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Abstract. Let (Mn, g) be an n-dimensional Riemannian manifold and TMn its tangent bundle. In this
article, we study the in�nitesimal paraholomorphically projective (IPHP) transformations on TMn with
respect to the Levi-Civita connection of the pseudo-Riemannian metric g̃ = αgS + βgC + γgV , where α, β
and γ are real constants with α(α + γ) − β2 6= 0 and gS , gC and gV are diagonal lift, complete lift and
vertical lift of g, respectively. We determine this type of transformations and then prove that if (TMn, g̃)
has a non-a�ne in�nitesimal paraholomorphically projective transformation, then Mn and TMn are locally
�at.
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1 Introduction

Let Mn be a connected manifold of dimension n and TMn its tangent bundle. In this paper, we assume that
all geometric objects will be discussed in the class C∞, with the dimension n > 1. Moreover, the set of all
tensor �elds of type (r, s) on Mn and TMn are denoted by =rs(Mn) and =rs(TMn), respectively.

Let∇ be an a�ne connection onMn. If a transformation onMn preserves the geodesics as point sets, then
it is called a projective transformation. Also, a transformation onMn which preserves the connection is called
an a�ne transformation. Therefore, we can say that an a�ne transformation is a projective transformation
which preserves the a�ne parameter with the geodesics.

Let V be a vector �eld on Mn and {φt} its local one-parameter group. V is called an in�nitesimal
projective (a�ne) transformation, if every φt is a projective (a�ne) transformation on Mn.

It is well known that, the necessary and su�cient conditions for a vector �eld V to be an in�nitesimal
projective transformation are such that, for every X,Y ∈ =1

0(Mn),

(LV∇)(X,Y ) = Ω(X)Y + Ω(Y )X,

where Ω is a 1-form on Mn and LV is the Lie derivation with respect to V . In this case Ω is called the
associated 1-form of V . In the case of Ω = 0, one can see that V is an in�nitesimal a�ne transformation
[10].

Almost paracomplex structures on a manifold were introduced by Rasevskii in [8]. An almost paracomplex
structure on a manifold Mn is a tensor �eld ϕ ∈ =1

1(Mn), where ϕ2 = Id, ϕ 6= Id and the two eigenbundles
T+Mn and T−Mn corresponding to the eigenvalues ±1 of ϕ, have the same rank. In this case, (Mn, ϕ)
is called an almost paracomplex manifold. It would be noted that, in this case, the dimension of Mn is
necessarily even. If the both distributions T+Mn and T

−Mn are integrable, we say that almost paracomplex
structure ϕ is integrable and then (Mn, ϕ) is called a paracomplex manifold. For more details, one can refer
to [3, 4, 9].



IPHP transformations on tangent bundle of a Riemannian manifold 83

Let∇ be an a�ne connection on an almost paracomplex manifold (Mn, ϕ). An in�nitesimal paraholomor-
phically projective (IPHP) transformation onMn is a vector �eld V onMn such that for any X,Y ∈ =1

0(Mn),
we have

(LV∇)(X,Y ) = Ω(X)Y + Ω(Y )X + Ω(ϕX)ϕY + Ω(ϕY )ϕX,

where Ω is a 1-form on Mn. It is also called the associated 1-form of V [5, 7]. If Ω = 0, it is obvious that V
is an a�ne transformation.

Let g = (gji) be a Riemannian metric onMn. It is well known that we can de�ne from g several (pseudo-)
Riemannian metrics on TMn, where they are called the lift metrics of g, as follows: 1) complete lift metric
or lift metric II is denoted by gC , 2) diagonal lift metric or Sasaki metric or lift metric I+III is denoted by
gS , 3) lift metric I+II and 4) lift metric II+III, where I:= gjidx

jdxi, II:= 2gjidx
jδyi and III:= gjiδy

jδyi are
bilinear di�erential forms de�ned globally on TMn. It should be noted that in literature I:= gjidx

jdxi is
called the vertical lift of g and denoted by gV . For more details on lift metrics, one can refer to [11].

Abbassi and Sarih in [1] de�ned the "g-natural metrics" on TMn of a Riemannian metric g and studied
a special class of this metrics in [2], that it is denoted by

g̃ := αgS + βgC + γgV ,

where α, β and γ are real constants with α > 0 and λ := α(α+ γ)− β2 > 0. In this case, g̃ is a Riemannian
metric on TMn.

