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a criterion under which these operators are self-adjoint. Finally, we give an eigenfunction expansion.
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1 Introduction

Recently, discontinuous di�erential equations have become a very active area of research since these
equations describe processes that experience a sudden change of their state at certain moments. Such
processes arise in some problems of the theory of the mass and heat transfer, radio science, various
physical transfer problems, and geophysics (see [26, 27, 25, 9, 31, 32, 7, 34, 33, 11, 12, 13, 14, 1, 21,
28, 29, 30]).

The study of matrix-valued Sturm�Liouville equations has become an important area of research
because such equations arise in a variety of physical problems (for example, see [17, 20, 22, 15,
16]). Although matrix Sturm�Liouville equations are more di�cult than the scalar Sturm�Liouville
equations the matrix-valued Sturm�Liouville equations have intensively been investigated during the
last two decades (see [2, 4, 18, 19, 35, 8, 23, 10] and references therein). In this study, we investigate
discontinuous matrix Sturm�Liouville equations. In the analysis that follows, we will largely follow
the development of the theory in [3, 5, 6, 36, 24].

This paper is organized as follows. In Section 2, an existence and uniqueness theorem is proved
for discontinuous matrix Sturm�Liouville equation. Next, the corresponding maximal and minimal
operators for this equation are constructed and some properties of this operators are investigated. In
Section 3, a criterion under which discontinuous matrix Sturm�Liouville operators are self-adjoint is
given. Finally, an eigenfunction expansion is constructed in Section 4.

2 Discontinuous matrix Sturm�Liouville equation

Consider the following matrix Sturm�Liouville equation

− (P (x)z′(x))
′
+Q (x) z(x) = λR (x) z (x) , x ∈ [a, c) ∪ (c, b], (2.1)

where −∞ < a < c < b < +∞, λ ∈ C; P (x), Q (x) and R (x) are n × n complex Hermitian
matrix-valued functions, de�ned on [a, c) ∪ (c, b], detP (x) 6= 0,
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R (x) is a positive and the entries of the matrices P−1(t), Q(t) and R(x) are Lebesgue measurable
and integrable functions on [a, c) ∪ (c, b].

Now, we can convert equation (2.1) into the Hamiltonian system. Let

J =

(
On −In
In On

)
, Z(x) =

(
z (x)

P (x) z′ (x)

)
,

V1 (x) =

(
R (x) On

On On

)
, V2 (x) =

(
−Q (x) On

On P−1 (x)

)
.

From equation (2.1), we get

Γ (Z) := JZ ′(x)− V2 (x)Z (x) = λV1 (x)Z (x) , x ∈ [a, c) ∪ (c, b]. (2.2)

Let

L2
V1

[(a, c) ∪ (c, b) ;E]

:=

{
Z :

∫ c

a

(V1Z,Z)E dx+

∫ b

c

(V1Z,Z)E dx <∞
}

be the Hilbert space of 2n-dimensional vector-valued functions X ,Y with the inner product

(X ,Y) :=

∫ c

a

(V1X ,Y)E dx+

∫ b

c

(V1X ,Y)E dx

=

∫ c

a

Y∗V1Xdx+

∫ b

c

Y∗V1Xdx,

where E := C2n is the 2n-dimensional Euclidean space.

Theorem 2.1. Let K ∈ C2n and λ ∈ C. Then equation (2.2) has a unique solution such that

Z(a, λ) = K, Z(c+, λ) = CZ(c−, λ), (2.3)

where C is the 2n× 2n matrix with entries from R such that CJC∗ = J.

Proof. An integration yields

Z(x, λ) = K −
∫ c

a

J [λV1 (t, λ) + V2 (t, λ)]Z (t, λ) dt (2.4)

+

∫ x

c

J [λV1 (t, λ) + V2 (t, λ)]Z (t, λ) dt,

where x ∈ [a, c) ∪ (c, b]. Conversely, every solution of equation (2.4) is also a solution of equation
(2.2).

