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1 Introduction

E�ective structure theory and, more particularly, e�ective algebra are concerned with studying mathematical
objects such as groups, rings and �elds, but where the objects are given with computable domains and such
that the operations are computable functions. See [1], [3], [4], [8], [15], [16]. The study of constructive
(i.e., computable) abelian groups was initiated by A.I. Mal'tsev in [13], where he posed a general problem:
�Determine what constructive numberings are allowed by abstractly given group�. Mal'tsev interested in
the algebraic theory of in�nite abelian groups and so he used the new e�ective approach to algebra on the
class of abelian groups [13]. He de�ned an abelian group to be recursive (computable) if there is an e�ective
listing of its elements under which the operation of the group becomes a recursive (computable) function.
This numbering of the universe of the group is called a computable presentation or constructivisation of the
group. Computable groups are often called constructive.

Computable abelian groups have been intensively studied. For survey of results in the �eld see, e.g.,
Khisamiev [10] and Downey [5]. Modern computable abelian group theory combines methods of computable
model theory (Ershov and Goncharov [4], Ash and Knight [1]) and pure abelian group theory (Fuchs [7]).

In 1937, Baer [2] introduced the class of completely decomposable groups. A countable torsion-free
abelian group A is called completely decomposable if the equality

A = ⊕{Ai|i ∈ ω}, (1.1)

is true for some subgroups Ai of the rationals 〈Q,+〉 under addition.
Khisamiev and Krykpaeva [12] looked at completely decomposable groups from the computability-

theoretic point of view. It turned out that even a basic question of the theory of completely decomposable
groups, when considered from the e�ective point of view, may lead to a di�cult problem with an unexpected
solution; see, e.g., the result of Khisamiev [11]. More results on computable completely decomposable groups
can be found in [11], [6], [14].

In [12, 9], the �rst author introduced the concepts of e�ective and strong decomposability of an abelian
group. Moreover, he also obtained criteria for such decomposability for the class of groups of the form
A = ⊕{Qpi |i ∈ ω}, where Qpi is the additive group of rational numbers whose denominators are powers of
some prime number pi. In [11], a criterion for strong decomposability is obtained for the class of groups of
the form A = ⊕{Qpi |i ∈ ω}, where Qpi = {m/n|(n, pi) = 1,m ∈ Z}, where Z is the set of integers.
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2 Preliminary results

Let P = {p0, p1, . . .} be the set of all prime numbers in ascending order and S ⊆ ω, S 6= ∅. We set
AS = ⊕{Apn |n ∈ S}. In [5], it was proved that AS has a decidable (computable) copy if and only if S ∈ Σ0

2

(Σ0
3).
In this paper, we introduce the notion of e�ective 〈p, ω〉-decomposability of an abelian group and obtain

a criterion for such a decomposition.
In [12], the following de�nition was introduced.

De�nition 1. Let there exist a computable numbering ν of the group A of form (1.1) such that the pair
(A, ν) contains a computably enumerable maximal linearly independent system of elements 〈ai | ai ∈ Ai〉.
In this case, the pair (A, ν) is called a computably completely decomposed group, and A itself is called an
e�ectively completely decomposed group.

In what follows, we assume that the base set of the group A is the set ω = {0, 1, 2, . . .}. The element
k ∈ Ai, i ∈ ω, will be denoted by aik, and by x, y, z, x0, y0, z0, . . . � arbitrary elements of the group A;
p, q, p0, q0, . . . are prime numbers.

We introduce the following predicates:

R(x, p, n, y)
 (x = pny), (2.1)

D(x, p)
 ∀n∃xR(x, p, n, x). (2.2)

De�nition 2. If on the group A of form (1.1), the formula

H(p, n, a)� ∃xR(a, p, n, x) ∧ ∀y¬R(a, p, n+ 1, y),

is true, where the predicate R is de�ned by formula (2.1), then we say that the p-height of the element a ∈ A
is equal to n and denote this fact by hp(a) = n; if A |= D(a, p), where the predicate D is de�ned in (2.2),
then we say that the p-height of a is equal to ω and denote hp(a) = ω.

