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1 Introduction

The inverse scattering method originated in the works of Gardner, Greene, Kruskal and Miura [6]. They
managed to �nd a global solution to the Cauchy problem for the Korteweg - de Vries (KdV) equation,
reducing it to the inverse scattering problem for the self-adjoint Sturm - Liouville operator on the whole line.
This inverse scattering problem was �rst solved by L.D. Faddeev [5], then in the works of V.A. Marchenko
[30], B. Levitan [27] and others. Further, P. Lax [25] noticed the universality of the inverse scattering method
and generalized the KdV equation by introducing the concept of the higher-order KdV equation.

The classical KdV equation is derived within the framework of the �rst order of perturbation theory,
but such an approximation may not be enough to describe large-amplitude waves. One of the ways to re�ne
such models is to take into account the corrections of the larger orders of smallness of approximation in
the evolution equation. The �rst step in this direction was taken in [26], where it was proposed to use an
asymptotic procedure based on the introduction of two small parameters characterizing nonlinearity and
variance to derive higher order KdV equations. Such an equation was obtained for internal waves in a
two-layer �uid in [16]. A more detailed theoretical analysis of the properties of solitary waves in liquids
with arbitrary vertical density and �ux distributions is given in [7], in which corrections to the shape and
velocity of solitary waves are calculated for various models such as strati�cation of �uids. General integral
expressions for the coe�cients of the extended KdV equation for internal waves in a �uid with an arbitrary
density strati�cation were obtained in [24]. In the problem for surface waves in the work of S.A. Kordyukova
[17] it was discovered the emergence of the KdV hierarchy, where the KdV approximation becomes unusable.
In the works of N.A. Kudryashov, M.B. Sukharev [20], M. Daniel, K. Porsezyan, M. Lakshmanana [4], Yu.
Bagderina [1], Li Zhi, R. Sibgatullin [36] nonlinear evolutionary equations of the �fth order were considered
for describing water waves. The KdV hierarchy is considered in the works of R. Schimming [34], S.À.
Kordyukova [17], R.A. Krenkel, M.A. Manna, J.G. Pereira [19], N.À. Kudryashov [21] and others.

Kundu et al [23] have considered the deformed KdV equation

ut + 6uux + uxxx = gx

and shown that it admits a Lax representation, in�nitely many generalised symmetries, etc., provided that
the deforming function g(x, t) satis�es a di�erential constraint given by

gxxx + 2uxg + 4ugx = 0.
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In the recent work of S.S. Kumar and R. Sakhadevan [22] there was considered the deformed KdV equation
of the �fth order, given by the formula

ut + α(uxxx + 6uux) + β(uxxxxx + 10uuxxx + 20uxuxx + 30u2ux) = gx,

where α and β are real constants, and they showed that this equation admits a Lax representation provided
that the deformed function g(x, t) satis�es the di�erential constraint

gxxx + 2uxg + 4ugx = 0.

In [33], the (1 + 1)-dimensional geophysical KdV equation is investigated, which is given as

ut − ω0ux +
3

2
uux +

1

6
uxxx = 0

where ω0 is a parameter, u is function with respect to x, t.

The KdV equation is also found in applied mechanics. For example, in the works of A.A. Lugovtsov [28],
[29] the system of equations describing the propagation of one-dimensional nonlinear waves in an inhomoge-
neous gas-liquid medium is reduced to one equation of the form

uτ + α(τ)uuη + β(τ)uηηη − µ(τ)uηη +

[
k

2τ
+ δ(τ)

]
u = 0.

In particular, for µ = 0, k = 1, δ = 0 it is shown that, under certain conditions, cylindrical waves can exist
in the form of solitons.

For the �rst time the term �loaded equation� was used in the works of A.M. Nakhushev [32], where
the most general de�nition of a loaded equation is given and various loaded equations are classi�ed in
detail, for example, loaded di�erential, integral, integro-di�erential, functional equations, etc., and numerous
applications are described. In the literature, it is customary to call loaded di�erential equations equations,
containing in the coe�cients or in the right-hand side any functionals of the solution, in particular, the values
of the solution or its derivatives on manifolds of lower dimension. The study of such equations is of interest
both from the point of view of constructing a general theory of di�erential equations and from the point of
view of applications. Among the works devoted to loaded equations, one should especially note the works of
A.M. Nakhushev [31], [32], A.I. Kozhanov [18] and others.

