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1 Introduction

An amenable Banach algebra was introduced by Johnson in [8|. He showed that A is an amenable
Banach algebra if and only if A has an approximate diagonal, that is, a bounded net (mg) in (A ® A)
such that m,a —am, — 0 and 7(my,)a — a, for all @ € A, where m denotes the product morphism
from A ® A to A given by m(a®b) = ab for all a,b € A. The notion of a biprojective Banach algebra
was introduced by Helemskii [6]. In [6], A is called biprojective, if there exists a bounded A-bimodule
map 0 : A —s A® A such that 7o 6 = id4, where id, is the identity operator on A.

Recently, some authors have added a type of twist to the amenability definition. Given a con-
tinuous homomorphism ¢ from A to A, they defined and studied p—derivations and ¢—amenability
(see [10] and [13]). Suppose that A is a Banach algebra and ¢ € Hom(A), where Hom(A) denotes
the set of all continuous homomorphisms from A to A, and X is a Banach A—bimodule. A linear
operator D : A — X is called a ¢-derivation if D(ab) = D(a)p(b) + ¢(a)D(b), for all a,b € A. A
p—derivation D is called a p—inner derivation if there is 2 € X such that D(a) = ¢(a)x — zp(a), for
all a € A. Let Z[(A, X) be the set of all continuous p—derivations and N(A, X) be the set of all
¢—inner derivations from A into X. The first cohomology group is #L(A, X) = Z(A, X) /N (A, X).
A Banach algebra A is called p—amenable if H(A, X*) = {0}, for all A—bimodules X. Note that
every derivation of a Banach algebra A into an A-bimodule X is an ids—derivation.

Motivated by these considerations, the author and M. Lashkarizadeh Bami introduced some
generalizations of Helemskii’s concept such as a p—approximately biflat and ¢p—pseudo amenable
Banach algebra. In [4] it is said that a Banach algebra A is p—approximately biflat if there is a net
0y : A— (A® A)* (a € I) of bounded A—bimodule morphisms such that 7** 0 6, o p(a) — ¢(a).
Also, A is called ¢p—pseudo amenable if it admits a ¢—approximate virtual diagonal, i.e., there exists
a net (m,) C A® A (not necessarily with bounded) such that m, - ¢(a) — ¢(a) - mq — 0 and
m(me) - p(a) — p(a), for all a € A.

In this paper, we first introduce new definition of a (p—approximate biprojective and a
p—approximate amenable Banach algebra A, where ¢ is a continuous homomorphism on A. It
is shown that A is ¢p—approximately amenable if A is p—approximate biprojective and it has a
central approximate identity. We define a new concept of a p—approximate biprojective for Banach
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algebras. We show difference between this new concept and the classical one. It should be empha-
sized that ¢—approximate biprojective in the sense of definition in [5] is a slight generalization of
the notion of approximate biprojective. In Example 3 we construct a p—approximate biprojective
Banach algebra which is not a p—approximate amenable Banach algebra. If ¢ is an idempotent
homomorphism then the definition of a p—approximate biprojective in [5] results in a new definition.

2 Main results

Let A be a Banach algebra and X, Y be Banach A—bimodules. Then a A—bimodule morphism
from X to Y is a morphism ¢ : X — Y satisfying

ola-z)=a-p(x), @-a)=ep() - a (Yae€ A, Vo € X).

Definition 1. Let A be a Banach algebra and ¢ € Hom(A). We say that A is ¢p—approximate
biprojective if there exists a continuous A—bimodule homomorphism 6, : A — (A ® A) such that
mol,0p(a) = p(a), Ya € A.

Proposition 2.1. Let A be a Banach algebra and ¢ € Hom(A). If A has an approzimate diagonal,
then A is p—approximate biprojective.

~

Proof. Suppose that a net (mg) in (A ® A) is an approximate diagonal. Define 6, : A — (A® A)
by a+ a-mg (a € A). Then for every a € A, we have

mobyop(a) = moby(p(a))

I
A
5
=

3
9

Since the proof of the following result is similar to the proofs of theorems in [5], we omit it.

Theorem 2.1. Suppose that A is a o—approzimate biprojective Banach algebra. If I is a closed ideal
of A with one sided bounded approzimate identity such that o(I) C I, then I is p|;—approzimate
biprojective, where p|; is the restriction of ¢ to 1.

In the next result, ¢ : A — A is a homomorphism and I is a closed ideal of A which is ¢-invariant,
that is, p(I) C I, and also we consider the map ¢ : A/I — A/I defined by @(a + 1) = p(a) + I.

Theorem 2.2. Suppose that A is a p—approximate biprojective Banach algebra with one sided
bounded approximate identity. If I is a closed ideal of A, then A/I is ¢—approximately biprojec-
tive.