Let us de�ne the sequence {Zm}m∈N (N := {1, 2, 3, ...} of successive approximations by

Z0(x, λ) = K,

Zm+1(x, λ) = K −
∫ c

a

J [λV1 (t, λ) + V2 (t, λ)]Zm (t, λ) dt

+

∫ x

c

J [λV1 (t, λ) + V2 (t, λ)]Zm (t, λ) dt, m = 0, 1, 2, ..., (2.5)
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where x ∈ [a, c) ∪ (c, b]. Then, we will prove that {Zm}m∈N converges to a function Z uniformly on
each compact subset of [a, c) ∪ (c, b]. There exist positive numbers η (λ) and ξ (λ) such that

‖J [λV1 (x, λ) + V2 (x, λ)]‖ ≤ η (λ) ,

‖Z1 (x, λ)‖ ≤ ξ (λ) , x ∈ [a, c) ∪ (c, b].

Using mathematical induction, we deduce that

‖Zm+1(x, λ)−Zm(x, λ)‖ ≤ η (λ)
(ξ (λ) (x− a))m

m!
(m ∈ N) .

An application of the WeierstrassM -test implies that the sequence {Zm}m∈N converges to a function
Z uniformly on each compact subset of [a, c) ∪ (c, b]. It is clear that the function Z satis�es (2.3).

Now, we show that equation (2.2) has a unique solution. Assume Y is another one. Since Y is
continuous, there exists a positive numberM such that ‖Z − Y‖ ≤M. Proceeding as above we see
that

‖Z(x, λ)− Y(x, λ)‖ ≤ Mη (λ)
(x− a)m

m!
(m ∈ N) .

Then we get Z = Y on the interval [a, c) ∪ (c, b] due to

lim
m→∞

Mη (λ)
(x− a)m

m!
= 0.

Now, we will give the de�nition of maximal and minimal operators. Denote

Dmax :=



Z ∈ L2
V1

[(a, c) ∪ (c, b) ;E] : z and Pz′ are
absolutely continuous on [a, c) ∪ (c, b],

one-sided limits z (c±) , P z′ (c±) exist and are
�nite, JZ ′(x)− V2 (x)Z (x) = V1F exists in
[a, c) ∪ (c, b], F ∈ L2

V1
[(a, c) ∪ (c, b) ;E] and

Z(c+) = CZ(c−), CJC∗ = J


,

Dmin := {Z ∈ Dmax : Z (a) = Z (b) = 0} . (2.6)

The operator Tmin de�ned by

Tmin : Dmin → L2
V1

[(a, c) ∪ (c, b) ;E] ,

Z→TminZ = F if and only if Γ (Z) = V1F.

is called the minimal operator generated by equation (2.2). Similarly, the operator Tmax de�ned by

Tmax : Dmax → L2
V1

[(a, c) ∪ (c, b) ;E] ,

Z→TmaxZ = F if and only if Γ (Z) = V1F.

is called the maximal operator for the discontinuous matrix Sturm�Liouville equation.
Now, we give the following Green's formula.

Theorem 2.2 (Green's formula). Let Z,Y ∈ Dmax. Then we have

(TmaxZ,Y)− (Z, TmaxY) = [Z,Y ]b + [Z,Y ]c− − [Z,Y ]a − [Z,Y ]c+ (2.7)

where [Z,Y ]x := Y∗(x)JZ(x), x ∈ [a, c) ∪ (c, b].
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Lemma 2.1. The operator Tmin is Hermitian.

Proof. Let Z,Y ∈ Dmin. Then there exist F,G ∈ L2
V1

[(a, c) ∪ (c, b) ;E] such that Γ (Z) = V1F and
Γ (Y) = V1G. From (2.6) and (2.7), we see that

(TminZ,Y)− (Z, TminY) = (F,Y)− (Z, G)

=

∫ c

a

[Y∗ (t)V1F −G∗ (t)V1Z (t)] dt+

∫ b

c

[Y∗ (t)V1F −G∗ (t)V1Z (t)] dt

=

∫ c

a

[Y∗ (t) Γ (Z)− Γ∗ (Y)Z (t)] dt+

∫ b

c

[Y∗ (t) Γ (Z)− Γ∗ (Y)Z (t)] dt

= [Z,Y ]b + [Z,Y ]c− − [Z,Y ]a − [Z,Y ]c+ = 0.

The following lemma has a proof similar to that of Lemma 2.1.

Lemma 2.2. Let Z ∈ Dmin and Y ∈ Dmax. Then we have the following relation

(TminZ,Y) = (Z, TmaxY) .

Lemma 2.3. Let us denote by N (T ) and R (T ) the null space and the range of an operator
T , respectively. Then we have

R (Tmin) = N (Tmax)⊥ .

