical model of transient phenomena of contact heating in closed electrical contacts is
well-known. Stationary temperature and electromagnetic �elds in symmetric electrical contacts were
described in [5]. Electrical contact heating during current passage is a result of many physical phe-
nomena. One of the most important factor of contact heating is internal heat sources due to the Joule
heating in current constriction areas. All consecutive stages of contact heating from pre-softening to
melting processes for the spherical case are presented in [7]. However, in�uence of softening contact
is an open question and which needs to be studied. This paper presents a mathematical model
describing heating and melting processes of closed contacts taking into account the softening stage.
In the case, in which the Fourier criterion is su�ciently large Fo >> 1, the quasi-stationary model
of contact heating is valid.

A mathematical model describing these processes are based on the Stefan problem [3, 11]. From
the theoretical point of view, these problems are among most interesting problems in the theory of
non-linear parabolic equations. The Stefan problem requires to determine the temperature and the
moving boundary interface.

In this paper, we present two models of contact heating. The �rst model illustrates the melting
process based on the two-phase Stefan problem, where time t is presented as a parameter. The sec-
ond model describes the heating process with a softening zone. In this case, we �nd an approximate
solution of the Stefan problem by using the heat balance integral (HBI) method introduced by Good-
man [1]. In accordance with this method, the temperature pro�le along dimensional coordinates has
to be given, but time dependent coe�cients must be found from the heat equation and boundary
conditions. Therefore, the solution of the stationary problem is suitable for constructing a tempera-
ture pro�le for the quasi-stationary problem, as it is done in [10]. In this direction, we also refer to
papers [1, 2, 8, 10, 12, 17], for example. As a rule, the simple parabolic pro�le of temperature gives
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a good approximation and it is used very often. In Section 2, we derive the one-dimensional quasi-
stationary heat equation in ellipsoidal coordinates. The two phase quasi-stationary Stefan problem
describing the contact heating without softening stage is presented in Section 3. The formulation of
a mathematical model of electrical contact heating based on the softening zone and the main results
of this paper are given in Section 4. Concluding remarks are discussed brie�y in Section 5.

2 Heat conduction equation in ellipsoidal coordinates

A mathematical model based on a system of di�erential equations describing non-stationary heat
transfer phenomena and potential �elds in closed electrical contacts has to be considered taking into
account the Joule heating for each electrode, that is, it can be written in the form:

ciγi
∂θi
∂t

= div (λi grad θi) +
1

ρi
grad2 ϕi, (2.1)

div

(
1

ρi
gradϕi

)
= 0. (2.2)

Here subscripts i = 1 and i = 2 refer to cathode and anode, respectively, θi is the temperature, ϕi
is the potential, ci is the speci�c heat, γi is the density, λi is the thermal conductivity, and ρi is the
speci�c resistance. If we assume that the contact spot is a circle with radius r0 and we have axial
symmetry, then in cylindrical coordinates the system takes the following form

ciγi
∂θi
∂t

=
1

r

∂

∂r

(
λir

∂θi
∂r

)
+

∂

∂z

(
λi
∂θi
∂z

)
+

1

ρi

[(
∂ϕi
∂r

)2

+

(
∂ϕi
∂z

)2
]
, (2.3)

1

r

∂

∂r

(
1

ρi
r
∂ϕi
∂r

)
+

∂

∂z

(
1

ρi

∂ϕi
∂z

)
= 0. (2.4)

The well-known Holm theorem [4] determining the analogy between electrical and thermal �elds
suggests an idea about a representation of its solution.

Figure 1: Electrical (temperature) �eld in the contact constriction region. 1 - equipotential (isother-
mal) surfaces; 2 - electrical (thermal) current lines.
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Let us seek θi and ϕi as functions depending on generalised coordinates ξ and η, which are
determined by

r2

ξ2 + r2
0

+
z2

ξ2
= 1 and

r2

η2
− z2

r2
0 − η2

= 1, (2.5)

e.g.,

ξ(r, z) =
1√
2

√
s1 +

√
s1

2 + 4r0
2z2, s1 = z2 + r2 − r2

0, (2.6)