Note that solutions of the KdV equation and the general KdV equation with a self-consistent source
from the class of rapidly decreasing complex-valued functions were considered in [14], [9]. Integration of
the loaded KdV equation in the class of periodic functions was studied in [15], [35], and in the class of
rapidly decreasing complex-valued functions in [10], [13]. Also, the coe�cient inverse problem for a parabolic
equation was studied in [11], the nonlinear problem for a parabolic equation with an unknown coe�cient at
the time derivative was considered in [8], and the Sommerfeld inverse problem for the Helmholtz equation
was considered in [12].

Let

H = −1

2

d3

dx3
+ 2u

d

dx
+ u′,

where u = u(x, t) and the prime means the partial derivative with respect to x. According to [27], there
exist polynomials Pk (in u and derivatives of u with respect to x) such that

HPk = P ′k+1.

For example

P0 = −1

2
, P1 = −1

2
u, P2 =

1

4
uxx −

3

4
u2, P3 = −1

8
uxxxx +

5

4
uuxx +

5

8
(ux)2 − 5

4
u3

etc.
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We put

L(t) ≡ − d2

dx2
+ u(x, t).

Operator (see [27])

Bq =

q∑
k=0

(
1

2
P ′k − Pk

d

dx

)
(2L)q−k

satis�es the Lax relation

[Bq, L] = BqL− LBq = −P ′q+1.

Let c0, c1, c2, . . . , cp be arbitrary real numbers. We introduce the following further notations:

Xq = −P ′q+1 , Yp =

p∑
q=0

cqBq , Zp =

p∑
q=0

cqXq.

Then, the following equality holds:

[Yp, L] = Zp.

The equation

ut = Zp(u),

is called the general KdV equation. In particular, for p = 1, c0 = 0, c1 = 4 and p = 2, c0 = 0, c1 =
0, c2 = 8, respectively, we have

ut − 6uux + uxxx = 0, ut = uxxxxx − 20uxuxx − 10uuxx + 30u2ux.

We consider the loaded general KdV equation of the form

ut = Zp(u) + γ(t)F (u(0, t))ux , (1.1)

where F (u(0, t)) is a polynomial in u(0, t) and γ(t) is a given continuous function.

Equation (1.1) is considered under the initial condition

u(x, 0) = u0(x), x ∈ R, (1.2)

where the initial function u0(x) is complex-valued and has the properties:

1) for some ε > 0 ∫ ∞
−∞
|u0(x)| eε|x|dx <∞, (1.3)

2) the operator L(0) = − d2

dx2
+ u0(x) has exactly N complex eigenvalues λ1(0), λ2(0), . . . , λN (0) with

multiplicities m1(0), m2(0), . . . ,mN (0) and has no spectral singularities.

Let the function u(x, t) = Re u(x, t) + iIm u(x, t) possess su�cient smoothness and tends to its limits
rather quickly at x→ ±∞, i.e.∫ ∞

−∞

∣∣∣∣∂ju(x, t)

∂xj

∣∣∣∣ eε|x| dx <∞, j = 0, 1, . . . , 2p+ 1. (1.4)

The main goal of this work is to obtain representations for the solution u(x, t) of problem (1.1) - (1.4)
within the framework of the inverse scattering method for the operator L(t).
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2 Auxiliary results

Consider the equation
L(0)y := −y′′ + u0(x)y = k2y, x ∈ R, (2.1)

where the potential u0(x) is assumed to be complex-valued and satis�es condition (1.3). In this section we
describe some properties of the direct and inverse scattering problems for equation (2.1) that are necessary
in what follows. It is easy to verify that the following functions are the solutions to equation (2.1) with

conditions at in�nity for Imk > −ε
2
:

e+(x, k) = eikx + o(1), x→∞; e−(x, k) = e−ikx + o(1), x→ −∞. (2.2)

