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Abstract. The method of characteristics for the wave equation can be applied not only for un-
bounded strings. The method of incident and re�ected waves is e�ectively used in the case of a
mixed problem for a bounded string. This method can also be modi�ed for multipoint mixed prob-
lems for the wave equation. In this paper, the method of incident and re�ected waves is adapted
for multi-point problems with discontinuous derivatives. An analogue of the d'Alembert formula for
discontinuous multipoint problems for the wave equation in the case of a bounded string is proved.
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1 Introduction

Hamiltonians with point singularities arise in physical problems [13]. In the papers [17, 14, 20, 18]
similar operators are investigated and physical applications of such operators are given. Mathematical
questions of one-dimensional operators with singularities in the form of generalized functions have
been studied in detail in [19, 12, 4, 16]. Delta-like perturbations of the multidimensional Laplace
operator can be found in [6, 8, 9, 1]. In these papers, delta-shaped perturbations are explicitly
described in an equivalent way through functional-boundary operators. An alternative approach to
studying such perturbations is to describe the domain and their actions in terms of quadratic forms.

Let us �rst consider the Sturm-Liouville equation with a smooth potential q(x) on the union of
two disjoint intervals

−y′′ (x) + q (x) y (x) = f (x) , x ∈ (0, x0) ∪ (x0, 1) . (1.1)

If f ∈ L2(0, 1), then there exist limit values

y (0) , y′ (0) , y (x0 − 0) , y′ (x0 − 0) , y (x0 + 0) , y′ (x0 + 0) , y (1) , y′(1).

If the communication channel between the intervals (0, x0) and (x0, 1) is consistent, then both dif-
ferences {y (x0 + 0)− y (x0 − 0)} è {y′(x0 + 0)− y′(x0 − 0)} are equal to zero. If at least one of
the noted di�erences is nonzero, then the communication channel is said to be distorted between
intervals. In this case, the following functionals play important roles

γ1 (y) := y (x0 + 0)− y (x0 − 0) , γ2 (y) := y′ (x0 + 0)− y′ (x0 − 0) .

If the values of the above functionals are zero on solutions of equation (1.1), then the communica-
tion channel is consistent. Otherwise, the communication channel with distortions is open and the
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processes on the intervals (0, x0) and (x0, 1) interact according to inconsistent laws. Therefore, at
the point {x0} there are given equations

γ1 (y) = a, γ2 (y) = b (1.2)

Thus, on the intervals (0, x0) and (x0, 1) di�erential equation (1.1) is given, and on the singleton
{x0} algebraic equations (1.2) are given. In general, the operator de�ned on (0, x0) ∪ {x0} ∪ (x0, 1)
is a functional di�erential operator. The introduced operator will be denoted by Bmax.

Note that conditions (1.2) on the singleton {x0} simulate the presence of delta-shaped perturba-
tions of the di�erential operator.

Inhomogeneous operator equation

Bmaxw = f, ∀f ∈ L2(0, 1) (1.3)

has solutions in the corresponding natural class. In order for equation (1.3) to have a unique solution,
it is necessary to restrict the domain of the operator Bmax. Usually, the domain is restricted by adding
boundary conditions. Let B1 be one of such invertible restrictions of the maximal operator Bmax.

Then it is of interest to study the one-dimensional evolution equation of the form

utt = B1u+ g (t, x) , t > 0, x 6= x0 (1.4)

with the initial conditions

u (0, x) = u0 (x) , ut (0, x) = u1 (x) , x 6= x0.