η(r, z) =
1√
2

√
s2 +

√
s2

2 − 4r0
2z2, s2 = z2 + r2 + r2

0. (2.7)

Using relations between cylindrical and elliptical coordinates, where r2

ξ2+r2
0

+ z2

ξ2 = 1 are family of

isothermal ellipsoids of revolution and orthogonal family of hyperboloids r2

η2 − z2

r2
0−η2 = 1 which are

the surfaces of heat �ow of electric current, see Figure 1, we get the non-stationary heat equation in
ellipsoidal coordinates

∂θ

∂t
=

a2

r2
0 − η2 + ξ2

[(
r2

0 − η2
) ∂2θ

∂η2
+
r2

0 − 2η2

η2

∂θ

∂η

]
+ (2.8)

+
a2

r2
0 − η2 + ξ2

[(
r2

0 + ξ2
) ∂2θ

∂ξ2
+ 2ξ

∂θ

∂ξ
+

I2ρ

4π2cγ (r2
0 + ξ2)

]
. (2.9)

For stationary regime [6], it was proved in [5] that the ratio ∇2ξ
(∇ξ)2 must be independent of the

variables r and z, it should depend only on the variable ξ. Indeed, using relation (2.5) it is easy to
check that

∇2ξ

(∇ξ)2
=

2ξ

r2
0 + ξ2

. (2.10)

Hereby, the temperature θ(r, z) depends only on ξ and does not depend on η, i.e. if ∂θ
∂t

= 0, then
∂θ
∂η

= ∂2θ
∂η2 = 0 and we get

(
r2

0 + ξ2
) ∂2θ

∂ξ2
+ 2ξ

∂θ

∂ξ
+

I2ρ

4π2cγ (r2
0 + ξ2)

= 0. (2.11)

For the quasi-stationary case, temperature also depends on η weakly, thus in (2.8) we can have
η = 0, ∂θ

∂η
= 0, ∂

2θ
∂η2 = 0, hence

∂θ

∂t
=

a2

r2
0 + ξ2

[(
r2

0 + ξ2
) ∂2θ

∂ξ2
+ 2ξ

∂θ

∂ξ
+

I2ρ

4π2cγ (r2
0 + ξ2)

]
(2.12)

or
∂θ

∂t
= a2

[
∂2θ

∂ξ2
+

2ξ

r2
0 + ξ2

∂θ

∂ξ
+

I2ρ

4π2cγ (r2
0 + ξ2)

2

]
. (2.13)

After substitution ζ = arctan
(
ξ
r0

)
, we get

∂θ

∂t
=

a2r0
2

(r2
0 + r2

0 tan2(ζ))2

[
∂2θ

∂ζ2
+

I2ρ

4π2cγr2
0

]
(2.14)

or
∂θ

∂t
=
a2

r2
0

cos4(ζ)

[
∂2θ

∂ζ2
+

I2ρ

4π2cγr2
0

]
. (2.15)
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Figure 2: Temperature distribution in quasi-stationary regime

3 Quasi-stationary linear Stefan problem

Quasi-stationary heat transfer for melting process can be described by the following model:{
div (λ1 gradT1) + 1

ρ1
grad2 ϕ1 = 0

div
(

1
ρ1

gradϕ1

)
= 0

, (r, z) ∈ D1, (3.1)

{
div (λ2 gradT2) + 1

ρ2
grad2 ϕ2 = 0

div
(

1
ρ2

gradϕ2

)
= 0

, (r, z) ∈ D2, (3.2)

where
D1 = {(r, z) : 0 < z < σ(r, t), 0 < r < rm(t)}, (3.3)

and
D2 = {(r, z) : σ(r, t) < z <∞, rm(t) < r <∞}, (3.4)

where Ti are the electrical contact temperature, ϕi are electrical potentials, σ(r, t) is the unknown
moving boundary, λ(Ti) and ρ(Ti) are heat conductance and electrical resistance, respectively, i = 1
for the melted zone and i = 2 for the solid zone.

