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1 Introduction and preliminaries

In 1956, Michael [11] showed that a closed convex-valued continuous multifunction F : X → Y from a
paracompact spaceX to a Banach space Y admits a continuous selection. After that several authors obtained
continuous selections for nonconvex-valued multifunctions in Banach spaces, see e.g., [2] and references
therein. Carbone [1] showed that not always continuous selection exists. In this direction, many authors
have studied the problems of existence of various types of selections for generalized continuous multifunctions.
Matejdes [9] proved the existence of a quasicontinuous selection for compact-valued multifunctions from a
Baire space to a compact metric space. Later, Kupka [8] showed the existence of a quasicontinuous selection
for �nite-valued quasicontinuous multifunctions. In 2009, Ganguly and Mallick [4] proved the existence of a
quasicontinuous selection for generlized continuous multifunctions de�ned on categorically closed topological
spaces. Matejdes [10] also showed the existence of a quasicontinuous selection for compact-valued upper
E-continuous multifunctions. In 2014, Mitra and Ganguly [12] introduced the concept of a special type of a
cluster system EP and proved some important results related to lower and upper EP -continuous multifunctions
which may fail to hold for E-cluster system.

The aim, in this paper, is to obtain a quasicontinuous selection for slightly B∗-continuous multifunctions.
The notions of slightly B∗-continuous functions and multifunctions are de�ned respectively, in [6] and [7].

Throughout the paper, X and Y will denote topological spaces, unless speci�ed otherwise. By int(A)
and cl(A), we shall denote the interior and closure of the set A.

By F : X → Y, we shall mean that F is a multifunction with the domain X and the co-domain P (Y ) \ ∅,
the power set of Y excluding the empty set.

If F : X → Y is a multifunction then for A ⊂ Y, we denote

F+(A) = {x ∈ X : F (x) ⊂ A}

and

F−(A) = {x ∈ X : F (x) ∩A 6= ∅}.

A multifunction S is a sub-multifunction of F, if S ⊂ F, i.e., S(x) ⊂ F (x) for all x ∈ X. By a selection of
a multifunction F : X → Y we mean a single-valued function f : X → Y such that f(x) ∈ F (x) for each
x ∈ X.

A set B is said to be a B∗-set if it is not nowhere dense having the property of Baire [3].

A topological space is said to be categorically closed if every �rst category set is closed [5].
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Proposition A. [5] In a categorically closed topological space, the following hold:

(i) if G is open and P is of the �rst category, then G \ P is open.

(ii) if E is a second category set with the Baire property, then E contains a nonempty open set.

(iii) if E is a B∗-set, then E contains a nonempty open set.

A space X is said to be 0-dimensional, if each point of X has a neighborhood base of clopen sets, i.e.,
sets which are both open as well as closed. Equivalently, for each point x ∈ X and each closed set G not
containing x, there exists a clopen set containing x disjoint from G, see [13].

De�nition 1. A multifunction F : X → Y is said to be

(a) upper slightly B∗-continuous at a point x, if for every open set U ⊂ X containing x and for every
clopen set V such that F (x) ⊂ V, there exists a B∗-set B such that

B ⊂ F+(V ) ∩ U,

(b) lower slightly B∗-continuous at a point x, if for every open set U ⊂ X containing x and for every
clopen set V such that F (x) ∩ V 6= ∅, there exists a B∗-set B such that

B ⊂ F−(V ) ∩ U.

(c) slightly B∗-continuous if it is both upper and lower slightly B∗-continuous.

For A ⊆ X, the symbol S(F,A) will denote the set of all slightly B∗-continuous selections of the restricted
multifunction F |A : A→ Y.

2 Main results

We begin with the following:

De�nition 2. A multifunction F : X → Y is said to be strongly lower slight B∗-continuous at a point x,
if for every open set U ⊂ X containing x and for any �nite collection {V1, V2, ...Vn} of clopen subsets of Y
with F (x) ∩ Vi 6= ∅, for all i = 1, 2, . . . n, there exists a B∗-set B ⊂ U containing x such that

B ⊂ F−(V1, V2 . . . Vn).

Here F−(V1, V2 . . . Vn) = {x ∈ X : F (x) ∩ Vi 6= ∅, i = 1, 2, . . . , n}.