Proof. Let ξ ∈ R (Tmin) . There exists Z ∈ Dmin such that TminZ = ξ. It follows from Lemma 2.2
that for each Y ∈ N (Tmax) ,

(ξ,Y) = (TminZ,Y) = (Z, TmaxY) = 0,

i.e., R (Tmin) ⊂ N (Tmax)⊥ .

For any given ξ ∈ N (Tmax)⊥ and for all Y ∈ N (Tmax) , we have (ξ,Y) = 0. Let us consider the
following problem:

JZ ′(x)− V2 (x)Z (x) = V1 (x) ξ (x) , x ∈ [a, c) ∪ (c, b]
Z(a, λ) = 0, Z(c+, λ) = CZ(c−, λ)

(2.8)

It follows from Theorem 2.1 that problem (2.8) has a unique solution on [a, c) ∪ (c, b]. Let Ψ (x) =
(ψ1, ψ2, ..., ψ2n) be the fundamental solution of the system

JZ ′(x)− V2 (x)Z (x) = 0, x ∈ [a, c) ∪ (c, b],

Ψ (a) = J, Z(c+) = CZ(c−).
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It is clear that ψi ∈ N (Tmax) for 1 ≤ i ≤ 2n. By Theorem 2.2, for 1 ≤ i ≤ 2n, we have

0 = (ξ, ψi) =

∫ c

a

ψ∗i (t)V1 (x) ξ (t) dt+

∫ b

c

ψ∗i (t)V1 (x) ξ (t) dt

=

∫ c

a

ψ∗i (t) Γ (Z) (t) dt+

∫ b

c

ψ∗i (t) Γ (Z) (t) dt

=

∫ c

a

ψ∗i (t) Γ (Z) (t) dt+

∫ b

c

ψ∗i (t) Γ (Z) (t) dt

−
∫ c

a

Γ (ψi)
∗ (t)Z (t) dt−

∫ b

c

Γ (ψi)
∗ (t)Z (t) dt

= [Z, ψi]a + [Z, ψi]c− − [Z, ψi]c+ − [Z, ψi]0 = [Z, ψi]a.

This implies that
[Z, ψi]a = Ψ∗(a)JZ(a) = Z(a) = 0,

i.e., ξ ∈ R (Tmin) .

Theorem 2.3. The operator Tmin is a densely de�ned operator, so the operator Tmin is symmetric.
Furthermore T ∗min = Tmax.

Proof. Let ξ ∈ D⊥min. Then, for all Y ∈ Dmin, we have (ξ,Y) = 0. Set TminY (x) = φ (x) .
Let Z (.) be any solution of the system

JZ ′(x)− V2 (x)Z (x) = V1 (x) ξ (x) , x ∈ [a, c) ∪ (c, b].

It follows from Theorem 2.2 that

(Z, φ)− (ξ,Y)

=

∫ c

a

φ∗ (t)V1 (t)Z (t) dt+

∫ b

c

φ∗ (t)V1 (t)Z (t) dt

−
∫ c

a

Y∗ (t)V1 (t) ξ (t) dt−
∫ b

c

Y∗ (t)V1 (t) ξ (t) dt

=

∫ c

a

Γ (Y)∗ (t)Z (t) dt+

∫ b

c

Γ (Y)∗ (t)Z (t) dt

−
∫ c

a

Y∗ (t) Γ (Z) (t) dt−
∫ b

c

Y∗ (t) Γ (Z) (t) dt

= −[Y ,Z]a − [Z, ψi]c− + [Z, ψi]c+ + [Y ,Z]0 = 0.

It follows from Lemma 2.3 that Z ∈ R (Tmin)⊥ = N (Tmax) . Thus ξ = 0, i.e., D⊥min = {0} .
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Let us denote by D∗min the domain of the operator T
∗
min. Now, we will prove that D∗min = Dmax, and

T ∗minZ = TmaxZ for all Z ∈ D∗min. It follows from Lemma 2.2 that (Z, TminY) = (TmaxZ,Y) , where
Z ∈ Dmin and Y ∈ Dmax. Hence, the functional (Z, Tmin (.)) is continuous on Dmin and Z ∈ D∗min,
i.e., Dmax ⊂ D∗min.