In�nitesimal paraholomorphically projective transformations on the tangent bundle of a Riemannian
manifold (Mn, g) with respect to the Levi-Civita connection of Sasaki metric gS are determined in [6].
Moreover, it is proved that if (TMn, g

S) admits a non-a�ne paraholomorphically projective transformation,
then Mn and TMn are locally �at.

The main goal of this paper is studying in�nitesimal paraholomorphically projective transformations on
TMn with respect to the Levi-Civita connection of the pseudo-Riemannian metric

g̃ = αgS + βgC + γgV , (1.1)

where α, β and γ are real constants and λ := α(α + γ) − β2 6= 0. It is obvious that the metric g̃ is a
generalization of above lift metrics.

In fact, we prove the following theorems.

Theorem 1.1. Let (Mn, g) be a Riemannian manifold and TMn its tangent bundle with the Levi-Civita
connection of the pseudo-Riemannian metric g̃ = αgS + βgC + γgV , where α, β and γ are real constants,
α 6= 0 and λ := α(α + γ) − β2 6= 0, and the adapted almost paracomplex structure ϕ. Then Ṽ is an IPHP
transformation with associated 1-form Ω̃ on TMn if and only if there exist ψ ∈ =0

0(Mn), B = (Bh), D =
(Dh) ∈ =1

0(Mn), Φ := (Φi) ∈ =0
1(Mn) and A = (Ahi ), C = (Chi ) ∈ =1

1(Mn), satisfying

I. (Ṽ h, Ṽ h̄) = (Bh + yaAha, D
h + yaCha + 2yaΦay

h),

II. (Ω̃i, Ω̃ī) = (Ψi, Φi), Ψi = ∂iψ,

III. ∇iΦj = 0,

IV. β(ΦcR
h
bji + ΦbR

h
cji) = 0,

V. ∇iAhj = −α2

2λD
aRhaji,

VI. AaiR
h
bja = 0, AhaR

a
bji = 0,

VII. Ba∇aRhbji = Rabji∇aBh −Rhbja∇iBa −RhajiCab −RhbaiCaj ,

VIII. ∇iChj = BaRhiaj + αβ
2λD

aRhaji,

IX. Rakji(β∇aBh − βCha + α∇aDh) = 0,
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X. LBΓhji = ∇j∇iBh +BaRhaji = 2Ψjδ
h
i + 2Ψiδ

h
j −

αβ
2λD

a(Rhaji +Rhaij),

XI. ∇j∇iDh = α(α+γ)
2λ RhjiaD

a − β2

λ R
h
jaiD

a,

XII. βDa∇jRhbai = −β(Rhbaj∇iDa +Rhbai∇jDa)− βRajib∇aDh

− βRhbai(2
β2

α ∇jB
a − 2β

2

α C
a
j −∇jDa),

where Ṽ := (Ṽ h, Ṽ h̄) = Ṽ hEh + Ṽ h̄Eh̄, and Ω̃ := (Ω̃h, Ω̃h̄) = Ω̃hdx
h + Ω̃h̄δy

h.

Theorem 1.2. Let (Mn, g) be a Riemannian manifold and TMn its tangent bundle with the Levi-Civita
connection of the pseudo-Riemannian metric g̃ = βgC + γgV where β and γ are real constants with β 6= 0,
and the adapted almost paracomplex structure ϕ. Then Ṽ is an IPHP transformation with associated 1-form
Ω̃ on TMn if and only if there exist ψ ∈ =0

0(Mn), B = (Bh), D = (Dh) ∈ =1
0(Mn), Φ := (Φi) ∈ =0

1(Mn) and
A = (Ahi ), C = (Chi ) ∈ =1

1(Mn), satisfying

I. (Ṽ h, Ṽ h̄) = (Bh + yaAha, D
h + yaCha + 2yaΦay

h),

II. (Ω̃i, Ω̃ī) = (Ψi, Φi), Ψi = ∂iψ,

III. ∇iΦj = 0,

IV. ∇iAhj = 0,

V. AaiR
h
bja = 0, AhaR

a
bji = 0,

VI. Ba∇aRhbji = Rhabi∇jBa +Rhjba∇iBa +RhjaiC
a
b −RajbiCha ,

VII. ∇iChj = BaRhiaj ,

VIII. LBΓhji = ∇j∇iBh +BaRhaji = 2Ψjδ
h
i + 2Ψiδ

h
j ,

IX. LDΓhji = ∇j∇iDh +DaRhaji = 0,

where Ṽ := (Ṽ h, Ṽ h̄) = Ṽ hEh + Ṽ h̄Eh̄, and Ω̃ := (Ω̃h, Ω̃h̄) = Ω̃hdx
h + Ω̃h̄δy

h.