In this section we provide the conditions when upper slightly B∗-continuous multifunction have a slightly
B∗-continuous selection and also the conditions when strongly lower slight B∗-continuous multifunction will
have slightly quasicontinuous or quasicontinuous selection.

First we prove the following:

Theorem 2.1. Let X be a categorically closed space and F : X → Y be a mildly compact-valued upper
slightly B∗-continuous multifunction. Let there exists an open dense subset U of X such that S(F,U) 6= ∅.
Then F has a slightly B∗-continuous selection on X.

Proof. Let g ∈ S(F,U).
Claim: For each z ∈ X \ U there exists an element yz ∈ F (z) such that for every open set G containing z
in X and every clopen set Vy containing yz, there exists a B

∗-set B containing z such that B \ {z} ⊂ G ∩ U
and g(B) ⊂ V.
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Suppose that the above claim is not true. Then there exists some z ∈ X \ U such that for all y ∈ F (z)
there exist an open set Uy containing z and a clopen set Vy containing y such that every B∗-set B ⊂ Uy
contains a point b with

g(b) /∈ Vy,

which gives that
g(Uy ∩ U) ∩ Vy = ∅, (2.1)

because, otherwise, there exists a B∗-set B1 such that B1 ⊂ G ∩ U and g(B1) ⊂ Vy.
Now, the family {Vy : y ∈ F (z)} forms a clopen cover for F (z) and F (z) being mildly compact can be

covered by �nitely many of them, say

F (z) ⊂
m⋃
i=1

Vyi .

Since F is upper slightly B∗-continuous at z there exists a B∗-set B
′′ ⊂ Uy1 ∩ Uy2 ∩ . . . ,∩Uym such that

B
′′ ⊆ F+

( m⋃
i=1

Vyi

)
.

Let

S = U ∩ U1 ∩ U2 ∩ · · · ∩ Um ∩ F+
( m⋃
i=1

Vyi

)
.

Since U is dense, in view of Proposition A, S 6= ∅ and g(S) ⊂
m⋃
i=1

Vyi . This contradicts (2.1) so that the claim

is established.
Now, the function h : X → Y de�ned by

h(z) =

{
g(z), if z ∈ U
yz, z ∈ X \ U and yz is an element mentioned in the claim

is a slightly B∗-continuous selection of F.

Lemma 2.1. Let Y be an ultra Hausdor� space and F : X → Y be a strongly lower slight B∗-continuous
multifunction with card(F (x)) = n for all x ∈ X. Then F is upper slightly B∗-continuous.

Proof. Let x ∈ X, U be an open set containing x and V be a clopen set with F (x) ⊂ V. Let F (x) =
{y1, y2, . . . , yn}. Since Y is ultra Hausdor� there exist pairwise disjoint clopen sets V1, V2, . . . , Vn such that
yi ∈ Vi and Vi ⊂ V for each i = 1, 2, ..., n. Since F is strongly lower slight B∗-continuous at x there exists a
B∗-set B ⊂ U containing x such that

B ⊆ F−(V1, V2, . . . , Vn).

Let b ∈ B. Then F (b) ∩ Vi 6= ∅ for all i = 1, 2, ..., n. Since card(F (b)) = n and Vi ⊆ V for all i = 1, 2, ..., n,
we have that F (b) ⊆ V. Hence F is upper slightly B∗-continuous at x.

Lemma 2.2. Let X be a categorically closed space and Y be ultra Hausdor�. Let F : X → Y be a strongly
lower slight B∗-continuous multifunction with card(F (x)) = n for all x ∈ X. Then for every nonempty open
subset U of X, there exists a nonempty open subset W of U such that S(F,W ) 6= ∅.

Proof. Let U be a nonempty open subset of X and x ∈ U. Let F (x) = {x1, x2, . . . xn}. Since Y is ultra
Hausdor�, there exist clopen sets V1, V2 . . . Vn in Y which are pairwise disjoint and xi ∈ Vi for all i =
1, 2, . . . , n. Since F is strongly lower slight B∗-continuous at x ∈ X, there exists a B∗-set B ⊂ U such that

B ⊂ F−(V1, V2, . . . , Vn).