2 On a class of functions

Let k1, k2, k3 be non-negative numbers. For further purposes, it is convenient to introduce the
operator PC of odd periodic continuation, which maps each function ω(x) continuous on the segment
[0, 1] with the condition ω(0) = 0 to the function ϕ(x), de�ned in the following way

ϕ (x) = ω(x) , 0 < x <
1

8
,

ϕ (x) = (1 + k3)ω (x)− k3ω

(
1

4
− x
)
,

1

8
< x <

1

4
,

ϕ (x) = (1 + k2) (1 + k3)ω (x) + k3 (1 + 2k2)ω

(
x− 1

4

)
− k2 (1 + k3)ω

(
1

2
− x
)
,

1

4
< x <

1

2
,

ϕ (x) = (1 + k1) (1 + k2) (1 + k3)ω(x) + (1 + k1) k3 (1 + 2k2)ω

(
x− 1

4

)
+k2 (1 + k3) (1 + 2k1)ω

(
x− 1

2

)
− k1k3 (1 + 2k2)ω

(
3

4
− x
)

−k1 (1 + k3) (1 + k2)ω (1− x) ,
1

2
< x <

3

4
,

ϕ (x) = (1 + k1) (1 + k2) (1 + k3)ω(x) + (1 + k1) k3 (1 + 2k2)ω

(
x− 1

4

)
+k2 (1 + k3) (1 + 2k1)ω

(
x− 1

2

)
+ k1k3 (1 + 2k2)ω

(
x− 3

4

)
,
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−k1 (1 + k3) (1 + k2)ω (1− x) ,
3

4
≤ x < 1.

The resulting function ϕ(x) is denoted by PCω(x). First, we extend the function ϕ(x) in an odd
way to the segment [−1, 0], and then we extend the function ϕ(x) from the segment [−1, 1] with a
period equal to two to the whole real axis. The function extended in this way will be denoted by
ϕ̃(x). The set of all functions ϕ̃(x) constructed in this way is denoted by D(k1, k2, k3). Note that the
function ϕ̃(x) is continuous on the real axis whenever ϕ(1) = 0.

3 Mixed problem for the wave equation

Throughout this section we use the notation

Ω=

(
0,

1

8

)
∪
(

1

8
,

1

4

)
∪
(

1

4
,

1

2

)
∪
(

1

2
, 1

)
.

Consider the following mixed problem for the wave equation

utt (x, t) = uxx (x, t) , t > 0, x ∈ Ω (3.1)

with the initial conditions

u (x, 0) = ϕ (x) , ut (x, 0) = ψ (x) , x ∈ Ω, (3.2)

and the homogeneous boundary conditions u (0, t) = 0, u (1, t) = 0, as well as the initial-boundary
conditions

u

(
1

2s
+ 0, t

)
= u

(
1

2s
− 0, t

)
, ux

(
1

2s
+ 0, t

)
= (1 + 2ks)ux

(
1

2s
− 0, t

)
, s = 1, 2, 3 (3.3)

Conditions (3.3) can be interpreted as matching conditions at the internal vertices of the graph. A
similar (only stationary) problem on graphs was studied in [7]. Further, we will assume that the
initial data ϕ(x), ψ(x), x ∈ Ω are selected from the set D(k1, k2, k3).

Theorem 3.1. Let ϕ (x) , ψ (x) ∈ D(k1, k2, k3). Assume that ϕ (1) = ψ (1) = 0. Then the solution
of the problem (3.1)-(3.3) with the indicated boundary and initial-boundary conditions has a unique
solution that has the representation

u (x, t) =
1

2
ϕ̃ (x+ t) +

1

2
ϕ̃ (x− t) +

1

2

∫ x+t

x−t
ψ̃ (ξ)dξ

where ϕ̃ is a 2-periodic extension to the whole real axis of the function ϕ and ψ̃ is a 2-periodic
extension to the whole real axis of the function ψ.

A similar mixed multipoint problem for the wave equation with only smooth initial data was studied
in [5]. The main result of [5] is the extension of the d'Alembert formula for multipoint problems
with smooth data. Theorem 3.1 generalized the d'Alembert formula for mixed problems for the wave
equation with nonsmooth solutions. Note that in Theorem 3.1 a new class of initial data D(k1, k2, k3)
is introduced and described.