Theorem 1.3. Let (Mn, g) be a Riemannian manifold and TMn its tangent bundle with the Levi-Civita
connection of pseudo-Riemannian metric g̃ = αgS + βgC + γgV , where α, β and γ are real constants with
αβ 6= 0, α(α+γ)−β2 6= 0, and the adapted almost paracomplex structure ϕ. If (TMn, g̃) admits a non-a�ne
IPHP transformation, such that ‖Φ‖ 6= 0, then Mn and TMn are locally �at.

2 Preliminaries

Here, we give de�nitions and theorems on Mn and TMn, that are needed later. The details of them can be
founded in [11, 12]. In this paper, indices a, b, c, i, j, k, . . . have range in {1, . . . , n}.

Let Mn be a manifold that covered by coordinate systems (U, xi), where xi are the coordinate functions
on the coordinate neighborhood U . The tangent bundle of Mn is de�ned by TMn :=

⋃
x∈M Tx(Mn), where

Tx(Mn) is the tangent space of Mn at any point x ∈Mn. The elements of TMn are denoted by (x, y) where
y ∈ Tx(Mn) and the natural projection π : TMn →Mn, is given by π(x, y) := x.

Let (Mn, g) be a Riemannian manifold and ∇ the Levi-Civita connection associated with g. The coe�-
cients of ∇ with respect to frame �eld {∂i := ∂

∂xi
} are denoted by Γhji, i.e. ∇∂j∂i = Γhji∂h.

Using the Levi-Civita Connection ∇, we can de�ne the local frame �eld {Ei, Eī} on each induced coor-
dinate neighborhood π−1(U) of TMn, as follows

Ei := ∂i − ybΓhbi∂h̄, Eī := ∂ī,

where ∂ī := ∂
∂yi

. This frame �eld is called the adapted frame on TMn. By de�ne δyh := dyh + ybΓhabdx
a,

one can see that {dxh, δyh}, is the dual frame of {Ei, Eī}. By the straightforward calculations, the following
lemmas are proved.
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Lemma 2.1. The Lie brackets of the adapted frame {Ei, Eī} satisfy the following identities:

1. [Ej , Ei] = ybRaijbEā,

2. [Ej , Eī] = ΓajiEā,

3. [Ej̄ , Ej̄ ] = 0,

where Raijb are the coe�cients of the Riemannian curvature tensor of ∇.

Lemma 2.2. Let Ṽ = Ṽ hEh + Ṽ h̄Eh̄ be a vector �eld on TMn. Then

1. [Ṽ , Ei] = −(EiṼ
a)Ea + (Ṽ cybRaicb − Ṽ b̄Γabi − EiṼ ā)Eā,

2. [Ṽ , Eī] = −(EīṼ
a)Ea + (Ṽ bΓabi − EīṼ ā)Eā.

Using the adapted frame {Eh, Eh̄}, we can de�ne a tensor �eld ϕ ∈ =1
1(TMn), as follows

ϕ(Eh) = Eh, ϕ(Eh̄) = −Eh̄.

We see that ϕ 6= Id and ϕ2 = Id. Thus ϕ is a paracomplex structure on TMn which is called an adapted
paracomplex structure. It is well known that ϕ is integrable if and only if Mn is locally �at.

Let g = (gji) be a Riemannian metrics on a manifold Mn. We can de�ne several Riemannian or pseudo-
Riemannian metrics on TMn, from g, as follows

II: 2gjidx
jδyi,

I+II: gjidx
jdxi + 2gjidx

jδyi,

I+III: gjidx
jdxi + gjiδy

jδyi,

II+III: 2gjidx
jδyi + gjiδy

jδyi

where

I: gjidx
jdxi,

II: 2gjidx
jδyi,

III: gjiδy
jδyi,

are all quadratic di�erential forms which are globally de�ned on TMn. It should be mentioned that the
metric II is called the complete lift metric and denoted by gC , the metric I+III is called the Sasakian metric
and denoted by gS , and the quadratic form I is called the vertical lift and denoted by gV . For more details,
one can refer to [10].