We quote the following result from [12].

Lemma 2.1. Let A be a Banach algebra. Then there exists an A—bimodule homomorphism 7 :
(A® A)* — (A ® A*)* such that for any functional f € (A® A)*, all elements ¢, € A* and
nets (aq), (bg) in A with w* — limaa, = ¢ and w* — limgbg = 1, we have

V() @) = limalimg f(aq @ bg).

Theorem 2.3. Suppose that A is a Banach algebra and ¢ € Hom(A). If A*™ is o**—approzimate
biflat, then A is p—approximate biflat.
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For the case of p—approximate biprojective, we have the following partial result which is an easy
implication of Theorem 2.2.

Corollary 2.1. Suppose that A is a Banach algebra and ¢ € Hom(A). If A*™ is o**—approzimate
biprojective such that A is an ideal in A*™ and A has a one sided bounded approximate identity, then
A is p—approzimate biprojective.

Proposition 2.2. Let A be a p—approzimate biprojective Banach algebra. Let B be a y—approzimate
biprojective Banach algebra with o € Hom(A) and ¢ € Hom(B). Then A ® B is o ®1p—approzimate
biprojective.

Proof. There exists an A—bimodule map 6, : A — (A® A) (o €A) with lim, 7 0 6; 0 p(a) =
¢(a) and B—bimodule map 65 : B — (B® B) (8 € I) with limgm o 65 0 o(b) = @(b). Let
0o : (A® A)®(B® B) — (A® B)®(A® B) be the isometric isomorphism given by (a; ® ay) ®
(b1 ®by) = (a1 @b1) @ (az ®by) (ay,a9 € A, by, by € B) . Let E = Ix Al be directed by the product
ordering and for each A = (5, a) € E, define 0\ = 6y o (6, ® 03). Using the iterated limit theorem
[14, Theorem 2.4] the above calculation gives for a ® be A® B

Tofro(p®@yY)(a®b) = wolbyo(fa®bs)o(p@i)(a®Db)
= mobho (0o ®0s)(p(a)®1(b))
= mobf(falp(a) ®bs(v(b)))
= wob,op(a)®mobso (Y(b))
— a®b.

Therefore, A ® B is » ® Y—approximate biprojective. O]
The proof of the following result is similar to that of Proposition 2.2.

Proposition 2.3. Let A be a p—approzimate biprojective Banach algebra. Let B be a 1V —approximate
biprojective Banach algebra with ¢ € Hom(A) and ¢» € Hom(B). Then A ® B is o &y —approzimate
biprojective.

Definition 2. Let A be a Banach algebra and p € Hom(A). We say that A is @—contractible
if it has a p—diagonal, i.e., there is an element m € A® A for which ¢(a) -m = m - p(a) and
w(m) - p(a) = ¢(a), for all a € A.

Recall that in [4], A is p—pseudo contractible if it has a central p—approximate diagonal, i.e.,
there is a p—approximate diagonal (m,,) satisfying ¢(a)m, = map(a) for all a € A and all .
A net (ey)aer in A is central if ae, = eqa foralla € A, o € 1.

Theorem 2.4. Let A be p—pseudo contractible and unital. Then A is p—contractible.

Proof. Since A is p—pseudo contractible, so there is a central p—approximate diagonal m, € A ® A.
Let e4 be the unit element, then define a, = m(m,) ® e4 — mg. Thus

m(an) = 7(7(Ma) ® e — my) = w(my) — m(my) =0,

and a, € ker(m). Since m(mga)p(a) — @(a), the right multiplication operator R, converges to
the identity operator id in B(ker(m)). Hence, R,, is invertible, whenever oo > «y, for some «y. By
surjectivity, there is a b, € ker(m) such that b, - aq = an. Then (b-b, —b) - a, = 0, for b € ker(w). By
injectivity, we get b-b, = b. This shows that e, = b, is a right identity for ker(7). Let m = ea®es—e,.
Then

p(a)m —mep(a) = (pla) @ ea —ea®p(a)) -m =0 (a € A)
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and also
m(m) - p(a) = ¢(a).
Therefore, m is a p—diagonal for A, that is, A is p—contractible. O

Theorem 2.5. Let A be p—approrimate biprojective and unital. Then A is p—pseudo contractible.