For any nonzero element a of the group A of form (1.1), we introduce the following sets:

H<ω(a)� {p | 0 < hp(a) < ω, p − prime number}, (2.3)

Hω(a)� {p | hp(a) = ω, p − prime number}. (2.4)

Lemma 2.1. For any subgroup A ≤ Q, and any nonzero elements a, b ∈ A, the following statements hold.
(a) The set

H<ω(a) M H<ω(b)
 (H<ω(a) \H<ω(b)) ∪ (H<ω(b) \H<ω(a))

is �nite.
(b) The following equality is true:

Hω(a) = Hω(b),

where the sets H<ω(a), Hω(a) are de�ned by (2.3) and (2.4) respectively.

Proof. (a) Suppose the set

H<ω(a) \H<ω(b) (2.5)

is in�nite. Since a, b ∈ A \ {0} and A ≤ 〈Q,+〉, then there are two coprime numbers m,n 6= 0 such that

ma = nb. (2.6)
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From the condition (2.5) it follows that for some prime number p the following equality holds:

p ∈ (H<ω(a) \H<ω(b)). (2.7)

Also p is coprime to m,n from (2.6). Then for some integers kε, lε, ε < 2 we have{
pk0 +ml0 = 1,
pk1 + nl1 = 1.

Then {
pk0a+ml0a = a,
pk1b+ nl1b = b.

From the second equality of this system and (2.6) we have pk1b + ml1a = b. Then by (2.7) we obtain the
contradiction p ∈ H<ω(b). Thus, the set H<ω(a)\H<ω(b) is �nite.

The �niteness of H<ω(b)\H<ω(a) can be proved in the similar way. Then H<ω(a) M H<ω(b) is also �nite.
Statement (a) of the lemma is proved.

(b) Let the nonzero elements a, b ∈ A and a prime number p be given for which p ∈ Hω(a), i.e.,

A |= ∀n∃ap,n(pnap,n = a). (2.8)

We will prove that p ∈ Hω(b). Since A 6 Q and a, b ∈ A \ {0} then there exist coprime nonzero numbers
m, r, such that ma = rb. Then by (2.8) we obtain that

A |= ∀n∃bp,n(pnbp,n = rb). (2.9)

Without loss of generality of reasoning, we can assume that the numbers r and p are coprime. Then for
any number k ∈ ω \ {0} there are integers sk and tk such that the equality rsk + pktk = 1 holds. Then
rskb+ pktkb = b and (2.9) implies that for each k > 0 the element b divides pk, and so p ∈ Hω(b).

Similarly we can prove that if p ∈ Hω(b) then p ∈ Hω(a). Therefore, Hω(a) = Hω(b).

�

De�nition 3. [7, p. 129]. A p-heigh sequence

χ(a) = 〈hp0(a), . . . , hpn(a), . . .〉

is called characteristic of the element a ∈ A \ {0}, where pi is the i-th prime and hp(a) is introduced by
de�nition 2. Characteristics 〈k0, . . . , kn, . . .〉 and 〈l0, . . . , ln, . . .〉 are equivalent if kn 6= ln holds only for a
�nite set of numbers n and only if kn and ln are �nite.

Theorem. Baer [2] (see also [7, p. 132]). Two groups A and B of rank 1 are isomorphic if and only if
there exist two nonzero elements a ∈ A and b ∈ B with the equivalent characteristics χ(a) and χ(b).

Lemma 2.2. Let A be a subgroup of the additive group of rationals 〈Q,+〉. Suppose that the element
a ∈ A\{0} satis�es the following conditions:

(a1) Hω(a) 6= ∅;
(a2) H<ω(a) is �nite.