Then for each i = 1, 2, . . . , n and for all b ∈ B we have

card(F (b) ∩ Vi) = 1.
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By Proposition A, the set B contains a nonempty open set W. De�ne g : W → Y such that

g(w) ∈ F (w) ∩ V1, w ∈W.

Let w ∈W, G be an open neighborhood of w inW and V be clopen in Y with g(w) ∈ V. Consider V ∩V1 = V
′

1 ,
clopen in Y , containing g(w), i.e., F (w)∩V ′1 6= ∅. Since F : X → Y is strongly lower slight B∗-continuous at
w, there exists a B∗-set B

′ ⊂ G such that

B
′ ⊂ F−(V

′
1 , V2, . . . , Vn).

Since card(F (b)) = n for each b ∈ B
′
, g(b) ∈ V

′
1 ⊂ V for each b ∈ B

′
. Hence g ∈ S(F,W ) and we are

done.

Remark 1. Let F : X → Y be a multifunction such that for every nonempty open set W of X there exists
an open subset D of W such that S(F,D) 6= ∅. Then, as an immediate consequence of Lemma 2.2, we �nd
that there exists a dense open subset U of X such that S(F,U) 6= ∅.

In view of Theorem 2.1, Lemma 2.1, Lemma 2.2, Remark 1 and Proposition A, we �nd that a �nite-valued,
strongly lower slight B∗-continuous multifunction from a categorically closed space to an ultra Hausdor� space
have a slightly B∗-continuous selection. In fact, it has a slightly quasi continuous selection. Precisely we
have proved the following:

Theorem 2.2. Let X be a categorically closed space, Y be ultra Hausdor� and n be a positive integer. Let
F : X → Y be a strongly lower slight B∗-continuous multifunction such that card(F (x)) = n for each x ∈ X.
Then F has a slightly quasicontinuous selection.

A result similar to Theorem 2.2 was proved in [4] (see also [8]) where Y is Hausdor� and F is strongly
lower Ep continuous. Those authors asserted that F admits a quasicontinuous selection on X. In our case,
we obtain a weaker selection, namely, slightly quasicontinuous.

Remark 2. If Y is 0-dimensional, it is known (see [7]) that slight B∗-continuity is equivalent to B∗-continuity.

In view of Remark 2, we immediately have the following:

Corollary 2.1. Let X be a categorically closed space, Y be ultra Hausdor� and 0-dimensional and n be a
positive integer. Let F : X → Y be strongly lower slight B∗-continuous multifunction such that card(F (x)) =
n for each x ∈ X. Then F has a quasicontinuous selection.

Next, we prove the following:

Theorem 2.3. Let X be a categorically closed space such that each open set is dense in X, Y be ultra
Hausdor� and 0-dimensional. Let F : X → Y be strongly lower slight B∗-continuous such that for each
x ∈ X, F (x) is �nite. Then F has a quasi continuous selection on X.

Proof. For i ∈ N, let Bi denote the set of all x ∈ X such that there exists a B∗-set B containing x with
card(F (b)) = i for all b ∈ B and

Li = {x ∈ X : card(F (x)) ≤ i}.

Note that Bi's are pairwise disjoint. Let U =
∞⋃
i=1

Bi and Z = X \ U. For each positive integer i, de�ne

Zi = Z ∩ Li. Then Z =
∞⋃
i=1

Zi. We claim that Z is closed. Suppose, on the contrary, that Z is not

closed. Then Z is not of �rst category. Let n be the �rst positive integer such that int(cl(Zn)) 6= ∅. Let
H = int(cl(Zn)) \ cl(Zn−1). Then H is nonempty open and H ⊆ int(Z). It is clear that Zn is dense in H.
Since

H ∩Bn = ∅ and H ∩ Zn−1 = ∅,
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there exists a point h ∈ H such that card(F (h)) = k and k > n. Let F (h) = {y1, y2, . . . , yk}. Since Y is
ultra Hausdor�, there are pairwise disjoint clopen sets V1, V2, ...Vk such that yi ∈ Vi, i = 1, 2, ...k. Since F is
strongly lower slight B∗-continuous at h, there exists a B∗-set B ⊆ H such that

B ⊂ F−(V1, V2, . . . , Vk).