Proof. Since A is g—approximate biprojective, so there is a net 6, : A — (A ® A)(a
€A) such that lim, 7m0 6, o p(a) = p(a), (a € A). Let es be the unit and define m, = 0,(e,), for
every a € A, then we have

p(a) - ma = @(a) - Oalea) = Oa(p(a)ea) = Oa(p(a)),
and similarly

Mo - p(a) = ba(ea) - p(a) = ba(ear(a)) = ba(p(a)).
Hence, ¢(a) - my = mq - o(a). Also, for a € A,

m(ma) - pla) = w(falea)) - ¢(a)
= w(fap(ea)) - la) = p(a).
That is, (m,) is a central p—approximate diagonal for A, this means that A is ¢p—pseudo contractible.
m
Proposition 2.4. Let A be p—pseudo contractible. Then A is ¢o—approrimate biprojective.

Proof. Suppose that (my) C A ® A is a central p—approximate diagonal for A.  Define
0o : A— (A® A) by 0,(a) := a-m,. Then for every a € A, we have

limmob,o0p(a) = limm(p(a): - my) = p(a).

« «

]

Proposition 2.5. Let A be p—approzimate biprojective with a central approzimate identity (eg).
Then A is p—pseudo contractible.

Proof. Since A is ¢—approximate biprojective, so there is a net 6, : A — (A ® A) («

€A) such that lim, 706, o p(a) = ¢(a), (a € A). Take a finite subset F' = {a,--- ,a,} C A and
let ¢ > 0. Set M = max; ||¢(a;)|]| + 1. Now, choose § (depending on F, €) such that ez satisfies
l¢(eg)ela;) — pla;)|| <e,j=1,---,n. For this 8 choose o such that |78, (¢(es)) — v(es)|| < 17
Then for j =1,--- ,n, we have

Ima(p(es))pla;) —ela;)ll < llples)p(as) — wlay)l]
+ [[mbalp(es)) — les)llllo(as)ll < 2e.
Setting mp. = 0,(p(eg)) with the order (Fi,e1) < (Fa,e9) if FY C Fy, €1 > &9 yields a net (mpy))
satisfying mmreyp(a) — ¢(a) for a € A. Also, for each a € A, we get
pla) -mpe = ¢la)- balplep))

Oa(p(a)ples))
= fa(p(es)e(a))

Oa(p(ep)) - ola) = mpg - (a),
by the cenrality of (es), therefore A p—pseudo contractible.
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Definition 3. Let A be a Banach algebra and ¢ € Hom(A). We say that A is p—approzimate
amenable if every p—derivation D : A — X* 1s a p—approximate inner derivation, which means
that there is a net ©, C X* such that D(a) = lim, p(a)z, — zap(a) for all a € A.

Recall that an A-bimodule X is neo-unital if
X=A-X-A={a-z-b:a,be A xe€ X}.

Theorem 2.6. Suppose that A is a Banach algebra and ¢ € Hom(A) such that ©* = 1. If A is
p—pseudo amenable and has a bounded approximate identity, then A is o—approrimate amenable.

Proof. Let (m,) be a p—approximate virtual diagonal for A. Define 6 : A QA — Abya®b
a-D(p(b)) and let D : A — X* be a p—derivation . Then for every a € A, we have

O(p(a)ma —map(a)) + 0(ma)p(a) = p(a)f(ma) + m(ma)D(a) = 0.

Hence
m(ma)D(a) = —0(p(a)ma — map(a)) — 8(ma)p(a) + p(a)f(ma), (a € A).

Since A has a bounded approximate identity, we may assume that X is neo-unital [8]. Therefore,
W* — lim, w(my)D(a) = D(a) and lim, 6(p(a)ms — map(a)) = 0. Hence,

W* —1lim p(a)f(mq)_0(mas)p(a) = D(a), (a € A).

By Goldestin’s Theorem we can replace the weak® convergence in the equations by the weak conver-
gence. Applying Mazur’s Theorem, we then obtain a net (z,) of convex combinations (6(m,)) such
that

D(a) =limy(a)r, — xap(a) (a € A).
Hence, A is p—approximate amenable. O

Proposition 2.6. Let A be a p—approzimate biflat, has a bounded approrimate identity (eg) and
©? = 1. Then A is p—approzimate amenable.

Proof. Let (e3)ge; be an approximate identity for A and let 6, : A — (A ® A)*(a
€A) satisfy 7 0 0, 0 p(a) — ¢(a), (a € A). Then for every a € A and f € (A® A)*, we obtain

lim lim(f, a(p(es)) - p(a) — @(a) - falp(es))) = limlim(f,0a(p(es)p(a)

p(a)eles)))
= lién lién(f, b, (p(ega — aeg))) = 0.

Also, for a € A and ¢ € A*, we have

lim lim(yp, p(a) - 7 0 Oa((ep)) = lim{y, pla)es) = p(a).

Let £ = Ix A, where A” is the set of all functions from I to A. Consider the product ordering
on E defined by

(B,0) <p (B.d) & B<i B, a<ud (B.fel, a,den)
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For each A = (5, ) € E, we define my = 6,(p(es)). Using the iterated limit theorem |9, Theorem
2.4], the above calculation gives

w” = lim (my - p(a) = p(a) -my) = 0 (a€A),
and

w* — liin ola) -7 (my) = ¢(a) (a € A).