These solutions are called Jost solutions and the following representations hold for them

e±(x, k) = e±ikx ±
±∞∫
x

K±(x, y)e±ikydy. (2.3)

Under condition (1.4) these solutions exist, are unique and holomorphic with respect to k in the half-plane

Im k > −ε
2
. Moreover, the kernels K±(x, y) are connected with the potential u0(x) as follows:

u0(x) = ∓2
dK±(x, x)

dx
. (2.4)

Note also that the pairs of functions {e±(x, k), e±(x, −k)} form in the strip |Imk| < ε

2
fundamental systems

of solutions whose Wronskians are equal to

W{e±(x, k), e±(x, −k)} = ∓2ik.

We denote by ω(k) and v(k) the Wronskians

ω(k) := e−(x, k)e′+(x, k)− e′−(x, k)e+(x, k),

v(k) := e+(x,−k)e′−(x, k)− e−(x, k)e′+(x,−k).
(2.5)

The function ω(k) extends analytically to the half-plane Imk > −ε
2
and has the asymptotics

ω(k) = 2ik

[
1 +O

(
1

k

)]
, |k| → ∞, (2.6)

uniformly in each half-plane Imk ≥ η, η > −ε
2
. In view of asymptotics (2.6) and the analyticity of ω(k), in

the half-plane Imk ≥ 0 the function ω(k) has a �nite number of zeroes (in a general case, zeroes are multiple).
The absence of spectral singularities of the operator L(0) means that the function ω(k) has no real zeroes,
i.e., ω(k) 6= 0, k ∈ R. Let non-real zeroes of ω(k) be equal to k1, k2, . . . , kN (Imkj > 0, j = 1, N), then
λj = k2

j , j = 1, N are eigenvalues of the operator L(0). Denote the multiplicity of the root kj of the equation

ω(k) = 0 by mj , j = 1, N .

As distinct from ω(k), the function v(k) is de�ned only in the strip |Imk| < ε

2
. Functions ω(k) and v(k)

in the strip |Imk| < ε

2
satisfy the equality

ω(k)ω(−k)− v(k)v(−k) = 4k2. (2.7)

In addition, in the strip |Imk| < ε

2
the following equality is valid:

e−(x, k) =
v(k)

2ik
e+(x, k) +

ω(k)

2ik
e+(x, −k). (2.8)
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There exist the so-called chains of normalizing numbers {χj0, χ
j
1, . . . , χ

j
mj−1} j = 1, N such that

1

s!

((
d

dk

)s
f−(x, k)

)
k=kj

=
s∑

ν=0

χjs−ν
1

ν!

((
d

dk

)ν
f+(x, k)

)
k=kj

, (2.9)

s = 0, mj − 1, j = 1, N

while χj0 6= 0.
As is known [2, 3], the kernel K+(x, y) of transformation operator (2.3) satis�es the Gelfand-Levitan-

Marchenko integral equation

K+(x, y) + F+(x+ y) +

∫ ∞
x

K+(x, s)F+(s+ y)ds = 0, x ≤ y, (2.10)

where

F+(x) =
1

2π

∫ ∞
−∞

S(k)eikx dk +

N∑
j=1

mj−1∑
ν=0

χjmj−ν−1

1

ν!

dν

dkν

(
2k(k − kj)mj

ω(k)
eikx

)
, (2.11)

S(k) :=
v(k)

ω(k)
, (2.12)

herewith the potential u0(x) is given by formula (2.4).

De�nition 1. The collection
{
S(k), λj , χ

j
0, . . . , χ

j
mj−1, j = 1, N

}
is said to be the scattering data for the

operator L(0).

The problem that implies the determination of the complex-valued potential u0(x) from the scattering
data is called the inverse problem.

One can prove the following lemma by immediate veri�cation.

Lemma 2.1. If φj is an eigenfunction of the operator L(0) with the potential u0(x) that corresponds to the
eigenvalue k2

j , then ∫ ∞
−∞

u0(x)φ′jφjdx = 0,

∫ ∞
−∞

u′0(x)φ2
jdx = 0.