Let us give some examples to clarify the meaning of Theorem 3.1. Discontinuous solutions of the
wave equation in gas dynamics are called shock waves. It is interesting to trace the propagation of
shock waves.
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Example 1. In the case k1 = k2 = k3 = 0 the set D(0, 0, 0) consists of continuously di�erentiable
functions on the interval [0, 1]. If ϕ (1) = ψ (1) = 0, then a smooth solution of mixed problem (3.4)-
(3.5) with the conditions u(0, t) = 0, u(1, t) = 0 has the form

u (x, t) =
1

2
ϕ̃ (x+ t) +

1

2
ϕ̃ (x− t) +

1

2

∫ x+t

x−t
ψ̃ (ξ)dξ.

The geometric interpretation of the obtained solution can be found in [10].

Example 2. Let k2 = k3 = 0, k1 6= 0. In this case, the class of initial data D(k1, 0, 0) consists of
functions of the form

ϕ (x) = ω(x) , 0 < x <
1

2
,

ϕ (x) = (1 + k1)ω (x)− k1ω(1− x),
1

2
< x < 1,

where ω(x) is an arbitrary continuously di�erentiable function on [0, 1] with the condition ω (0) = 0.
Then the solution of the mixed problem in Theorem 3.1 will be continuous whenever ϕ (1) = ψ (1) =
0. However, its derivative with respect to the variable x will have discontinuities due to a similar
discontinuity of the function ϕ(x) at the point x = 1

2
. The initial discontinuity extends along the

characteristics.

Proof of Theorem 3.1. Let us prove Theorem 3.1 for ψ(x) ≡ 0. Since the standard procedure in [11]
allows us to formulate and prove the theorem for other nontrivial ψ(x).

In the proof of Theorem 3.1, we essentially use the spectral properties of the following eigenvalue
problem.

−y′′ (x) = λy (x) x ∈
(

0,
1

8

)
∪
(

1

8
,

1

4

)
∪
(

1

4
,

1

2

)
∪
(

1

2
, 1

)
(3.4)

with the conditions y (0) = 0, y (1) = 0,

y

(
1

2s
+ 0

)
= y

(
1

2s
− 0

)
, y′

(
1

2s
+ 0

)
= (1 + 2ks) y

′
(

1

2s
− 0

)
, s = 1, 2, 3. (3.5)

Notation and facts about the problem required for the proof of (3.4)-(3.5) are given in Appendix 1
below.

We expand the initial function ϕ(x) along the system of eigenfunctions{
s
(
x, ρ

(k)
n

)
, k = 1, 2, 3, 4, n ≥ 0

}
.

ϕ (x) =
4∑

k=1

∞∑
n=0

c(k)
n s

(
x, ρ(k)

n

)
, (3.6)

where c
(k)
0 = 0, c

(k)
n = A

B
, A =

∫ 1

0
ϕ (x)s

(
x, ρ

(k)
n

)
dx, B =

∫ 1

0
s
(
x, ρ

(k)
n

)
s
(
x, ρ

(k)
n

)
dx.

Note that series (3.6) converges uniformly on Ω.
We seek the solution of the problem in the form

u (x, t) =
4∑

k=1

∞∑
n=0

d(k)
n (t) s

(
x, ρ(k)

n

)
. (3.7)

The standard procedure in [11] allows us to write out the coe�cients in the following form

d(k)
n (t) = c(k)

n cosρ(k)
n t. (3.8)

We need the following obvious lemma.
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Lemma 3.1. For x ∈ Ω the following formula is valid

2cos
(
ρ(k)
n t
)
s
(
x, ρ(k)

n

)
= s̃

(
x+ t, ρ(k)

n

)
+ s̃

(
x− t, ρ(k)

n

)
,

where s̃ is a 2-periodic extension to the whole real axis of the function s.

