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1 Introduction

The following system of equations

N i(u) ≡
2n∑
j=1

(
∂Rj

∂ui
− ∂Ri

∂uj

)
u̇j −

[
∂B
∂ui

+
∂Ri

∂t

]
= 0, i = 1, 2n, (1.1)

is called Birkho�'s equations [14] and it is derived from the stationarity condition of the Pfa�an
action

FN [u] =

t1∫
t0

[
2n∑
i=1

Ri(t, u) · u̇i − B(t, u)

]
dt. (1.2)

Equations (1.1) were widely investigated, in particular, in [11, 14]. An operator approach to
Birkho�'s equations was developed by V.M. Savchin in [16], where he proved that the problem of
a direct representation of an evolutionary operator equation in the form of an operator Birkho�'s
equation was closely related to the problem of constructing the corresponding Pfa�an action. There
is a large number of works devoted to the construction of direct and indirect variational formulations
of di�erent types of equations and their systems (see, e.g., [3, 4, 5, 6, 7, 15, 16, 18, 19, 20, 21, 22, 23]).
In classical mechanics there exist methods of construction generalized Lagrangians of systems based
on the properties of their motion [8, 9]. It is well known [10, 11, 14], that Birkho�'s systems are
generalizations of Hamiltonian ones. It should be noted that the problem of a direct and indirect
representation of an operator equation with the �rst order time derivative in the form of Hamiltonian
equation is investigated in [1, 2, 17].

In the paper, we apply Savchin's approach for investigaton of an indirect representation of an
evolutionary operator equation in the form of an operator Birkho�'s equation.

Below, we use notations and terminology of [3, 4, 15, 18, 19].
The following theorem is needed for the sequel.
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Theorem 1.1. [15] Consider an operator N : D(N) ⊂ U → V and a bilinear form Φ(·, ·) : V ×V →
R such that for any �xed elements u ∈ D(N), g, h ∈ D(N ′u) the function ψ(ε) = Φ(N(u + εh), g)
belongs to the class C1[0, 1]. For N to be potential on the convex set D(N) relative to Φ it is necessary
and su�cient to have

Φ (N ′uh, g) = Φ (N ′ug, h) ∀u ∈ D (N) , ∀h, g ∈ D (N ′u) . (1.3)

Under this condition the potential FN is given by

FN [u] =

1∫
0

Φ(N(ũ(λ)), u− u0) dλ+ FN [u0], (1.4)

where ũ(λ) = u0 + λ(u− u0), u0 is a �xed element of D(N).

2 Conditions of an indirect representation of an evolutionary operator
equation with the �rst order time derivative in the form of an operator
Birkho�'s equation

Consider an operator equation

N(u) ≡ Pu,tut +Q(t, u) = 0, u ∈ D(N), (2.1)

t ∈ [t0, t1] ⊂ R, ut ≡ Dtu ≡
d

dt
u.

Here ∀t ∈ [t0, t1], ∀u ∈ U1 Pu,t : U1 → V1 is a linear operator; Q : [t0, t1] × U1 → V1 is an arbitrary
operator; D(N) is the domain of de�nition of the operator N , U = C1([t0, t1];U1), V = C([t0, t1];V1),
U1, V1 are linear normed spaces, U1 ⊆ V1.

We will also write
N(u) ≡ Puut +Q(u) = 0,

bearing in mind that the operators Pu and Q may also depend on t.
Operator equation (2.1) can be an ordinary di�erential equation, a di�erential equation with

partial derivatives, an integro-di�erential equation, a di�erential-di�erence equation, etc., and a
system of such equations (see, e.g., [7, 8, 12, 13, 15]).