Abbassi and Sarih in [2] studied a special class of g-natural metrics on TMn that denoted by

g̃ = αgS + βgC + γgV ,

where α, β and γ are constants with α > 0, and α(α+ γ)− β2 > 0.
Now, let g̃ := αgS + βgC + γgV , where α, β, and γ are real constants with λ := α(α + γ) − β2 6= 0. In

this case, one can see that g̃ is the generalization of the above lifted metrics, for example, putting α = β = 1
and γ = −1, then g̃ = gS + gC − gV which is the metric II+III.

The coe�cients of Levi-Civita connection ∇̃ of the pseudo-Riemannian metric g̃ = αgS + βgC + γgV ,
with respect to the frame �eld {Ei, Eī} are computed in [2]. In fact, we have the following lemma.

Lemma 2.3. Let ∇̃ be the Levi-Civita connection of the pseudo-Riemannian metric g̃ = αgS + βgC + γgV

on TMn, where α, β, and γ are real constants with λ := α(α+ γ)− β2 6= 0. Then we have

∇̃EjEi =
{

Γhji + αβ
2λ y

k(Rhkji +Rhkij)
}
Eh + yk

{β2

λ R
h
jki −

α(α+γ)
2λ Rhjik

}
Eh̄,
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∇̃EjEī = α2

2λy
kRhkijEh + (Γhji −

αβ
2λ y

kRhkij)Eh̄,

∇̃Ej̄Ei = α2

2λy
kRhkjiEh −

αβ
2λ y

kRhkjiEh̄,

∇̃Ej̄Eī = 0.

where Γhji denotes the coe�cients of Riemannian connection ∇ with respect to g.

3 Proof of theorems

In this section, we only prove Theorems 1.1 and 1.3, because the proof of Theorem 1.2 is similar to that of
Theorem 1.1.

Proof of Theorem 1.1

First, we prove the necessary conditions. Let Ṽ = Ṽ hEh + Ṽ h̄Eh̄ be an in�nitesimal paraholomorphically
projective transformation and Ω̃ = Ω̃hdx

h + Ω̃h̄δy
h its the associated 1-form on TMn. Thus for any X̃, Ỹ ∈

=1
0(TMn), we have

(LṼ ∇̃)(X̃, Ỹ ) = Ω̃(X̃)Ỹ + Ω̃(Ỹ )X̃ + Ω̃(ϕX̃)ϕỸ + Ω̃(ϕỸ )ϕX̃. (3.1)

From

(LṼ ∇̃)(Ej̄ , Eī) = 2Ω̃j̄Eī + 2Ω̃īEj̄ ,

we obtain

∂j̄∂īṼ
h − α2

2λ
yb(Rhiba∂j̄ Ṽ

a +Rhjba∂īṼ
a) = 0, (3.2)

and

∂j̄∂īṼ
h̄ +

αβ

2λ
yb(Rhiba∂j̄ Ṽ

a +Rhjba∂īṼ
a) = Ω̃j̄δ

h
i + Ω̃īδ

h
j . (3.3)

One can see that (3.2) can be rewritten as follows:

∂j̄∂īṼ
h =

α2

2λ

{
∂j̄(y

bRhibaṼ
a) + ∂ī(y

bRhjbaṼ
a)
}
. (3.4)

By di�erentiating with respect to yk from (3.4) we have

∂k̄∂j̄∂īṼ
h =

α2

2λ

{
∂k̄∂j̄(y

bRhibaṼ
a) + ∂k̄∂ī(y

bRhjbaṼ
a)
}

=
α2

2λ

{
∂j̄∂ī(y

bRhibaṼ
a) + ∂j̄∂k̄(y

bRhjbaṼ
a)
}

=
α2

2λ

{
∂ī∂k̄(y

bRhibaṼ
a) + ∂ī∂j̄(y

bRhjbaṼ
a)
}
,

(3.5)

because the left-hand side is symmetric with respect to i, j, k. From (3.5), we obtain that

∂k̄∂j̄(∂īṼ
h − α2

λ
ybRhibaṼ

a) = 0. (3.6)

Thus we can put

P hji := ∂j̄(∂īṼ
h − α2

λ
ybRhibaṼ

a), (3.7)

and

Ahi + yaP hai = ∂īṼ
h − α2

λ
ybRhibaṼ

a, (3.8)
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where P hji and A
h
i are certain functions onMn. By straightforward calculations, one can see that A = (Ahi ) ∈