Now, we will prove that D∗min ⊂ Dmax. If Z ∈ D∗min, then Z, φ ∈ L2
V1

[(a, c) ∪ (c, b) ;E] , where
φ := T ∗minZ. Assume that U is a solution of the equation

JU ′(x)− V2 (x)U (x) = V1 (x)φ (x) . (2.9)

It follows from Lemma 2.2 that(φ,Y) = (TmaxU ,Y) = (U , TminY) . This implies that

(Z − U , TminY) = (Z, TminY)− (U , TminY)

= (T ∗minZ,Y)− (φ,Y) = 0,

i.e., Y − U ∈ R (Tmin)⊥ . By Lemma 2.3, we conclude that Y − U ∈ N (Tmax) .
Using (2.9), we deduce that

JZ ′(x)− V2 (x)Z (x)

= JU ′(x)− V2 (x)U (x) = V1 (x)φ (x) ,

where x ∈ [a, c) ∪ (c, b]. Since Z, φ ∈ L2
V1

[(a, c) ∪ (c, b) ;E] , we see that Z ∈ Dmax and TmaxZ = φ =
T ∗minZ.

3 Self-adjoint discontinuous matrix Sturm�Liouville operators

Now, we will give a criterion under which discontinuous matrix Sturm�Liouville operators are self-
adjoint.

Let

D := {Z ∈ Dmax : ΣZ (a) + ΛZ (b) = 0} , (3.1)

where Σ, Λ are m× 2n matrices such that rank (Σ : Λ) = m. We de�ne the operator T by

T : D → L2
V1

[(a, c) ∪ (c, b) ;E] , (3.2)

Z→TZ =F if and only if Γ (Z) = V1F (3.3)

Let Ω and Υ be (4n−m)× 2n matrices, chosen so that rank (Ω : Υ) = 4n−m and(
Σ Λ
Ω Υ

)
is nonsingular. Let (

Σ̃ Λ̃

Ω̃ Υ̃

)
be chosen so that (

−J 0
0 J

)
=

(
Σ̃ Λ̃

Ω̃ Υ̃

)∗(
Σ Λ
Ω Υ

)
. (3.4)

Then we have the following theorem.
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Theorem 3.1. The following relation holds

(TmaxZ,Y)− (Z, TmaxY) =
[
Σ̃Y (a) + Λ̃Y (b)

]∗
[ΣZ (a) + ΛZ (b)]

+
[
Ω̃Y (a) + Υ̃Y (b)

]∗
[ΩZ (a) + ΥZ (b)] ,

where Z,Y ∈ Dmax.

Proof. By virtue of (2.7) and (3.4), we conclude that

(TmaxZ,Y)− (Z, TmaxY)

= [Z,Y ]b + [Z,Y ]c− − [Z,Y ]a − [Z,Y ]c+

=
(
Y∗(a) Y∗(b)

)( −J 0
0 J

)(
Z(a)
Z(b)

)

=
(
Y∗(a) Y∗(b)

)( Σ̃ Λ̃

Ω̃ Υ̃

)∗(
Σ Λ
Ω Υ

)(
Z(a)
Z(b)

)

=

[(
Σ̃ Λ̃

Ω̃ Υ̃

)(
Y(a)
Y(b)

)]∗ [(
Σ Λ
Ω Υ

)(
Z(a)
Z(b)

)]

=

(
Σ̃Y(a) + Λ̃Y(b)

Ω̃Y(a) + Υ̃Y(b)

)∗(
ΣZ(a) + ΛZ(b)
ΩZ(a) + ΥZ(b)

)
.

Now, we will describe the adjoint of the operator T.

Theorem 3.2. Let Y ∈ D∗, where

D∗ :=
{
Y ∈ Dmax : Ω̃Y(a) + Υ̃Y(b) = 0

}
.

Then T ∗Y = F1 if and only if

JY ′ − V2 (x)Y (x) = V1 (x)F1 (x) .

Proof. It is clear that Tmin ⊂ T ∗ ⊂ Tmax since Tmin ⊂ T ⊂ Tmax. Let Z ∈ D and Y ∈ D∗. By Theorem
3.1, we conclude that

(TZ,Y)− (Z, T ∗Y) =
[
Σ̃Y(a) + Λ̃Y(b)

]∗
[ΣZ(a) + ΛZ(b)]

+
[
Ω̃Y(a) + Υ̃Y(b)

]∗
[ΩZ (a) + ΥZ(b)] .