We consider the functions Ti and ϕi depending on the variable ξ(r, z), then we get following
boundary conditions at z = 0 (ξ = 0):

dT1

dξ
= 0, (3.5)

ϕ1

∣∣∣
0≤r≤r0

= 0,
∂ϕ1

∂z

∣∣∣
r0≤r≤rm(t)

= 0, (3.6)

with z = σ(r, t) (ξ = ξm(t)):

T1 = T2 = Tm, λ1
dT1

dξ
= λ2

dT2

dξ
, (3.7)

ϕ1 = ϕ2,
1

ρ1

dϕ1

dξ
=

1

ρ2

dϕ2

dξ
. (3.8)
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Boundary conditions z =∞ or r =∞ (ξ =∞):

dT2

dξ
= 0, (3.9)

ϕ2 =
uc
2
, (3.10)

with the Stefan condition

λ1
dT1

dξ

∣∣∣
ξ=ξm(t)

− λ2
dT2

dξ

∣∣∣
ξ=ξm(t)

= Lγ
dξ

dt
, (3.11)

where ξm(t) is the melting boundary, uc is the potential and L is the latent heat of melting.

By [5] and boundary conditions (3.6), (3.8) and (3.10) the solutions for potentials are

ϕ′1(ξ) =
I2ρ1(T1)

2π(r2
0 + ξ2)

, ϕ′2(ξ) =
I2ρ2(T2)

2π(r2
0 + ξ2)

. (3.12)

We consider the case in which ρ(T1) = ρ1(1+α1[T1−Tm]), ρ(T2) = ρ2(1+α2T2) and λ(Ti) = λi = const
for i = 1, 2.

Heat conduction equation in ellipsoidal coordinates after introducing the substitution ζ =

arctan
(
ξ
r0

)
in equations (3.1), (3.2) with potential solutions (3.12) will be written in the form:

d2T1

dζ2
+
w2

1

α1

[1 + λ1(T1 − Tm)] = 0, 0 < ζ < ζm(t), (3.13)

d2T2

dζ2
+
w2

2

α2

[1 + λ2T2)] = 0, ζm(t) < ζ <
π

2
, (3.14)

with the boundary conditions:
dT1

dζ

∣∣∣
ζ=0

= 0, (3.15)

T1(ζm(t)) = T2(ζm(t)) = Tm, (3.16)

T2

(π
2

)
= 0. (3.17)

The solutions of problem (3.13), (3.14), (3.15), (3.16) and (3.17) for the ellipsoidal domain, see
Figure 2, are

T1(ζ) =
1

λ1

(
cosw1ζ

cosw1ζm(t)
+ α1Tm − 1

)
, (3.18)

T2(ζ) =
(1 + α2Tm) sin

[
w2

(
π
2
− ζ
)]
− sin [w2 (ζm(t)− ζ)]

α2 sin
[
w2

(
π
2
− ζm(t)

)] − 1

α2

, (3.19)

where w2
i = I2ρiαi

4πir2
0λi

, ζm(t) is the unknown moving interface, Tm is the melting temperature, αi are

the temperature coe�cients of resistance, λi are the heat conductances for i = 1, 2.
Using Stefan condition (3.11) and the following formulas

dT1

dξ

∣∣∣
ξ=ξm(t)

=
dT1

dζ

dζ

dξ

∣∣∣
ξ=ξm(t)

= −w1 sin(w1ζm(t))

α1 cos(w1ζm(t))
· r0

r2
0 + ξ2

m(t)
, (3.20)
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dT2

dξ

∣∣∣
ξ=ξm(t)

=
dT2

dζ

dζ

dξ

∣∣∣
ξ=ξm(t)

=
w2r0

[
1− (1 + α2Tm) cos(w2

(
π
2
− ζm(t)

)]
α2 sinw2

(
π
2
− ζm(t)

)
(r2

0 + ξ2
m(t))

, (3.21)

and
dξ

dt
=
dξ

dζ

dζ

dt
=

r0

cos2(ζ)
· dζ
dt
, (3.22)

we get

−λ1w1

α1

tan(w1ζm(t)) +
λ2w2(1 + α2Tm)

α2

cotw2

(π
2
− ζm(t)

)
− (3.23)

−λ2w2

α2

cscw2

(π
2
− ζm(t)

)
=

Lγr0

cos4(ζm(t))
· dζm(t)

dt
. (3.24)

From expression (3.24) we can �nd the unknown moving boundary ζm(t). Figure 3 shows the
numerical results for the copper electrical contact Cu with current I = 200 kA and arc radius r0 =
1.23 · 10−6m.