We will assume that the bilinear form

Φ(·, ·) ≡
t1∫
t0

〈·, ·〉 dt : V × V → R

is symmetric and nondegenerate.
Denote by Ñ(u) = MuN(u), where Mu : D(Mu) ⊃ R(N) → V and consider the following

equation:
Ñ(u) ≡MuPuut +MuQ(u) = 0. (2.2)

Theorem 2.1. Let Dt be skew-symmetric on D(N ′u). Equation (2.1) admits an indirect represen-
tation in the form of an operator Birkho�'s equation if and only if ∀u ∈ D(N), ∀t ∈ [t0, t1] the
following conditions hold on D(N ′u):

P ∗uM
∗
u +MuPu = 0, (2.3)
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− ∂

∂t
(P ∗uM

∗
u) + [M ′

u (Q(u); · )]∗ +Q′∗uM
∗
u −M ′

u (Q(u); ·)−MuQ
′
u = 0, (2.4)

[M ′
u (Puut; ·)]∗ + [P ′u (ut; ·)]∗M∗

u − P ∗′u (M∗
u (·) ;ut)− P ∗uM∗′

u (·;ut)
−M ′

u (Puut; ·)−MuP
′
u (ut; ·) = 0. (2.5)

Proof. We have

Ñ ′uh = M ′
u (Puut;h) +MuP

′
u (ut;h) +MuPuht +M ′

u (Q (u) ;h) +MuQ
′
uh.

Further,

Φ
(
Ñ ′uh, g

)
=

t1∫
t0

{〈M ′
u (Puut;h) , g〉+ 〈Mu (P ′u (ut;h) + Puht) , g〉

+ 〈M ′
u (Q (u) ;h) , g〉+ 〈MuQ

′
uh, g〉} dt

=

t1∫
t0

{〈
h, [M ′

u (Puut; ·)]∗g
〉

+
〈
h, [P ′u (ut; ·)]∗M∗

ug
〉
−
〈
h,

∂

∂t
(P ∗uM

∗
u) g

〉
−〈h, P ∗′u (M∗

ug;ut)〉 − 〈h, P ∗uM∗′
u (g;ut)〉 − 〈h, P ∗uM∗

ugt〉
+
〈
h, [M ′

u (Q (u) ; ·)]∗ g
〉

+ 〈h,Q′∗uM∗
ug〉
}
dt

=

t1∫
t0

{〈
h,
{

[M ′
u (Puut; ·)]∗ + [P ′u (ut; ·)]∗M∗

u − P ∗′u (M∗
u (·) ;ut)− P ∗uM∗′

u (·;ut)

− ∂

∂t
(P ∗uM

∗
u) + [M ′

u (Q (u) ; ·)]∗ +Q′∗uM
∗
u

}
g

〉
− 〈h, P ∗uM∗

ugt〉
}
dt.

On the other hand,

Φ
(
Ñ ′ug, h

)
=

t1∫
t0

{〈h,M ′
u (Puut; g) +MuP

′
u (ut; g) +M ′

u (Q(u); g) +MuQ
′
ug +MuPugt〉} dt.

Thus, from condition (1.3) it follows that

[M ′
u (Puut; ·)]∗ + [P ′u (ut; ·)]∗M∗

u − P ∗′u (M∗
u (·) ;ut)− P ∗uM∗′

u (·;ut)−M ′
u (Puut; ·)

−MuP
′
u (ut; ·)−

∂

∂t
(P ∗uM

∗
u) + [M ′

u (Q (u) ; ·)]∗ +Q′∗uM
∗
u −M ′

u (Q (u) ; ·)−MuQ
′
u = 0,

P ∗uM
∗
u +MuPu = 0.

Hence, conditions (2.3)-(2.5) are satis�ed.

Remark 1. Denote by
P u = MuPu, Q(u) = MuQ(u).

Then conditions (2.3)-(2.5) can be written in the form

P
∗
u + P u = 0,

−∂P
∗
u

∂t
+Q

′∗
u −Q

′
u = 0,[

P
′
u (ut; ·)

]∗
− P ∗′u (·;ut)− P

′
u (ut; ·) = 0.
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Remark 2. If Mu ≡ I is the identity operator then from (2.3)-(2.5) we obtain

P ∗u + Pu = 0, (2.6)

−∂P
∗
u

∂t
+Q′∗u −Q′u = 0, (2.7)

[P ′u (ut; ·)]∗ − P ∗′u (·;ut)− P ′u (ut; ·) = 0. (2.8)

Note that these are conditions of a direct representation of an operator equation with the �rst
order time derivative in the form of operator Birkho�'s equation [16].