Then
0 =

[
Ω̃Y(a) + Υ̃Y(b)

]∗
[ΩZ (a) + ΥZ(b)] .
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Thus we get Ω̃Y(a) + Υ̃Y(b) = 0, since ΩZ (a) + ΥZ(b) is arbitrary.
Conversely, if Y satis�es the criteria listed above then Y ∈ D∗.
We will �nd parametric boundary conditions for D and D∗. Recall that

ΩZ (a) + ΥZ(b) = F2, ΣZ (a) + ΛZ (b) = 0, (3.5)

where F2 is arbitrary. Hence, we obtain(
Σ Λ
Ω Υ

)(
Z (a)
Z (b)

)
=

(
0
F2

)
. (3.6)

If we multiply both sides of (3.6) by (
−J 0
0 J

)(
Σ̃ Λ̃

Ω̃ Υ̃

)∗
,

then we deduce that (
Z (a)
Z (b)

)
=

(
JΩ̃∗F2

−JΥ̃∗F2

)
. (3.7)

Similarly, one can �nd parametric boundary conditions for D∗. Since

Ω̃Y(a) + Υ̃Y(b) = 0, Σ̃Y(a) + Λ̃Y(b) = F3,

where F3 is arbitrary, we have

(
Y∗(a) Y∗(b)

)( Σ̃ Λ̃

Ω̃ Υ̃

)∗
=
(
F ∗3 0

)
. (3.8)

Multiplying both sides of (3.8) by (
Σ Λ
Ω Υ

)(
−J 0
0 J

)
it follows that

Y(a) = −JΣ∗F3, Y(b) = JΛ∗F3. (3.9)

Now, we have the following theorem.

Theorem 3.3. ΣJΣ∗ = ΛJΛ∗ and m = 2n if and only if T is a self-adjoint operator.

Proof. Let ΣJΣ∗ = ΛJΛ∗. Then we get

(
−ΣJ ΛJ

)( Σ∗

Λ∗

)
= 0.

That is, the columns

(
Σ∗

Λ∗

)
satisfy the equation

(
−ΣJ ΛJ

)
X = 0.
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By virtue of (3.5) and (3.7), we conclude that

(
−ΣJ ΛJ

)( Ω̃∗

Υ̃∗

)
= 0.

Thus, there must be a constant, nonsingular matrix K such that(
Ω̃∗

Υ̃∗

)
K∗ =

(
Σ∗

Λ∗

)
.

or (
Σ Λ

)
= K

(
Ω̃ Υ̃

)
The conditions ΣZ (a) + ΛZ (b) = 0 and ΩZ (a) + ΥZ(b) = 0 are equivalent. Since the forms of T
and T ∗ are the same, we see that T = T ∗.

Conversely, let T be a self-adjoint operator. Then Z satis�es the boundary conditions for D, i.e.,
ΣZ (a) + ΛZ (b) = 0. By (3.9), we get

Σ (−JΣ∗F3) + Λ (JΛ∗F3) = 0

[ΣJΣ∗ − ΛJΛ∗]F3 = 0.

Then we have ΣJΣ∗ = ΛJΛ∗, since F3 is arbitrary.

4 Eigenfunction expansions

Let
D1 := {Z ∈ D : ΣJΣ∗ = ΛJΛ∗} , (4.1)

where D is de�ned in (3.1). We de�ne the self-adjoint operator T1 by

T1 : D1 → L2
V1

[(a, c) ∪ (c, b) ;E] , (4.2)

Z→T1Z ⇔JZ ′ − V2Z = V1F. (4.3)

Let Z (x, λ) be a fundamental matrix solution of the equation Γ (Z) = 0 satisfying Z (a, λ) = I. It is
clear that

Z∗ (x, λ) JZ (x, λ) = J (4.4)

for all x ∈ [a, c) ∪ (c, b] ([24]).

Theorem 4.1. The resolvent operator of T1 is given by the formula

R1 (λ)F (x) = (T1 − λI)−1 F (x)

=

∫ c

a

G (x, t, λ)V1 (t)F (t) dt+

∫ b

c

G (x, t, λ)V1 (t)F (t) dt,

where G (x, t, λ) is the matrix Green function de�ned as

G (x, t, λ) ={
Z (x, λ) [Σ + ΛZ (b, λ)]−1 ΣJZ∗

(
t, λ
)
, a ≤ t ≤ x ≤ b, t 6= c, x 6= c

−Z (x, λ) [Σ + ΛZ (b, λ)]−1 ΛJZ∗
(
t, λ
)
, a ≤ x ≤ t ≤ b, t 6= c, x 6= c.
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Proof. Let Z satisfy the equation Γ (Z) = V1F. By using the method of variation of constants, we
seek a solution of the form

Z (x, λ) = Z (x, λ)K (x, λ) ,

where K (x, λ) is a 2n+ 1 vector function. Then we have

JZ ′ = JZ ′K + JZK ′,

(λV1 + V2)Z = (λV1 + V2)ZK.