=1
1(Mn) and P = (P hji) ∈ =1

2(Mn).
Using (3.2) and (3.7), we have

P hji + P hij = 2∂j̄∂īṼ
h − α2

λ
yb(Rhiba∂j̄ Ṽ

a +Rhjba∂īṼ
a) = 0. (3.9)

Thus P hji is antisymmetric with respect to i, j, and therefore

2P hji = P hji − P hij =
α2

λ
{∂ī(yaRhjabṼ b)− ∂j̄(yaRhiasṼ b)}, (3.10)

and then

2yjP hji =
α2

λ
{yj∂ī(ybRhjbaṼ a)− yj∂j̄(ybRhibaṼ a)}

= −2α2

λ
yjRhijaṼ

a − α2

λ
yjybRhiba∂j̄ Ṽ

a. (3.11)

By substituting (3.11) into (3.8) we obtain

∂īṼ
h = Ahi −

α2

2λ
yjybRhiba∂j̄ Ṽ

a, (3.12)

from which we have
yi∂īṼ

h = yiAhi . (3.13)

Substituting (3.13) into (3.12), we obtain

∂īṼ
h = Ahi −

α2

2λ
yaybRhiacA

c
b, (3.14)

and then

∂j̄∂īṼ
h = −α

2

2λ
yb(RhibaA

a
j +RhijaA

a
b ). (3.15)

On the other hand, substituting (3.14) into (3.2), we obtain

∂j̄∂īṼ
h =

α2

2λ
yb(RhibaA

a
j +RhjbaA

a
i )−

α4

4λ
ybycyd(RhibaR

a
jceA

e
d +RhjbaR

a
iceA

e
d). (3.16)

Comparing (3.15) and (3.16), we obtain

α(2RhjbaA
a
i +RhjiaA

a
b +RhibaA

a
j ) = 0, (3.17)

from which
α(RhjbaA

a
i +RhibaA

a
j ) = 0. (3.18)

By using (3.18) and the �rst Bianchi identity, one can see that

α(RhbjaA
a
i ) = 0, (3.19)

thus
RhbjaA

a
i = 0, (3.20)

by virtue of α 6= 0. From (3.14) and (3.19), we get

∂īṼ
h = Ahi . (3.21)

Thus we can put
Ṽ h = Bh +Ahay

a. (3.22)
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where Bh are certain functions on Mn. It is easy to see that B := (Bh) ∈ =1
0(Mn).

Substituting (3.21) in (3.3) and by using (3.19), one can see that

∂j̄∂īṼ
h̄ = 2Ω̃j̄δ

h
i + 2Ω̃īδ

h
j . (3.23)

From (3.23), we have

Ω̃j̄ = ∂j̄ϕ̃, (3.24)

where

ϕ̃ :=
1

2(n+ 1)
∂āṼ

ā. (3.25)

Substituting (3.24) into (3.23), we get

∂j̄∂īṼ
h̄ = 2∂j̄ϕ̃δ

h
i + 2∂īϕ̃δ

h
j . (3.26)

By a similar way, one can see that, there exist Φ = (Φi) ∈ =0
1(Mn), D = (Dh) ∈ =1

0(Mn) and C = (Chi ) ∈
=1

1(Mn), satisfying

Ω̃ī = Φi, (3.27)

and

Ṽ h̄ = Dh + Cha y
a + 2yaΦay

h. (3.28)

From

(LṼ ∇̃)(Ej̄ , Ei) = 0,

or

(LṼ ∇̃)(Ej , Eī) = 0,

and using (3.22) and (3.28), we get

0 =
{(
∇iAhj +

α2

2λ
DaRhaji

)
+
yb

2λ

(
α2(Ba∇aRhbji −Rabji∇aBh

+Rhbja∇iBa + CabR
h
aji + CajR

h
bai) + αβRabjiA

h
a

)
+
α2

2λ
ybyc

(
Aac∇aRhbji + 4ΦcR

h
bji −Rabji∇aAhc +Rhbja∇iAac

)}
Eh

+
{(
∇iChj −BaRhiaj −

αβ

2λ
DaRhaji

)
− yb

2λ

(
α2Rabji∇aDh

+ αβ(Ba∇aRhbji +Rhbja∇iBa +RhajiC
a
b −RabjiCha +RhbaiC

a
j )

− 4λ(∇iΦjδhb +∇iΦbδhj )
)