By Goldestin’s Theorem we can assume that (my) C (A ® A) and replace the weak* convergence
in equations by the weak convergence. Applying Mazur’s Theorem, we then obtain a net (niy) C
(A® A) of convex combinations (my) such that

nix - p(a) — ¢(a) - niy =0,
and
p(a) -7 (nix) = ¢(a) (a € A).
Hence, A is p—pseudo amenable, and by Theorem 2.6, A is p—approximate amenable. O

Corollary 2.2. Let A be a p—approximate biprojective with a bounded central approrimate identity
(eg) such that ¢* = 1. Then A is p—approzimate amenable.

Proof. A is p—pseudo amenable by Proposition 2.14. Since (eg) is bounded, by Theorem 2.3 in [4]
A is p—approximate biflat. So by Proposition 2.6, A is p—approximate amenable.
]

Proposition 2.7. Suppose that A is p—approzimate amenable. Then ©(A) has a bounded approxi-
mate identity.

Proof. Let 2 be the Banach A—bimodule whose underlying space is A and

a.x:=ar, and z.a:=0, (a€ A xze).

Define D : A — A** by a — ¢(a). So, D is a p—derivation. Thus, there is a net (m,) C 20** with
D(a) = limp(a) - mo —ma - p(a) = limp(a) - ma = p(a), (a € A).

Take finite sets F' C A, 1 C A* and let ¢ > 0. By Goldestin’s Theorem there is a net (ea)a=a(F )
such that

| < ¢,p0(a)eq > — < d,p0(a) >| < | <o,p(a)en > — < p(a)ma,d > |

~

+ [ <ela)ma —pla), ¢ > |

= | <gz§-g0(a),ea > - <mou¢'(p(a> > ‘

+ | <pla)ma —¢(a), ¢ > |

< e (a€F, 9.
Then for a € A, w — lim, p(a)e, = ¢(a). Applying Mazur’s Theorem, we obtain a net (e,) of
convex combinations (€q)a=a(rFyp,e) such that lim, ¢(a)en = ¢(a) (a € A)i.e. (eq) is a bounded right
approximate identity for ¢(A).

In a similar way, we obtain a left approximate identity (f3)s for p(A), Define e, 5 := e+ fs—€a f5-

Then, for any a € A, we have

lp(a)eas —pla)l < llw(a)ea —wla)ll + llp(a)fs — llp(a)eassll
< llwla)ea = wla)ll + llpla) = [le(a)ealll f5]] — 0.

Similarly, ¢(a) = lim, g eq gp(a) for a € A. O
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In the next examples, we construct a ¢—approximate biprojective Banach algebra which is not a
biprojective Banach algebra.

Example 1. The Banach algebra [* with respect to pointwise product is a non-amenable and bipro-
jective Banach algebra |3, Example 4.1.42]. Hence, (I')* (unitization of ') is not biprojective. If we
define ¢ : (I')* — (I')* by @(a + Ae) = X for a € I*and X € C, then Example 3.2 [11] shows that
(IM)f is a p—pseudo contactible Banach algebra, hence by Proposition 2.4, (I')* is ¢ —approximate
biprojective.

On the other hand, since ¢ is an idempotent homomorphism then by Example 2.1 [5], (I')* is
p—approximate biprojective.

Example 2. Let V be a Banach space, and let f € V* be a non-zero element such that ||f|| < 1.
Then V equipped with the product defined by ab := f(a)b for a,b € v is a Banach algebra which is
denoted by Vy. In general, V; is a non- commutative and non-unital Banach algebra without right
approximate identity, but it is not amenable. Hence, (V)* (unitization of V) is not biprojective.
If we define ¢ : (V;)¥ — (Vs)* by ¢(a+ Ae) = X for a € V; and A € C, then Example 3.2 [11]
shows that (V)* is a ¢—pseudo contactible Banach algebra. Thus, by Proposition 2.4, (V;)* is
p—approximate biprojective.

Here, we now give an example of a p—approximate biprojective Banach algebra which is not a
p—approximate amenable Banach algebra.

a b
00

no identity and right approximate identity. Therefore, A is not a y—approximate amenable Banach

algebra. For
f_10 101
—oo/” 9" o o]

9([3 SD =a(f® f)+b(f®g).

Then for a € A and p € Hom(A), we have mofop(a) = p(a). So, A is a p—approximate biprojective
Banach algebra.

Example 3. Let A = [ } :a,b € C 3 under the standard operator norm. We see that A has

we define
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