For any b ∈ B, card(F (b)) ≥ k > n. Then B∩Zn = ∅. Since X is categorically closed, B contains a nonempty
open set, say, W. Then W ∩ Zn = ∅. This contradicts the fact that Zn is dense in H. Hence Z is closed and
U is open. By Corollary 2.1, for every i ∈ N such that Bi 6= ∅, F has a quasicontinuous selection on Bi.
De�ne g : U → Y by g(t) = gi(t) if and only if t ∈ Bi. Clearly, g is a selection of F on U. Let x ∈ U, U ′ be
open subset of X containing x and V be clopen in Y such that g(x) ∈ V. Suppose g(x) = gi(x). Since gi is
quasi continuous at x ∈ Bi, there exists a nonempty open set G in X such that

G ⊆ U ∩ U ′ ∩Bi

and gi(t) ∈ V for all t ∈ G. So g is quasicontinuous on U and by Theorem 2.1 and Remark 1 the assertion
follows.

For the �nal result of this paper, we require the following notion:

De�nition 3. A multifunction F : X → Y is said to be slightly B∗-minimal at x ∈ X, if for every open set
U containing x and for every clopen set V such that V ∩ F (x) 6= ∅, there exists a B∗-set B ⊂ U such that
F (b) ⊂ V for all b ∈ B.

Now we prove the following:

Theorem 2.4. Let Y be Hausdor� and F : X → Y be compact valued upper slightly B∗-continuous multi-
function. Then F has a slightly B∗-continuous selection.

Proof. LetM be a family of all upper slightly B∗-continuous compact-valued sub-multifunction of F, which
is partially ordered by inclusion. It is a nonempty family since F ∈ M. For any linearly ordered subfamily
M0 ofM, we de�ne a multifunction

M0(x) :=
⋂{

M(x) : M ∈M0

}
.

Then M0 is a nonempty compact-valued sub-multifunction of F. Let U be an open set containing x and V
be a clopen set such that M0(x) ⊂ V. Then there exists some M ∈M0 such that

M(x) ⊂ V.

From upper slight B∗-continuity of M, there exists a B∗-set B such that

x ∈ B ⊂ U ∩M+(V ).

Thus, for any b ∈ B we have that M0(b) ⊂ M(b) ⊂ V. This means M0 is upper slightly B∗-continuous and
using Zorn's lemma we �nd that M has a minimal element say Mm. We shall prove that Mm is slightly
B∗-minimal. Let Mm be not slightly B∗-minimal at some a ∈ X. Then there exists an open set U containing
a and a clopen set V with

Mm(a) ∩ V 6= ∅,

such that every B∗-set B containing a in U has at least one point b ∈ B such that Mm(b) * V. De�ne a
multifunction

N(x) =

{
Mm(x) ∩ (Y \ V ), if x ∈ U
Mm(x), otherwise.

Then N is a compact-valued sub-multifunction of F. If we prove that N is upper slightly B∗-continuous, it
would contradict the minimality of Mm and then Mm would be slightly B∗-minimal.
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Now, if x /∈ U there is nothing to prove. Let x ∈ U, and U1 ⊂ U be an open set containing x and W be
a clopen set such that N(x) ⊂W. Then Mm(x) ⊂ V ∪W and from the upper slight B∗-continuity of Mm it
follows that there is a B∗-set B ⊂ U1 containing x such that

Mm(b) ⊂ V ∪W for all b ∈ B.

This means N(b) ⊂W for all b ∈ B. Hence N ∈M, in particular, N is upper slightly B∗-continuous.
Now, we will show that Mm is single-valued. Otherwise, Mm(x1) contains at least two points for some

x1 ∈ X. Choose y1 ∈Mm(x1), and de�ne a multifunction G : X → Y by

G(x) =

{
{y1}, if x = x1

Mm(x) otherwise.

Clearly, G is compact-valued. Let U be an open set containing x1 andW be clopen set such that G(x1) ⊂W.
This means Mm(x1) ∩W 6= ∅ and using the slight B∗-minimality of Mm, there exists a B

∗-set B ⊂ U such
that

Mm(b) ⊂W for all b ∈ B \ {x}.

This implies that G(b) ⊂ W for all b ∈ B. Hence G ∈ M which is a contradiction to the minimality of Mm

and we are done.
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