4 Heating of electrical contact with softening stage

The process of closed electrical contact heating can be divided in a chain of consecutive stages. The
�rst stage S1 (0 ≤ t ≤ tsoft) corresponds to the initial period of contact heating by the Joule heating.
The temperature of electrode θ1(ζ, t) during this stage increases to the softening temperature θsoft,
thus the termination time tsoft of the �rst stage is de�ned from the equation

θ1 (0, tsoft) = θsoft. (4.1)

The electrode at this stage consists of only one zone D3(0 < ζ < π/2).
The second stage S2 (tsoft ≤ t ≤ tmelt) lasts from tsoft to tmelt, when the electrode begins to

melt. The electrode now consists of two zones: the soft zone D3(0 < ζ < β(t)) and the solid zone
D2(β(t) < ζ < π/2). Here ζ = β(t) is the free moving boundary interface of phase transformation.
The time tmelt can be found from the equation

θ2 (0, tmelt) = θmelt, (4.2)

where θ2(ζ, t) is the temperature distribution inside the zone D2, and θmelt is the melting of electrode.
The third stage S3 (tmelt ≤ t ≤ tarc) is characterized by appearance of a new region D1(0 < ζ <

α(t)) occupied by melted region of electrode. The region D2(α(t) < ζ < β(t)) with two moving
boundaries is occupied by softened material, while the region D3(β(t) < ζ < π/2) remains solid. It
is the last stage of arcing of total duration tarc.

The temperature �eld in electrical contacts with heating θ1(ζ, t), softening θ2(ζ, t), and melting
θ3(ζ, t) inside corresponding zones D1, D2, and D3 are described by the heat equations in ellipsoidal
symmetry:

∂θi
∂t

=
a2
i

r2
0

cos4(ζ)

[
∂2θi
∂ζ2

+ ω2
i

]
, i = 1, 2, 3, (4.3)

where ωi = I
2πr0

√
ρi
ciγi

and r0 is the radius of contact spot, I is the current, ai is the thermal di�usivity

of the zone Di.
For numerical calculations we consider the copper electrical contact Cu with current I = 200 kA

and arc radius r0 = 1.23 · 10−6m



Stefan problems in ellipsoidal coordinates 57

Figure 3: Temperature distribution at ζ = 0 for Quadratic pro�le.

Figure 4: Temperature distribution at ζ = 0 for Quadratic pro�le.

4.1 Stage 1

Let us consider the �rst period (0 ≤ t ≤ tsoft) of nonstationary heating with the temperature �eld
θ1(ζ, t). In this stage we have only one region D3, where contact material is solid and temperature
attains the softening point. Thus, we consider the heat equation

∂θ1

∂t
=
a2

1

r2
0

cos4(ζ)

[
∂2θ1

∂ζ2
+ ω2

11

]
, 0 < ζ <

π

2
, (4.4)

with the boundary conditions

∂θ1(0, t)

∂ζ
= 0, (4.5)

and

θ1(π/2, t) = 0, (4.6)

and the initial condition

θ1(ζ, 0) = 0. (4.7)
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The exact solution of the parabolic equation (4.4) given in [9] has the form

θ1(ζ, t) =
∞∑
n=0

Cnθ
n(ζ, t), (4.8)

where

θn(ζ, t) =
n∑
i=0

tiφn,i(ζ), (4.9)

φn,n(ζ) = A+Bζ, (4.10)

φn,i(ζ) = n(n− 1) . . . (i+ 1)Ln−if [φn,n(ζ)]; i = 0, 1, . . . , n− 1. (4.11)

The integral operator Lf is introduced as follows

Lf [y(ζ)] =
r2

0

a2
1

∫
cos2 ζ

(∫
y(ζ)dζ

cos2 ζ

)
dζ, (4.12)

where the degree of the operator is de�ned as

Lif [y(ζ)] = Lf [L
i−1
f [y(ζ)]]. (4.13)