+
ybyc

2λ

(
α2(RabjiB

dRhadc −Rabji∇aChc )

− αβ(Aac∇aRhbji +Rhbja∇iAac − 2RabjiΦaδ
h
c + 2RhbjiΦc)

)
− α2

2λ
ybycydRabji∇a2Φdδhc

}
Eh̄. (3.29)

Comparing both sides of (3.29), we obtain

∇iAhj = −α
2

2λ
DaRhaji, (3.30)

αBa∇aRhbji = αRabji∇aBh − αRhbja∇iBa − αRhajiCab − αRhbaiCaj + βRabjiA
h
a, (3.31)

∇iChj = BaRhiaj +
αβ

2λ
DaRhaji, (3.32)
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Aac∇aRhbji +Aab∇aRhcji =Rabji∇aAhc +Racji∇aAhb −Rhbja∇iAac
−Rhcja∇iAab − 4ΦcR

h
bji − 4ΦbR

h
cji, (3.33)

4λ(∇iΦjδhb +∇iΦbδhj ) =α2Rabji∇aDh + αβ(Ba∇aRhbji +Rhbja∇iBa

+RhajiC
a
b −RabjiCha +RhbaiC

a
j ), (3.34)

β(Aac∇aRhbji +Aab∇aRhcji) = −β(Rhbja∇iAac +Rhcja∇iAab + 2RabjiΦaδ
h
c

+ 2RacjiΦaδ
h
b − 2RhbjiΦc − 2RhcjiΦb) + α(RabjiB

dRhadc

−Rabji∇aChc +RacjiB
dRhadb −Racji∇aChb ). (3.35)

By changing indices j and b in (3.34), we get

αRabji∇aDh + β(Ba∇aRhbji +Rhbja∇iBa +RhajiC
a
b −RabjiCha +RhbaiC

a
j ) = 0. (3.36)

By contracting h and j in (3.34) and using (3.36), we get

∇iΦk = 0. (3.37)

Substituting (3.31) into (3.36), we obtain

Rabji(β
2Aha + αβ∇aBh − αβCha + α2∇aDh) = 0. (3.38)

From (3.33) and (3.35), we obtain that

β(ΦcR
h
bji + ΦbR

h
cji) = 0. (3.39)

From
(LṼ ∇̃)(Ej , Ei) = 2Ω̃jδ

h
i + 2Ω̃iδ

h
j ,

using (3.19), (3.22), (3.28) and (3.37), we obtain

2Ω̃jδ
h
i + 2Ω̃iδ

h
j =∇j∇iBh +BaRhaji +

αβ

2λ
Da(Rhaji +Rhaij) +

yb

2λ

{
2λ∇j∇iAhb

+ αβ
(
Ba(∇aRhbji +∇aRhbij)− (Rabji +Rabij)∇aBh

+ (Rhbai +Rhbia)∇jBa + (Rhbaj +Rhbja)∇iBa + (Rhaji +Rhaij)C
a
b

)
− 2β2RajbiA

h
a + α(α+ γ)RajibA

h
a + α2(Rhbai∇jDa +Rhbaj∇iDa)

}
+
ybyc

2λ

{
αβ
(
Aac (∇aRhbji +∇aRhbij)− (Rabji +Rabij)∇aAhc

+ (Rhbai +Rhbia)∇jAac + (Rhbaj +Rhbja)∇iAac + 2Φb(R
h
cji +Rhcij)

)
− α2(RhbaiB

dRajdc +RhbajB
dRaidc −Rhbai∇jCac +Rhbaj∇iCac )

}
, (3.40)

and

0 =∇j∇iDh +
β2

λ
RhjaiD

a − α(α+ γ)

2λ
RhjiaD

a

+
yb

2λ

{
2λ
(
∇j∇iChb −∇j(BaRhiab)

)
+ 2β2(Ba∇aRhjbi +Rhabi∇jBa

+Rhjba∇iBa +RhjaiC
a
b −RajbiCha )− α(α+ γ)(Ba∇aRhjib +Rhaib∇jBa

+Rhjab∇iBa +RhjiaC
a
b −RajibCha )− αβ

(
Rhbai∇iDa +Rhbaj∇iDa

+ (Rabji +Rabij)∇aDh
)}

+
ybyc

2λ

{(
α(α+ γ)RajibΦa − 2β2RajbiΦa

)
δhc

+ 2β2(Aac∇aRhjbi +Rhabi∇jAac +Rhjba∇iAac )
− α(α+ γ)(Aac∇aRhjib +Rhaib∇jAac +Rhjab∇iAac )
+ αβ