Lemma 3.1 follows from the formula 2cos (t) sin (x) = sin (x+ t)+sin (x− t). Putting relations
(3.8) into equality (3.7) and taking into account Lemma 2, we have

u (x, t) =
1

2

4∑
k=1

∞∑
n=0

ñ(k)
n s̃

(
x+ t, ρ(k)

n

)
+

1

2

4∑
k=1

∞∑
n=0

ñ(k)
n s̃

(
x− t, ρ(k)

n

)
.

This implies the following representation

u (x, t) =
1

2
ϕ̃ (x+ t) +

1

2
ϕ̃ (x− t) ,

where ϕ̃ is a 2-periodic extension to the whole real axis of the function ϕ. The uniqueness of the
solution to problem (3.1)-(3.3) is proved by the method given in the work of V.A. Il'in [5]. This
completes the proof of Theorem 3.1 in the case ψ (x) ≡ 0.

4 Appendix. Spectral properties of problem (3.4)-(3.5)

It is convenient to introduce the solution of equation (3.4) with λ = ρ2 de�ned by the formula

s (x, ρ) =
sin(ρx)

ρ
, 0 < x <

1

8
,

s (x, ρ) = (1 + k3)
sin(ρx)

ρ
+ k3

sin(ρ
(
x− 1

4

)
)

ρ
,

1

8
< x <

1

4
,

s (x, ρ) = (1 + k2) (1 + k3)
sin (ρx)

ρ
+ k3 (1 + 2k2)

sin(ρ
(
x− 1

4

)
)

ρ
+ k2 (1 + k3)

sin(ρ
(
x− 1

2

)
)

ρ
,

1

4
< x <

1

2
,

s (x, ρ) = (1 + k1) (1 + k2) (1 + k3)
sin (ρx)

ρ
+ (1 + k1) k3 (1 + 2k2)

sin(ρ
(
x− 1

4

)
)

ρ

+k2 (1 + k3) (1 + 2k1)
sin(ρ

(
x− 1

2

)
)

ρ
+ k1k3 (1 + 2k2)

sin(ρ
(
x− 3

4

)
)

ρ

+k1 (1 + k3) (1 + k2)
sin(ρ (x− 1))

ρ
,

1

2
< x < 1,

The solution s(x, ρ) is chosen so that conditions (3.5) and s(0, ρ) = 0 are satis�ed. Therefore, the
zeros of the function

∆ (λ) = (1 + k1) (1 + k2) (1 + k3)
sin (ρ)

ρ
+ (1 + k1) k3 (1 + 2k2)

sin(3ρ
4

)

ρ

+k2 (1 + k3) (1 + 2k1)
sin(ρ

2
)

ρ
+ k1k3 (1 + 2k2)

sin(ρ
4
)

ρ
,
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where λ = ρ2 are the eigenvalues of the initial problem. Note that ∆ (0) > 0. We transform the
function ∆ (λ) to the form

∆(λ) =
sin(ρ

4
)

ρ

{
k1k3(1 + 2k2) + 2k2(1 + k3)(1 + 2k1)(cos

(ρ
4

)
+ (1 + k1)k3(1 + 2k2)

(
4 cos2

(ρ
4

)
− 1
)

+ 4(1 + k1)(1 + k2)(1 + k3) cos
(ρ

4

)(
2 cos2

(ρ
4

)
− 1
)}

.

Hence it follows that it is necessary to investigate the cubic equation

P(z)≡8 (1 + k1) (1 + k2) (1 + k3) z3 + 4 (1 + k1) k3 (1 + 2k2) z2

−2 (1 + k3) (2 + k1) z − k3 (1 + 2k2) = 0
(4.1)

Note that

P (1) = 16k1k2k3 + 8k1k2 + 10k1k3 + 14k3k2 + 6k1 + 8k2 + 7k3 + 4 > 0,

P (−1) = −8k1k2 − 2k1k3 − 2k3k2 − 6k1 − 8k2 − k3 − 4 < 0.