The integral heat power balance method is applied to problem (4.4)-(4.7). Goodman [2] used the
HBI method to solve the one-dimensional heat problems with �xed and moving boundaries. The
idea of this method is to substitute the exact solution by an approximate solution by choosing the
temperature pro�le for the temperature distribution in the whole domain. The classical quadratic
pro�le used for describing the temperature distribution has the form

T (ζ, t) = A(t)ζ2 +B(t)ζ + C(t), (4.14)

where A(t), B(t), and C(t) are functions of time.
For the temperature distribution θ1(ζ, t), we assume that the temperature pro�le given in the

form

T1(ζ, t) = A1(t)

(
ζ2 − π2

4

)
in 0 ≤ ζ ≤ π

2
, (4.15)

satis�es boundary conditions (4.5) and (4.6), where the coe�cient A1(t) is a general function of time.
Integrating equation (4.4) with respect to the space variable from ζ = 0 to ζ = π

2
we have

r2
0

a2
1

∫ π/2

0

∂θ1

∂t
dζ =

∫ π/2

0

cos4(ζ)

[
∂2θ1

∂ζ2
+ ω2

11

]
dζ. (4.16)

By using Leibniz integral formula, we obtain

r2
0

a2
1

d

dt

[∫ π/2

0

θ1dζ

]
=

∫ π/2

0

cos4(ζ)

[
∂2θ1

∂ζ2
+ ω2

11

]
dζ, (4.17)

which is called the energy integral equation.
Substituting the temperature pro�le (4.15) into equation (4.17), we obtain the ordinary di�erential

equation for A1(t):
dA1(t)

dt
+K1A1(t) = −K2, (4.18)
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Figure 5: (A)Temperature distribution of exact and approximate solution at t = tsoft. (B) Absolute
error in the quadratic pro�le at t = 1.683 · 10−7sec.

where

K1 =
9a2

1

2π2r2
0

, K2 =
9a2

1ω
2
11

4π2r2
0

, (4.19)

with the condition A1(0) = 0. Finally, we have the temperature pro�le

T1(ζ, t) =
K2

K1

·
(
e−K1·t − 1

)
·
(
ζ2 − π2

4

)
. (4.20)

The calculation at the �rst stage of contact heating for the copper electrical contacts is shown in
Figure 4. The temperature T1 reaches the softening point θsoft = 463K when tsoft = 1.683 · 10−7sec.
The temperature distribution for the quadratic temperature pro�le at t = tsoft and the spatial
distribution of the absolute error are shown in Figure 5. Hence, we can see that error of approximation
is less than 0.3 %.

4.2 Stage 2

In the second stage, a new region D2 occurs and now we have two regions D2 and D3. Mathematical
formulation for these zones are given as

∂θ21

∂t
=
a2

21

r2
0

cos4(ζ)

[
∂2θ21

∂ζ2
+ ω2

21

]
, 0 < ζ < β(t), (4.21)

∂θ22

∂t
=
a2

22

r2
0

cos4(ζ)

[
∂2θ22

∂ζ2
+ ω2

22

]
, β(t) < ζ <

π

2
, (4.22)

with boundary and initial conditions

θ22(0, tsoft) = θsoft, θ21(ζ, tsoft) = f(ζ), (4.23)

∂θ21

∂ζ

∣∣∣∣
ζ=0

= 0, θ22|ζ=π
2

= 0, (4.24)

θ21|ζ=β(t) = θ22|ζ=β(t) = θsoft, (4.25)
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f(0) = θsoft, β(tsoft) = 0, f
(π

2

)
= 0, (4.26)

and Stefan's condition

− λ21
∂θ21

∂ζ

∣∣∣∣
ζ=β(t)

= − λ22
∂θ22

∂ζ

∣∣∣∣
ζ=β(t)

, (4.27)

where

f(ζ) = θ1(ζ, tsoft), ω21 =
I

2πr0

√
ρ11

c11γ11

, ω22 =
I

2πr0

√
ρ12

c12γ12

. (4.28)

The quadratic pro�le used by Goodman [2] has the form T (ζ, t) = a(ζ − s) + b(ζ − s)2, where s is
the melt front and the coe�cients a and b are functions of time. We now choose temperature pro�le
for equations (4.21) and (4.22) in the form:

T21(ζ, t) = A21(t)(β2(t)− ζ2) + θsoft in 0 ≤ ζ ≤ β(t), (4.29)

T22(ζ, t) = 2θsoft(β(t)− ζ)(ζ − π/2) +
ζ − π/2
β(t)− π/2

θsoft in β(t) ≤ ζ ≤ π

2
, (4.30)

which satisfy boundary conditions (4.24) and (4.25). From Stefan's condition (4.27) one �nds the
coe�cient

A21(t) =
λ22

2λ21β(t)

(
β(t)− π

2
+

θsoft
β(t)− π

2

)
. (4.31)

Note that �nding of the softening interface ζ = β(t) is identical to determining of the thermal
layer. Hence, for θ21(ζ, t) we choose the region 0 ≤ ζ ≤ β(t) as the thermal appropriate for this
problem and for θ22(ζ, t) we integrate heat equation (4.22) from ζ = β(t) to ζ = π/2 by substitution
the quadratic pro�le T22(ζ, t) into the equation∫ π/2

β(t)

cos4(ζ)

[
∂2θ22

∂ζ2
+ ω2

22

]
dζ = F (β(t)), (4.32)

where

F (β(t)) =
a2

22(w2
22 + 4θsoft) [12β(t)− 6π + 8 sin(2β(t)) + sin(4β(t))]

32r2
0

. (4.33)

In view of the interface boundary conditions (4.25) and Stefan's condition (4.27) we get the ordinary
di�erential equation [

(4β2(t)− 4πβ(t) + π2 + 2)θsoft
4

]
dβ(t)

dt
= F (β(t)), (4.34)

with the condition β(tsoft) = 0.

Figure 6 shows the temperature in the soft (red solid line) and the solid phases. In Figure 6(A)
the plot shows the distribution of the temperature at the left boundary for θ1(0, t) and θ1(β(tmelt), t).
Figure 6(B) shows the temperature at ζ = β(tmelt) and the Figure 6(C) shows the space distribution
of the temperature at the melting time tmelt. The temperature allocation at t = tmelt presented in
Figure 8(A) and the dynamics of the free boundary shown in Figure 8(B). The time tmelt required
for the softening of �lament in electrical contacts given in (4.21), (4.22), (4.23), (4.24), (4.25), (4.26)
and (4.27) is equal to 6.913 · 10−7sec.
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Figure 6: Dynamics of temperature in softening stage where the (solid red line) is the tempera-
ture of soft phase and the other is the temperature of solid phase, (A) θ1(0, t), θ2(β(tmelt), t), (B)
θ1(β(tmelt), t), θ2(β(tmelt), t) and (C) θ1(ζ, tmelt), θ2(ζ, tmelt)

Figure 7: Distribution of the temperature θ(ζ, tmelt) (A) for all domain ζ ∈
[
0, π

2

]
and (B) position

of the melt-solid interface.

4.3 Stage 3

The third stage is characterized by formation of the third and last region D1, where electrode begins
to melt. The following model is proposed to describe this phenomena
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Figure 8: Distribution of the temperature θ(ζ, tmelt) (A) for all domain ζ ∈
[
0, π

2

]
and (B) position

of the soft-solid interface.

∂θ31

∂t
=
a2

31

r2
0

cos4(ζ)

[
∂2θ31

∂ζ2
+ ω2

31

]
, 0 < ζ < α(t), (4.35)

∂θ32

∂t
=
a2

32

r2
0

cos4(ζ)

[
∂2θ32

∂ζ2
+ ω2

32

]
, α(t) < ζ <

π

2
, (4.36)

θ32(0, tmelt) = θmelt, θ31(ζ, tmelt) = g(ζ), (4.37)

∂θ31

∂ζ

∣∣∣∣
ζ=0

= 0, θ32|ζ=π
2

= 0, (4.38)

θ31|ζ=α(t) = θ32|ζ=α(t) = θmelt, (4.39)

g(0) = θmelt, α(tmelt) = 0, g
(π

2

)
= 0, (4.40)

and Stefan's condition

− λ31
∂θ31

∂ζ

∣∣∣∣
ζ=α(t)