(
(Rabji +Rabij)B

dRhadc +RhbaiB
dRajdc +RhbajB

dRaidc

− (Rabji +Rabij)∇aChc −Rhbai∇jCac −Rhbaj∇iCac
)}
. (3.41)
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By changing the indices i and j in (3.40), we get

∇j∇iAhb −∇i∇jAhb = RaijkA
h
a. (3.42)

By contracting h and i in (3.42) and using (3.30), we obtain

∇j∇aAab = −α
2

2λ
∇a(RacbjDc) = 0. (3.43)

By contracting h and i in (3.40) and using (3.36) and (3.43), we have

2(n+ 1)Ω̃j =∇j∇aBa − αβ

2λ
DaRaj −

ybyc

2λ

{
αβ(Aac∇aRbj +Rba∇jAac

+ 2ΦbRcj) + α2(RdbajB
eRadec −Rdbaj∇dCac )

}
. (3.44)

On the other hand, by using (3.20), (3.30), (3.32) and the second Bianchi identity, the last part of right-hand
side in (3.44) vanishes. Thus (3.44) is rewritten in the form

Ω̃i = Ψi (3.45)

where

Ψi :=
1

2(n+ 1)
(∇i∇aBa − αβ

2λ
DaRai). (3.46)

From (3.32) and (3.46), we have

Ψi :=
1

2(n+ 1)
(∇i∇aBa +∇iCaa ). (3.47)

Putting ψ := 1
2(n+1)(∇aBa + Caa ), one can see that

Ψi = ∂iψ. (3.48)

Substituting (3.45) into (3.40), and comparing both sides, we have

LBΓhji = ∇j∇iBh +BaRhaji = 2Ψjδ
h
i + 2Ψiδ

h
j −

αβ

2λ
Da(Rhaji +Rhaij), (3.49)

and

2λ∇j∇iAhb =− αβ(Ba(∇aRhbji +∇aRhbij)− (Rabji +Rabij)∇aBh

+ (Rhbai +Rhbia)∇jBa + (Rhbaj +Rhbja)∇iBa

+ (Rhaji +Rhaij)C
a
b ) + 2β2RajbiA

h
a − α(α+ γ)RajibA

h
a

− α2(Rhbai∇jDa +Rhbaj∇iDa) (3.50)

Substituting (3.30) and (3.31) into (3.50), we have

α2∇j(RhabiDa) =αRhbai(α∇jDa − βCaj + β∇jBa)

+ αRhbaj(α∇iDa − βCai + β∇iBa) + λRajibA
h
a. (3.51)

From (3.51), we get

RajibA
h
a = 0. (3.52)

From (3.41) we obtain

∇j∇iDh =
α(α+ γ)

2λ
RhjiaD

a − β2

λ
RhjaiD

a, (3.53)
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and

2λ
(
∇j∇iChb −∇j(BcRhicb)

)
= −2β2(Ba∇aRhjbi +Rhabi∇jBa +Rhjba∇iBa +RhjaiC

a
b

−RajbiCha ) + α(α+ γ)(Ba∇aRhjib +Rhaib∇jBa

+Rhjab∇iBa +RhjiaC
a
b −RajibCha ) + αβ

(
Rhbai∇iDa

+Rhbaj∇iDa + (Rabji +Rabij)∇aDh
)
. (3.54)

Substituting (3.31), (3.32) and (3.38) into (3.54), we have

βDa∇jRhbai =− β(Rhbaj∇iDa +Rhbai∇jDa)− βRajib∇aDh

− βRhbai(2
β2

α
∇jBa − 2

β2

α
Caj −∇jDa). (3.55)

Proof of Theorem 1.3

Let Ṽ be a non-a�ne in�nitesimal paraholomorphically projective transformation on TMn. By using (1.1)
in Theorem 1.1, one can see that ∇i‖Φ‖2 = 0. Thus ‖Φ‖ is constant on Mn. Let ‖Φ‖ 6= 0, then from (1.1)
in Theorem 1.1, ‖Φ‖(ΦaRhaji) = 0. Thus ΦaRhaji = 0 and one can see that ‖Φ‖Rhaji = 0. Therefore Mn is
locally �at, by virtue of ‖Φ‖ 6= 0. It is easy to see that TMn also is locally �at.
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