Then there exists b ∈ A for which

(c1) H<ω(b) = ∅;
(c2) A is isomorphic to B ≤ 〈Q,+〉 generated by the following set of elements:

S(b) = {bp,n | pnbp,n = b, p ∈ Hω(b), n ∈ ω}, (2.10)

where the sets H<ω(a) and Hω(a) are de�ned by (2.3) and (2.4), respectively.
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Proof. (c1) Condition (a2) implies that

H<ω(a) = {q0, . . . , qs−1} (2.11)

for some s > 0 and prime numbers qi, i < s. Then for every i < s there existds a number mi ∈ ω \ {0} such
that

A |= ∃ai,mi(q
mi
i ai,mi = a ∧ ∀x qmi+1

i x 6= a).

Therefore
qm0

0 qm1
1 . . . q

ms−1

s−1 b = a (2.12)

for some b ∈ A. By (2.11) we obtain the equality

H<ω(b) = ∅. (2.13)

Statement (c1) is proved.
(c2) Let the elements a and b are de�ned as in lemma 2.2 and formula (2.12), respectively. By (2.11),

(2.13) and (b) of lemma 2.1 we have that the characteristics χ(a) and χ(b) are equivalent. Then the Baer
theorem implies

A = gr{c | ∃m∃n(mc = na)} and B = gr{d | ∃m∃n(md = nb)}.

�

De�nition 4. Let A = ⊕{Ai | i ∈ ω}, where each Ai is a subgroup of 〈Q,+〉. Then A is called 〈p, ω〉-
decomposable if each Ai contains an element ai ∈ Ai for which H<ω(ai) de�ned by (2.3) is �nite.

By lemma 2.1 we obtain the following statement.

Corollary 2.1. Let A be the group of form (1.1). Suppose that A is 〈p, ω〉-decomposable. Then for any
nonzero elements ai, bi ∈ Ai, i ∈ ω the following statements hold:

• The sets H<ω(ai) and H<ω(bi) are �nite.

• Hω(ai) = Hω(bi).

De�nition 5. Let A be a 〈p, ω〉-decomposable abelian group of form (1.1), and 〈ai | ai ∈ Ai〉 be a maximal
linearly independent system of elements in A. Then the sequence of sets

χ(A) = 〈Hω(ai) | i ∈ ω〉, (2.14)

with Hω(ai) is de�ned by (2.4), is called characteristic of A.

De�nition 6. Let A be a 〈p, ω〉-decomposable abelian group of form (1.1). Suppose that A is e�ectively
completely decomposable. Then A is said to be e�ectively 〈p, ω〉-decomposable group.

The following statement follows directly from the de�nitions.

Corollary 2.2. Abelian group A of form (1.1) is e�ectively 〈p, ω〉-decomposable if and only if it is 〈p, ω〉-
decomposable and there exists a countable numbering ν and a countable function f(i) such that

〈ai | ai = ν(f(i)), ai ∈ Ai〉

is a maximal linearly independent system of nonzero elements of A.

De�nition 7. If predicate R(i, p, n, x) for p ∈ P , i, n, x ∈ ω satis�es the conditions

• R(i, p, 0, i);

• R(i, p, n, x) ∧R(i, p, n, y)→ x = y;
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• (R(i, p, n, x) ∧ 0 < m < n)→ (∃y(R(i, p,m, y) ∧R(y, p, n−m,x))),

then it is called F -predicate.

For a F -predicate R(i, p, n, x) we introduce the following sets:

F (i)� {p | ∃np > 0 (∃xR(i, p, np, x) ∧ ∀y¬R(i, p, np + 1, y))}, (2.15)

I(i)� {p | ∀n∃x R(i, p, n, x)}. (2.16)

3 Main results

If p is a prime number, p ∈ F (i) (p ∈ I(i)) where F (i) (I(i)) is de�ned by (2.15) ((2.16)), then p is called
〈i, p〉-�nite (〈i, p〉-in�nite).

F -predicate R(i, p, n, x) is called F -�nite in the case when F (i) is �nite for each i ∈ ω.