= − λ32
∂θ32

∂ζ

∣∣∣∣
ζ=α(t)

+ Lγ
dα(t)

dt
, (4.41)

where

g(ζ) = θ21(ζ, tmelt), ω31 =
I

2πr0

√
ρ21

c21γ21

, ω32 =
I

2πr0

√
ρ22

c22γ22

. (4.42)

For the last stage of contact heating we choose the temperature pro�le for equations (4.35) and
(4.36) in the form:

T31(ζ, t) = A31(t)(α2(t)− ζ2) + θmelt in 0 ≤ ζ ≤ α(t), (4.43)

T32(ζ, t) = 2θmelt(α(t)− ζ)(ζ − π/2) +
ζ − π/2
α(t)− π/2

θmelt in α(t) ≤ ζ ≤ π

2
, (4.44)

which satisfy boundary conditions (4.38) and (4.39). Goodman [2] used the alternative form of
equation (4.41). Equation (4.39) is di�erentiated with respect to t. By using (4.35) and (4.41) we
obtain

λ31

(
∂θ31

∂ζ

)2

= λ32
∂θ32

∂ζ

∂θ31

∂ζ
+ Lγ21

a2
31

r2
0

cos4 ζ

[
∂2θ31

∂ζ2
+ ω2

31

]
, ζ = α(t), (4.45)
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The coe�cient A31(t) can be determined by the above condition:

A31(t) =
2λ32α(t)θmelt

(
2α(t)− π − 1

α(t)−π

)
− ψ(α(t))

8λ31α2(t)
− (4.46)

−

√[
2λ32α(t)θmelt

(
2α(t)− π − 1

α(t)−π

)
− ψ(α(t))

]2

+ 8ψ(α(t))λ31α2(t)w2
31

8λ31α2(t)
, (4.47)

where ψ(α(t)) = 2Lγ21
a2

31

r2
0

cos4 α(t).

Integrating heat equation (4.36) from ζ = α(t) to ζ = π
2
we obtain the di�erential equation

dα(t)

dt
=
a2

32 [w2
32 − 4θmelt] (12α(t)− 6π + 8 sin(2α(t)) + sin(4α(t)))

8 r2
0 θmelt [4α2(t)− 4πα(t) + π2 + 2]

, (4.48)

with the condition α(tmelt) = 0.

Figure 9: Dynamics of temperature in melting stage where the (solid red line) is the temperature of
solid phase and the other is the temperature of solid phase, (A) θ1(0, t), θ2(β(tarc), t), (B) θ1(β(tarc), t),
θ2(β(tarc), t) and (C) θ1(ζ, tarc), θ2(ζ, tarc).

The temperature distribution on the melting stage and the free boundary are shown in Figure
7 and Figure 9. Figure 9 shows the temperature in the soft and solid phases. The dynamics of
the free boundary is presented in Figure 7(A) and Figure 7(B). In Figure 9(A) the plot shows the
distribution of the temperature at the left boundary for θ1(0, t) and θ1(α(tarc), t). Figure 9(B) shows
the temperature at ζ = α(tarc) and the Figure 9(C) shows the space distribution of the temperature
at the melting time tarc = 2.269 · 10−5sec.
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5 Conclusion

In this paper, we consider the Stefan problem in ellipsoidal coordinates. The heating of closed
electrical contacts in a quasi-stationary mode is described in ellipsoidal coordinates, which is shown
in Section 3. The heat balance integral method is applied to the one-dimensional ellipsoidal Stefan
problem with the Joule heat source. The results on the �rst stage of heating agreed well with the
obtained exact solution. The error of approximation is less than 0.3 % for the classical second-degree
polynomial temperature pro�le. The second and �nal stage results are also discussed in details. In
fact, the HBI method can be e�ectively applied to the two-dimensional Stefan problem and also to
the inverse Stefan problem.

Future work will concern extending the HPM presented in [13, 14, 15] to the evaporation process
in electrical contacts in ellipsoidal coordinates.

Acknowledgments

The authors were supported by the Nazarbayev University Program 091019CRP2120 "Centre for
Interdisciplinary Studies in Mathematics (CISM)" and the second author was supported by the grant
no. AP09258948 "A free boundary problems in mathematical models of electrical contact phenomena"
and by the grant no. OR11466188 ("Dynamical Analysis and Synchronization of Complex Neural
Networks with Its Applications").