Remark 3. Consider a system of ordinary di�erential equations

N i(u) ≡
2n∑
j=1

Cij(t, u)u̇j + Di(t, u) = 0, i = 1, 2n. (2.9)

In our case

Pu =


C11 C12 . . . C1,2n

C21 C22 . . . C2,2n

...
...

. . .
...

C2n,1 C2n,2 . . . C2n,2n

 , Q(u) =


D1

D2

...

D2n

 .

Let us assume that

Mu =


M11 M12 . . . M1,2n

M21 M22 . . . M2,2n

...
...

. . .
...

M2n,1 M2n,2 . . . M2n,2n

 , (2.10)

where Mij = Mij(t, u), i, j = 1, 2n.
Denote by

Cij =
2n∑
k=1

MikCkj, Di =
2n∑
k=1

MikDk, i, j = 1, 2n.

From (2.3)-(2.5), we get
Cij + Cji = 0, (2.11)

∂Cij
∂t

=
∂Di

∂uj
− ∂Dj

∂ui
, (2.12)

∂Cij
∂uk

+
∂Cki
∂uj

+
∂Cjk
∂ui

= 0, i, j, k = 1, 2n. (2.13)

Note that (2.11)-(2.13) are conditions of an indirect representation of system (2.9) in the form of
classical Birkho�'s equations [11].

If (2.10) is the identity matrix, then conditions (2.11)-(2.13) take the form

Cij + Cji = 0,

∂Cij
∂t

=
∂Di

∂uj
− ∂Dj

∂ui
,

∂Cij
∂uk

+
∂Cki
∂uj

+
∂Cjk
∂ui

= 0, i, j, k = 1, 2n.

These are conditions of a direct representation of system (2.9) in the form of classical Birkho�'s
equations [11].
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3 Construction of a Pfa�an action

Theorem 3.1. If conditions (2.3)− (2.5) are ful�lled then the corresponding Pfa�an action is given
by

FÑ [u] =

t1∫
t0

{〈MuR(u), ut〉+ BM [u]} dt+ FÑ [u0] , (3.1)

where

Φ 〈MuR(u), ut〉 =

t1∫
t0

1∫
0

〈
−Mũ(λ)Pũ(λ)(u− u0),

∂ũ(λ)

∂t

〉
dλdt, (3.2)

BM [u] =

1∫
0

〈
Mũ(λ)Q(ũ(λ)), u− u0

〉
dλ, (3.3)

ũ(λ) = u0 + λ(u− u0); u0 is a �xed element of D(N).

Proof. Taking into consideration formula (1.4) and condition (2.3) we get

FÑ [u]− FÑ [u0] =

t1∫
t0

1∫
0

〈
Ñ (ũ (λ)) , u− u0

〉
dλdt

=

t1∫
t0

1∫
0

〈
Mũ(λ)Pũ(λ)

∂ũ(λ)

∂t
, u− u0

〉
dλdt+

t1∫
t0

1∫
0

〈
Mũ(λ)Q (ũ(λ)) , u− u0

〉
dλdt

=

t1∫
t0

1∫
0

〈
P ∗ũ(λ)M

∗
ũ(λ)(u− u0),

∂ũ(λ)

∂t

〉
dλdt+

t1∫
t0

1∫
0

〈
Mũ(λ)Q(ũ(λ)), u− u0

〉
dλdt

=

t1∫
t0

1∫
0

〈
−Mũ(λ)Pũ(λ)(u− u0),

∂ũ(λ)

∂t

〉
dλdt+

t1∫
t0

1∫
0

〈
Mũ(λ)Q(ũ(λ)), u− u0

〉
dλdt.

The use of (3.2), (3.3) yields Pfa�an action (3.1).