Theorem 3.1. Let the group
A = ⊕{Ai | Ai ≤ 〈Q,+〉, i ∈ ω}, (3.1)

be 〈p, ω〉-decomposable. Then it is e�ectively 〈p, ω〉-decomposable if and only if there exist a computable
function f(i) and a computable F -�nite predicate R(i, p, n, x) such that the following equality holds:

χ(A) = 〈I(f(i)) | i ∈ ω〉, (3.2)

where the characteristic χ(A) and the set I(i) are de�ned by (2.14) and (2.16) respectively.

Proof. Let A be a 〈p, ω〉-decomposable group. Then there are a computable numbering ν of A and a
computable fuction f(i) such that the sequence 〈ai | ai = ν(f(i)), ai ∈ Ai〉 is maximal linearly independent
system of nonzero elements. �

Let a predicate R(i, p, n, x) be de�ned as

R(i, p, n, x)⇔ (A, ν) |= pnν(x) = ν(i). (3.3)

Since A is e�ectively 〈p, ω〉-decomposable then by corollary 2.1 predicate R(i, p, n, x) is computable F -
�nite for which equality (3.2) is valid. Therefore, we have proved the necessity of the conditions of the
theorem.

Now let R(i, p, n, x) be a F -�nite predicate and f(i) be a computable function satisfying the equality
(3.2), where i, n, x ∈ ω, p ∈ P . For any i ∈ ω and p ∈ P we will build a group Bi,p ≤ 〈Q,+, 0〉.

Step 0. We introduce the element bi,p,0 = bi and the number ki,p,0 = f(i).

Step t+ 1. We de�ne on the t-th �rst steps the element bi,p,t and number kt,p,t ∈ ω.
The following cases are possible:
a) If the predicate ∃x ≤ tR(ki,p,t, p, 1, x) is true, we introduce an element bi,p,t+1, a number ki,p,t+1 = x

and a relation pbi,p,t+1 = bi,p,t. If on the step t the element bi,p,t was marked by ∗ then it is deleted.
The step t+ 1 is over. We go to the next step.
b) If the predicate ∃x ≤ tR(ki,p,t, p, 1, x) is not true, then we set bi,p,t+1 = bi,p,t, ki,p,t+1 = ki,p,t and mark

bi,p,t by ∗.
The step t+ 1 is over. We go to the next step.

We de�ne the groups Bi,p, Bi, B(R) as:

Bi,p � gr({bi,p,t | t ∈ ω}), (3.4)

Bi � gr({bi,p,t | p ∈ P, t ∈ ω}), (3.5)

B(R)� ⊕{Bi | i ∈ ω}. (3.6)

The construction is complete.
To complete the proof of the theorem, we need the following two lemmas.
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Lemma 3.1. For any pair 〈i, p〉, i ∈ ω, p ∈ P the group Bi,p de�ned by (3.4) is either in�nite cyclic or
group of the form Qpi for some prime number p.

Proof. For the predicate of the form R(i, p, n, x) the following cases are possible:

• ∃n > 0 (∃xR(f(i), p, n, x) ∧ ∀y¬R(f(i), p, n+ 1, y)).
The construction of Bi,p implies that there exists a sequence s0, . . . , sn, s0 = 0, for which {bi,p,k | k ∈
ω} = {bi,p,sl | l ≤ n} and pbi,p,sl+1

= bi,p,sl , l < n. Therefore, Bi,p is isomorphic to the in�nite cyclic
group generated by bi,p,sn .

• ∀n∃xR(f(i), p, n, x).
Thus, the construction Bi,p implies that there exists a sequence 〈sl | l ∈ ω〉, s0 = 0, for which
{bi,p,k | k ∈ ω} = {bi,p,sl | l ∈ ω} and pbi,p,sl+1

= bi,p,sl , l ∈ ω. Therefore, Bi,p is isomorphic to
Ap = 〈{mpn | m ∈ Z, n ∈ ω},+, 0〉.