Stefan problems in ellipsoidal coordinates 65

References

[1] T.R. Goodman, The heat-balance integral and its application to problems involving a change of phase, Trans.
ASME, J. Heat Transfer, 80 (1958), 335�342.

[2] T.R. Goodman, Application of integral methods in transient non-linear heat transfer, in: T.F. Irvine, J.P.
Hartnett (Eds.), Advances in Heat Transfer, vol. 1, Academic Press, New York, (1964), 51�122.

[3] S.C. Gupta, The classical Stefan problem. Basic Concepts, Modeling and Analysis, Elsevier, Amsterdam, (2003).

[4] R. Holm, Electrical contacts, 4-th Edition, Springer-Verlag, Berlin-Heidelberg (1967).

[5] S.N. Kharin, H. Nouri, T. Davies, The mathematical models of welding dynamics in closed and switching electrical
contact, Proc. 49th IEEE Holm Conference on Electrical Contacts, Washington, USA, (2003), 128�146.

[6] S.N. Kharin, Mathematical models of phenomena in electrical contacts. A.P. Ershov Institute of Informatics
System, Russian Academy of Sciences, Siberian Branch, Novosibirsk, (2017).

[7] S.N. Kharin, M.M. Sarsengeldin, S.A. Kassabek, T. Nauryz, The model of melting and welding of closed electrical
contacts with softening contact zone, 29th International conference on electrical contacts and the 64th IEEE
Holm conference on electrical contacts, Albuquerque, New Mexico, USA, (2018), 38�45.

[8] S.L. Mitchell, T.G. Myers, Application of standard and re�ned heat balance integral methods to one-dimensional

Stefan problems, SIAM Rev., 52 (2010), no. 1, 57�86.

[9] A.D. Polyanin, Handbook of linear partial di�erential equations for engineers and scientists, A CRC Press LLC,
2000 N.W. Corporate Blvd., Boca Raton, Flo�rida 33431, (2002).

[10] H.S. Ren, Application of the heat-balance integral to an inverse Stefan problem, Int. J. Thermal Sci., 46 (2007),
no.2, 118-127.

[11] L.I. Rubinstain, The Stefan problem, American Mathematical Society, Providence, RI, (1971).

[12] N. Sadoun, E.-K. Si-Akhmed, P. Colinet, On the re�ned integral method for the one-phase Stefan problem with

time -dependent boundary conditions, Appl. Math. Modelling, 25 (2006), 531�544.

[13] S.A. Kassabek, S.N. Kharin, D. Suragan, A heat polynomials method for inverse cylindrical one-phase Stefan

problems, Inverse Problems in Science and Engineering, 29 (2021), 3423-3450.

[14] S.A. Kassabek, D. Suragan, Numerical approximation of the one-dimensional inverse Cauchy-Stefan problem

using heat polynomials methods, Computational and Applied Mathematics, 41 (2022), no. 4, 1�19.

[15] S.A. Kassabek, D. Suragan, Two-phase inverse Stefan problems solved by heat polynomials method, Journal of
Computational and Applied Mathematics, 114854, (2022), doi.org/10.1016/j.cam.2022.114854

[16] J.W. Sitison, D.A. Edwards, The heat balance integral method for cylindrical extruders, Journal of Engineering
Mathematics, 122 (2020), 1�16.

[17] A.S. Wood, A new look at the heat balance integral method, Appl. Math. Modelling, 25 (2001), 815�824.

Samat Kassabek, Durvudkhan Suragan
Department of Mathematics
Nazarbayev University
53 Kabanbay batyr St,
Astana, Kazakhstan
E-mails: samat.kassabek,@nu.edu.kz, durvudkhan.suragan@nu.edu.kz



66 S.A. Kassabek, S.N. Kharin, D. Suragan

Stanislav Nikolayevich Kharin
International School of Economics
Kazakh British Technical University
59 Tole bi St,
Almaty, Kazakhstan
E-mail: staskharin@yahoo.com

Received: 14.11.2021