Hence

V1F = JZ ′ − (λV1 + V2)Z
= JZ ′K + JZK ′ − (λV1 + V2)ZK

= [JZ ′ − (λV1 + V2)Z]K + JZK ′ = JZK ′

i.e., K ′ = [JZ]−1 V1F. It follows from (4.4) that K ′ = −JZ∗
(
x, λ
)
V1F. Then, we conclude that

Z (x, λ) = −Z (x, λ)

∫ c

a

JZ∗
(
x, λ
)
V1 (t)F (t) dt

− Z (x, λ)

∫ x

c

JZ∗
(
x, λ
)
V1 (t)F (t) dt+ Z (x, λ)K1.

By the condition ΣZ (a) + ΛZ (b) = 0, we get

Z (a) = K1,

Z (b) = −Z (b, λ)

∫ c

a

JZ∗
(
x, λ
)
V1 (t)F (t) dt

− Z (b, λ)

∫ b

c

JZ∗
(
x, λ
)
V1 (t)F (t) dt+ Z (b, λ)K1.

Thus, we get

Z (x, λ) = −Z (x, λ) [Σ + ΛZ (b)]−1 Σ

∫ c

a

JZ∗
(
x, λ
)
V1 (t)F (t) dt

− Z (x, λ) [Σ + ΛZ (b)]−1 Σ

∫ x

c

JZ∗
(
x, λ
)
V1 (t)F (t) dt

+ Y (x, λ) [Σ + ΛZ (b)]−1 Λ

∫ b

x

JZ∗
(
x, λ
)
V1 (t)F (t) dt.

Theorem 4.2. The operator R (λ) exists for all nonreal λ, and is a bounded operator. It exists also
for all real λ for which det [Σ + ΛZ (b)] 6= 0 as a bounded operator. The spectrum of T1 consists en-
tirely of isolated eigenvalues, zeros of the equation det [Σ + ΛZ (b)] = 0. Furthermore, eigenfunctions
associated with di�erent eigenvalues are mutually orthogonal.
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Proof. It is clear that the operator R (λ) exists for all real λ except the zeros of the equa-
tion det [Σ + ΛZ (b)] = 0. Since T1 is a self-adjoint operator, it follows that the operator R (λ)
exists for all nonreal λ. The spectrum of T1 consists entirely of isolated eigenvalues, zeros of
det [Σ + ΛZ (b)] = 0 because det [Σ + ΛZ (b)] is analytic in λ and is not identically zero. These
zeros can accumulate only at ±∞.

Now, we will prove that the operator R (λ) is a bounded operator. Let

f (η) = V
1/2

1 (η)F (η)

and
W (x, η, λ) = V

1/2
1 (η)G (x, t, λ)V

1/2
1 (x) ,

where V 1/2 is a square root of the matrix V1. Then, we have

‖R (λ)F‖2 = ‖Z‖2 =

∫ c

a

Z∗V1Zdx+

∫ b

c

Z∗V1Zdx

=

∫ c

a

[∫ c

a

G (x, η, λ)V1 (η)F (η) dη

]∗
V1 (x)

[∫ c

a

G (x, η, λ)V1 (η)F (η) dη

]
dx

+

∫ b

c

[∫ b

c

G (x, η, λ)V1 (η)F (η) dη

]∗
V1 (x)

[∫ b

c

G (x, η, λ)V1 (η)F (η) dη

]
dx

=

∫ c

a

[∫ c

a

f ∗ (η)W ∗ (x, η, λ) dη

] [∫ c

a

W (x, t, λ) f (t) dt

]
dx

+

∫ b

c

[∫ b

c

f ∗ (η)W ∗ (x, η, λ) dη

] [∫ b

c

W (x, t, λ) f (t) dt

]
dx.