�

Lemma 3.2. For any i ∈ ω,

Hω(ai) = ∅ ⇔ Bi − is an in�nite cyclic group,

where 〈ai | ai ∈ Ai〉 is a maximal linearly independent system of nonzero elements in A, and the set Hω(a)
and group Bi are de�ned by (2.4) and (3.5) respectively.

Proof. Let Hω(ai) = ∅. Then (3.2) implies

I(f(i)) = ∅. (3.7)

It follows that for any prime p the following formula is true:

∃xR(f(i), p, 1, x)→ (∃mp > 0(∃zR(f(i), p,mp, z) ∧ ∀y¬R(i, p,mp + 1, y))). (3.8)

Therefore, for any p

p ∈ F (f(i))⇔ ∃xR(f(i), p, 1, x),

where the set F (f(i)) is de�ned by (2.15). Since R is F -�nite, then F (f(i)) is �nite. Then (3.7) implies that
Bi is isomorphic to the group generated by the set {bi,p,tp | mpbi,p,tp = bi, p ∈ F (f(i))}, where mp is de�ned
by (3.8) and the elements bi,p,tp were marked by ∗. Therefore, Bi is in�nite cyclic group. We proved that
the conditions of the lemma are su�cient.

Let Bi be in�nite cyclic group. Then I(f(i)) = ∅. From (3.2) we obtain the necessity of the conditions
of the lemma. �

From the computability of the predicate R(i, p, n, x) and the construction of the groups Bi,p, Bi and
B(R), the construction by formulas (3.4) � (3.6), it follows that there exists a computable numbering ν of
the group B(R) such that in the pair (B(R), ν) the sequence elements 〈bi | i ∈ ω〉 is computably enumerable.
Therefore, the group B(R) is e�ectively 〈p, ω〉-decomposable. From (3.2) by Lemmas 2.2, 3.1, 3.2 it follows
that the groups A and B(R) are isomorphic. Thus, the group A is also e�ectively 〈p, ω〉-decomposable.
Theorem is proved. �

Let A be a 〈p, ω〉-decomposable abelian group and χ(A) = 〈Si|i ∈ ω〉. De�ne

A(ω) = ⊕{Ai|Si 6= ∅} and A(∅) = ⊕{Ai|Si = ∅}.

The subgroup A(ω) (A(∅)) of A, de�ned in this way, is said to be noncyclic (cyclic) summand of A.

Corollary 3.1. If an abelian group A is e�ectively 〈p, ω〉-decomposable, then there exists a computable
enumeration ν of A for which the cyclic summand A(∅) is computably enumerable in (A, ν).
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Proof. Indeed, in the proof of Theorem 1 we associate to (A, ν) the computable predicate R(i, p, n, x) and
determine the computably enumerated pair (A(R), ν(R)) such that A is isomorphic to A(R). By this con-
struction it is directly follows that the cyclic summand is generated by the ∗-marked elements. Therefore,
the cyclic summand of A(R) is computably enumerated in (A(R), ν(R)). �

Corollary 3.2. If the abelian group A(R) is e�ectively 〈p, ω〉-decomposable, then the noncyclic summand
A(ω) is computable.

Proof. Let R and (A(R), ν(R)) be as in the proof of corollary 2.1. The noncyclic summand A(R)(ω) of
A(R) is isomorphic to A(R)/A(R)(∅), where A(R)(∅) is the cyclic summand of A(R). By corollary 2.1 the
subgroup A(R)(∅) is computably enumerable in (A(R), ν(R)). Thus, the factor-group A(R)/A(R)(∅) is a
computably enumerably de�ned abelian torsion-free. In [10], it was proved that such group is computable.
It follows that A(R)/A(R)(∅) is also computable. Therefore, the noncyclic summand A(R)(ω) of A(R) is
computable. �

Corollaries 3.1 and 3.2 imply

Corollary 3.3. If an abelian group A is e�ectively 〈p, ω〉-decomposable, then there exists a computable
enumeration ν of A such that the subgroups A(ω) and A(∅) are recursive in (A, ν).
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