Remark 4. IfMu ≡ I is the identity operator and conditions (2.6)-(2.8) hold then the corresponding
Pfa�an action is given by

FN [u] =

t1∫
t0

{〈R(u), ut〉+ B[u]} dt+ FN [u0] , (3.4)

where

Φ 〈R(u), ut〉 =

t1∫
t0

1∫
0

〈
−Pũ(λ)(u− u0),

∂ũ(λ)

∂t

〉
dλdt,

B[u] =

1∫
0

〈Q(ũ(λ)), u− u0〉dλ,

ũ(λ) = u0 + λ(u− u0); u0 is a �xed element of D(N).
Note that Pfa�an action (3.4) was constructed in [16].
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4 Birkho�an structure of an evolutionary operator equation with the
�rst order time derivative

Theorem 4.1. Conditions (2.3)− (2.5) are ful�lled if and only if equation (2.2) has the Birkho�an
structure

Ñ(u) ≡ P uut +Q(u) ≡
(
R
′∗
u − R

′
u

)
ut −

∂R

∂t
(u) + gradΦ1B[u] = 0, (4.1)

where
P u = MuPu, Q(u) = MuQ(u), R(u) = MuR(u), B[u] = BM [u]. (4.2)

Proof. Let conditions (2.3)-(2.5) be satis�ed. Then the corresponding Pfa�an action is given by
(3.1) and

δFÑ [u, h] =

t1∫
t0

{〈M ′
u(R(u);h), ut〉+ 〈MuR

′
uh, ut〉+ 〈MuR(u), ht〉

+ 〈gradΦ1BM [u], h〉} dt =

t1∫
t0

{〈
[M ′

u(R(u); ·)]∗ ut, h
〉

+ 〈h,R′∗uM∗
uut〉

−
〈
∂

∂t
(MuR(u)) +M ′

u (R(u);ut) +MuR
′
uut, h

〉
+ 〈gradΦ1BM [u], h〉

}
dt

=

t1∫
t0

〈
Ñ(u), h

〉
dt.

Hence
MuPu = [M ′

u(R(u); ·)]∗ + R′∗uM
∗
u −M ′

u (R(u); ·)−MuR
′
u,

MuQ(u) = − ∂

∂t
(MuR(u)) + gradΦ1BM [u].

Bearing in mind notations (4.2), we obtain

P u = R
′∗
u − R

′
u,

Q(u) = −∂R
∂t

(u) + gradΦ1B[u].

This means that equation (2.2) is of the Birkho�an type and, therefore, equation (2.1) is indirectly
represented in the form of an operator Birkho�'s equation.

On the other hand, let equation (2.2) be of the Birkho�an structure. As it is shown above,
equation (4.1) is derived from the stationarity condition of Pfa�an action (3.1). It signi�es that
operators Pu and Q must satisfy conditions (2.3)-(2.5).

Remark 5. If Mu ≡ I is the identity operator then

Pu = R′∗u − R′u,

Q(u) = −∂R
∂t

(u) + gradΦ1B[u],

i.e. equation (2.1) is directly represented in the form of an operator Birkho�'s equation

N(u) ≡ Puut +Q(u) ≡ (R′∗u − R′u)ut −
∂R

∂t
(u) + gradΦ1B[u] = 0 (4.3)

(see [16]).
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Remark 6. Suppose that
R = (R1,R2, ...,R2n)T , B = −B,

where Ri (i = 1, 2n), B are functions of the variable t and unknown vector function u(t) =
(u1(t), u2(t), ..., u2n(t))T .

Then

R′u =


∂R1

∂u1
∂R1

∂u2 . . . ∂R1

∂u2n

∂R2

∂u1
∂R2

∂u2 . . . ∂R2

∂u2n

...
...

. . .
...

∂R2n

∂u1
∂R2n

∂u2 . . . ∂R2n

∂u2n

 , R′∗u =


∂R1

∂u1
∂R2

∂u1 . . . ∂R2n

∂u1

∂R1

∂u2
∂R2

∂u2 . . . ∂R2n

∂u2

...
...