The roots of cubic equation (4.1) cannot be multiple, since the quadratic equation for its derivative

24z2 +
8 (1 + k1) k3 (1 + 2k2)

(1 + k1) (1 + k2) (1 + k3)
z1 − 2 (1 + k3) (2 + k1)

(1 + k1) (1 + k2) (1 + k3)
= 0

has two di�erent real roots. Let us prove that the indicated cubic equation has three real roots and
they all lie in the interval (−1, 1). Let z1 be a root of the cubic equation (4.1), which is either complex
or lies outside the interval (−1, 1). Then it follows from the relation

cos
(ρ

4

)
= z1

that the initial eigenvalue problem has complex eigenvalues. But this contradicts the fact that the
original problem is self-adjoint (see [21]).

Thus, the cubic equation has three di�erent roots z1, z2, z3 from the interval (−1, 1). Therefore,
there are three series of eigenvalues

λ(k)
n = 16 (2πn∓ arccos zk)

2, k = 1, 2, 3.

The fourth series of eigenvalues follows from the equation sin(ρ
4
) = 0 and has the form

λ(4)
n = 16 (πn)2, n > 0.

For each series of eigenvalues, one can write down the eigenfunctions s(x, ρ
(k)
n ), k = 1, 2, 3, 4, where

ρ
(k)
n = 4(2πn ± arccos zk), k = 1, 2, 3, ρ

(4)
n = 4πn. Let us present useful properties of the system of

eigenfunctions
{
s
(
x, ρ

(k)
n

)
, k = 1, 2, 3, 4, n ≥ 0

}
.

Lemma 4.1. The system of eigenfunctions
{
s
(
x, ρ

(k)
n

)
, k = 1, 2, 3, 4, n ≥ 0

}
forms an orthogonal

basis in the space L2(0, 1).
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Proof. Take two arbitrary eigenvalues λ
(k)
n and {λ}(t)

m . Consider the product

(λ(k)
n − λ

(t)
m )

∫ 1

0

s
(
x, ρ(k)

n

)
s
(
x, ρ(t)

m

)
dx

=

∫ 1

0

s
(
x, ρ(k)

n

)
s′′
(
x, ρ(t)

m

)
dx−

∫ 1

0

s′′
(
x, ρ(k)

n

)
s
(
x, ρ(t)

m

)
dx

=
(
s
(
x, ρ(k)

n

)
s′
(
x, ρ(t)

m

)
− s′

(
x, ρ(k)

n

)
s
(
x, ρ(t)

m

))∣∣ 1
8

0

+
(
s
(
x, ρ(k)

n

)
s′
(
x, ρ(t)

m

)
− s′

(
x, ρ(k)

n

)
s
(
x, ρ(t)

m

))
|

1
4
1
8

+
(
s
(
x, ρ(k)

n

)
s′
(
x, ρ(t)

m

)
− s′

(
x, ρ(k)

n

)
s
(
x, ρ(t)

m

))∣∣ 1
2
1
4

+
(
s
(
x, ρ(k)

n

)
s′
(
x, ρ(t)

m

)
− s′

(
x, ρ(k)

n

)
s
(
x, ρ(t)

m

))∣∣1
1
2

= 0.

Here, we take into account conditions (3.5) and the fact that

s
(
0, ρ(k)

n

)
= 0, s

(
1, ρ(k)

n

)
= 0, s

(
0, ρ(t)

m

)
= 0, s

(
1, ρ(t)

m

)
= 0.

The obtained relation implies the orthogonality of the system. The basicity of the system follows
from the fact that the initial problem is self-adjoint.