By using Cauchy�Schwarz's inequality, we get ‖Z‖2 ≤ ‖W‖2 ‖f‖2 , where

‖W‖2 =

∫ c

a

∫ c

a

2n∑
i=1

2n∑
j=1

|Wij (x, η, λ)|2 dηdx

+

∫ b

c

∫ b

c

2n∑
i=1

2n∑
j=1

|Wij (x, η, λ)|2 dηdx.

Finally, it is easily seen that eigenfunctions associated with di�erent eigenvalues are mutually or-
thogonal since T1 is a self-adjoint operator.

There is no loss of generality in assuming that zero is not an eigenvalue. Then, the solution of
the following problem

JZ ′ − V2Z = V1F,
Z(c+) = CZ(c−),

ΣZ (a) + ΛZ (b) = 0,
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is given by

Z (x) =

∫ c

a

G (x, t)V1 (t)F (t) dt+

∫ b

c

G (x, t)V1 (t)F (t) dt,

where G (x, t) = G (x, t, 0) .
Let Z = T2F = T−1

1 F. Then we have the following theorems.

Theorem 4.3. T2 is a bounded operator and

‖T2‖ = sup
{∣∣λ−1

m

∣∣ : λm ∈ σ (T1)
}
.

Proof. If T1χm = λmχm (m ∈ N), then T2χm = τmχm, where τm = 1
λm
. Then, we have

‖T2‖ = sup
χ∈L2

V1
[(a,c)∪(c,b);E]

‖χ‖=1

|(T2χ, χ)|

= sup {|τm| : τm ∈ σ (T2)} = sup
{∣∣λ−1

m

∣∣ : λm ∈ σ (T1)
}
.

Now, we shall order the eigenvalues of T2 such that

|τ1| ≥ |τ2| ≥ ... ≥ |τm| ≥ ...,

where
lim
m→∞

|τm| = 0. (4.5)

Let us de�ne {T2,m}∞m=1 by

T2,mF = T2F −
m−1∑
i=1

τiχi (F, χi) .

Theorem 4.4. ‖T2,m‖ = |τm| (m ∈ N), and

lim
m→∞

T2,m = 0. (4.6)

Proof. It is clear that

T2,mχj =

{
0, if 1 ≤ j ≤ m− 1

τjχj, if m ≤ j <∞.
Further T2,m is bounded and self-adjoint. Then, we have

‖T2,m‖ = sup
χ∈L2

V1
[(a,c)∪(c,b);E]

‖χ‖=1

|(T2,mχ, χ)|

= sup
χ∈L2

V1
[(a,c)∪(c,b);E]

‖χ‖=1

χ 6=χ1,...,χm−1

|(T2,mχ, χ)| = |τm| .

It follows from (4.5) that
lim
m→∞

T2,m = 0.
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Theorem 4.5. Let F ∈ L2
V1

[(a, c) ∪ (c, b) ;E] and Z ∈ D1. Then we have

F =
∞∑
i=1

χi (F, χi) , T2F =
∞∑
i=1

τiχi (F, χi) ,

T1Z =
∞∑
i=1

λiχi (Z, χi) .

Proof. It follows from (4.6) that

T2F =
∞∑
i=1

τiχi (F, χi) . (4.7)

Applying T1 to equality (4.7), we conclude that

F =
∞∑
i=1

χi (F, χi) .

Further,
(F, χi) = (T1Z, χi) = (Z, T1χi) = λi (Z, χi) .

Thus, we get

T1Z =
∞∑
i=1

λiχi (Z, χi) .

Theorem 4.6. There exists a collection of projection operators {E (λ)} satisfying
(a) limλ→∞E (λ) = I, limλ→−∞E (λ) = 0,
(b) E (λ1) ≤ E (λ2) when λ1 ≤ λ2,
(c) E (λ) is continuous from above,
(d) for all F ∈ L2

V1
[(a, c) ∪ (c, b) ;E] and Z ∈ D1,

F =

∫ ∞
−∞

dE (λ)F, T2F =

∫ ∞
−∞

1

λ
dE (λ)F,

T1Z =

∫ ∞
−∞

λdE (λ)Z.

Proof. Let us de�ne
PiF = χi (F, χi) ,

where Pi is a projection operator. If we de�ne

E (λ)F =
∑
λi≤λ

PiF,

then E (λ) generates a Stieltjes measure. The integrals in (d) are obtained from this series.
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