. . .
...

∂R1

∂u2n
∂R2

∂u2n . . . ∂R2n

∂u2n

 .

In this case, (3.4) is classical Pfa�an action (1.2) and from (4.3) we get the structure of classical
Birkho�'s equations (1.1).

5 Example

Consider the following partial di�erential equation:

N(u) ≡ αut + βutxx + f(x, t, u, ux) = 0, (x, t) ∈ Q = (a, b)× (t0, t1), (5.1)

where α, β are constants, f ∈ C2(Q× R2).
De�ne D(N) by

D(N) = {u ∈ C3(Q) : u|t=t0 = ϕ1(x), u|t=t1 = ϕ2(x) (x ∈ (a, b)), u|x=a = ψ1(t),

u|x=b = ψ2(t), ux|x=a = ψ3(t), utx|x=a = 0,

b∫
a

u(x, t)dx = ψ4(t) (t ∈ (t0, t1))}, (5.2)

where ϕi (i = 1, 2), ψj (j = 1, 4) are continuous functions.
We introduce the classical bilinear form

Φ(v, g) =

t1∫
t0

b∫
a

v(x, t)g(x, t)dxdt. (5.3)

In this case
Pu ≡ P = αI + βD2

x, Q(u) = f(x, t, u, ux),

where I is the identity operator.
Note that equation (5.1) does not admit a direct representation in the form of operator Birkho�'s

equation, because P = P ∗ and condition (2.6) is not ful�lled.
Let M = D−1

x , where

D−1
x v(x, t) =

x∫
a

v(y, t)dy.

Equation (5.1) admits an indirect representation in the form of operator Birkho�'s equation if and
only if ∀u ∈ D(N), ∀t ∈ [t0, t1] the following condition holds on D(N ′u):

−∂f
∂u
D−1
x +Dx

(
∂f

∂ux

)
D−1
x −D−1

x

(
∂f

∂u
(·)
)

+D−1
x

(
Dx

(
∂f

∂ux

)
(·)
)

= 0. (5.4)
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Indeed, we have

M∗ = −D−1
x , Q′u =

∂f

∂u
+

∂f

∂ux
Dx, Q′∗u =

∂f

∂u
−Dx

(
∂f

∂ux

)
− ∂f

∂ux
Dx

and
(2.3) =⇒ −αD−1

x h− βhx + αD−1
x h+ βhx = 0,

(2.4) =⇒ −∂f
∂u
D−1
x h+Dx

(
∂f
∂ux

)
D−1
x h+ ∂f

∂ux
h−D−1

x

(
∂f
∂u
h
)
−D−1

x

(
∂f
∂ux

hx

)
= −∂f

∂u
D−1
x h+Dx

(
∂f
∂ux

)
D−1
x h+ ∂f

∂ux
h−D−1

x

(
∂f
∂u
h
)
− ∂f

∂ux
h+D−1

x

(
Dx

(
∂f
∂ux

)
h
)

= −∂f
∂u
D−1
x h+Dx

(
∂f
∂ux

)
D−1
x h−D−1

x

(
∂f
∂u
h
)

+D−1
x

(
Dx

(
∂f
∂ux

)
h
)

= 0,

(2.5) =⇒ 0 = 0.
Hence, from condition (2.4) we obtain condition (5.4).
From (3.2) we �nd

R = −1

2
αI − 1

2
βD2

x.

Note that under condition (5.4) the following operator

N1(u) ≡ D−1
x f(x, t, u, ux)

is potential on D(N) (5.2) relative to bilinear form (5.3) and in this case

BM [u] ≡ BM [u]−BM [u0] =

1∫
0

b∫
a

D−1
x f(x, t, ũ(λ), ũx(λ)) · (u− u0)dxdλ,

where ũ(λ) = u0 + λ(u− u0); u0 is a �xed element of D(N).
So functional (3.1) takes the form

FÑ [u] =

t1∫
t0

−1

2

b∫
a

(
αD−1

x u · ut + βuxut
)
dx+BM [u]

 dt.
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