The system of eigenfunctions
{
s
(
x, ρ

(k)
n

)
, k = 1, 2, 3, 4, n ≥ 0

}
is actually de�ned on the whole

axis, not just on the union of intervals
(
0, 1

8

)
∪
(

1
8
, 1

4

)
∪
(

1
4
, 1

2

)
∪
(

1
2
, 1
)
. Let us explain how the

function s de�ned on
(
0, 1

8

)
∪
(

1
8
, 1

4

)
∪
(

1
4
, 1

2

)
∪
(

1
2
, 1
)
is continued to

(
−1

8
, 0
)
∪
(
−1

4
,− 1

8

)
∪
(
−1

2
,− 1

4

)
∪(

−1,−1
2

)
. For

x ∈
(
−1

8
, 0

)
∪
(
−1

4
,− 1

8

)
∪
(
−1

2
,− 1

4

)
∪
(
−1,−1

2

)
we assume that s̃

(
x, ρ

(k)
n

)
= −s

(
−x, ρ(k)

n

)
, that is, through the point x = 0 we have an odd

continuation. Then s
(
−1 + 0, ρ

(k)
n

)
= 0, s′

(
−1 + 0, ρ

(k)
n

)
= s′

(
1− 0, ρ

(k)
n

)
. Further from the

set
(
−1

8
, 0
)
∪
(
−1

4
,− 1

8

)
∪
(
−1

2
,− 1

4

)
∪
(
−1,−1

2

)
∪
(
0, 1

8

)
∪
(

1
8
, 1

4

)
∪
(

1
4
, 1

2

)
∪
(

1
2
, 1
)
on the whole

real axis we continue periodically with a period is equal to two. The continuation will be a
smooth function at integer points, that is, the continued function is continuous at integer points
together with the �rst derivative. As is known from [2], an arbitrary function ϕ(x) satisfying
conditions (3.2) and ϕ(0) = 0, ϕ(1) = 0, expands into a uniformly convergent series along the

system
{
s
(
x, ρ

(k)
n

)
, k = 1, 2, 3, 4, n ≥ 0

}
. Therefore, the function ϕ(x) will be �rst continued

oddly to (−1
8
, 0) ∪ (−1

4
,−1

8
) ∪ (−1

2
,−1

4
) ∪ (−1,−1

2
) and then 2-periodically to the whole real axis.

The extended function is denoted by ϕ̃(x). Moreover, the expansion of ϕ(x) along the system{
s
(
x, ρ

(k)
n

)
, k = 1, 2, 3, 4, n ≥ 0

}
is preserved for the function ϕ̃(x).

In Lemma (4.1), we study the properties of the root functions of the operator of double di�eren-
tiation with conditions (3.3). The properties of root functions with more general integral conditions
were studied in [3]. Let us give some examples when the above reasoning leads to explicit formulas.

Example 3. If k1 = k2 = k3 = 0, then s(x, ρ) = sin(ρx)
ρ

0 < x < 1. In this case, all four series of

eigenvalues can be combined into one ρ
(0)
n = πn, n > 0. The system of eigenfunctions will take the

form {sin (πnx) , n > 0}.
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Example 4. Let k1 = k3 = 0, k2 6= 0. Then

s (x, ρ) =
sin(ρx)

ρ
, 0 < x <

1

4
,

s (x, ρ) = (1 + k2)
sin(ρx)

ρ
+ k2

sin(ρ
(
x− 1

2

)
)

ρ
,

1

4
< x < 1.

In this case, there are two series of eigenvalues

ρ(0)
n = 2πn, n > 0, ρ(1)

n = 2π(2n+ 1)∓ 2arccos
k2

2( 1 + k2)
, n ≥ 0.

Example 5. Let k2 = k3 = 0, k1 6= 0. Then

s (x, ρ) =
sin(ρx)

ρ
, 0 < x <

1

2
,

s (x, ρ) = (1 + k1)
sin(ρx)

ρ
+ k1

sin(ρ (x− 1))

ρ
,

1

2
< x < 1.

In this case, all four series of eigenvalues can be combined into one ρ
(0)
n = πn, n > 0. The system

of eigenfunctions will take the form {cn(x) sin (πnx) , n > 0}, where cn(x) is a piecewise constant
function for �xed n.
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