3 Evolution of scattering data

Let us introduce the notation
G(x, t) = γ(t)F (u(0, t))ux (3.1)

and we will consider a more general problem, namely, consider

ut − Zp(u) = G(x, t). (3.2)

For equation (3.2) we seek for the Lax pair in the form

−∂
2e−(x, k, t)

∂x2
+ (u− k2)e−(x, k, t) = 0, (3.3)

∂e−(x, k, t)

∂t
= Ype−(x, k, t) +

1

2
ik

p∑
l=0

cl(2k
2)le−(x, k, t) + Φ(x, t), (3.4)

where e−(x, k, t) is the Jost solution of the equation

L(t)y = k2y
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with asymptotes (2.2). Using the equality

∂3e−(x, k, t)

∂x2∂t
=
∂3e−(x, k, t)

∂t∂x2

on the basis of equalities (3.1), (3.2), we obtain

−Φxx + (u− λ)Φ = −G(x, t)e−(x, k, t). (3.5)

We will seek a solution to this equation in the form

Φ(x, t) = C(x)e−(x, k, t) +B(x)e−(x,−k, t).

Then for �nding B(x) and C(x) we get the system
C ′(x)e−(x, k , t) +B′(x)e−(x,−k , t) = 0

C ′(x)e′−(x, k , t) +B′(x)e′−(x,−k , t) = G(x, t)e−(x, k , t) ,

whose solution has the form

C(x) = − 1

2ik

∫ x

−∞
e−(x, k, t) e−(x,−k, t)G(x, t) dx,

B(x) =
1

2ik

∫ x

−∞
e2
−(x, k, t)G(x, t) dx.

Therefore, equation (3.4) can be rewritten as follows:

∂e−(x, k, t)

∂t
= Ype−(x, k, t) +

1

2
ik

p∑
l=0

cl(2k
2)le−(x, k, t)

− 1

2ik
e−(x, k, t)

∫ x

−∞
e−(x, k, t)e−(x,−k, t)G(x, t) dx

+
1

2ik
e−(x,−k, t)

∫ x

−∞
e2
−(x, k, t)G(x, t)dx . (3.6)

Taking the limit in equality (3.6) as x→∞, in view of (1.3), (2.2), (2.7) and (2.8) we get

∂ω(k, t)

∂t
= −ω(k, t)

2ik

∫ ∞
−∞

e−(x, k, t) e−(x,−k, t)G(x, t) dx

−v(−k, t)
2ik

∫ ∞
−∞

e2
−(x, k, t)G(x, t) dx , (3.7)

∂v(k, t)

∂t
= ik

p∑
l=0

cl
(
2k2
)l
v(k, t)− v(k, t)

2ik

∫ ∞
−∞

e−(x, k, t)e−(x,−k, t)G(x, t) dx

−ω(−k, t)
2ik

∫ ∞
−∞

e2
−(x, k, t)G(x, t) dx . (3.8)

Multiplying (3.8) by ω(k, t) and subtracting (3.7) multiplied by v(k, t) from it, in accordance with (2.7) and
(2.12) we get

∂S(k, t)

∂t
= ik

p∑
l=0

cl
(
2k2
)l
S(k, t) +

2ik

ω2(k, t)

∫ ∞
−∞

e2
−(x, k, t)G(x, t) dx. (3.9)
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Lemma 3.1. The following identities hold:∫ ∞
−∞

G(x, t)e2
−(x, k, t) dx = γ(t)F (u(0, t))v(k, t)ω(k, t),∫ ∞

−∞
G(x, t)e−(x, k, t)e−(x, −k, t) dx = γ(t)F (u(0, t))v(k, t)v(−k, t).

(3.10)

Proof. Indeed, by using expression (2.8), we get∫ ∞
−∞

G(x, t)e2
−(x, k, t) dx = γ(t)F (u(0, t))

∫ ∞
−∞

e2
−(x, k; t)ux(x, t) dx

= −2γ(t)F (u(0, t))

∫ ∞
−∞

(
e′′−(x, k, t) + k2e−(x, k, t)

)
e′−(x, k, t) dx

= −γ(t)F (u(0, t))

∫ ∞
−∞

[((
e′−(x, k; t)

)2)′
+ k2

(
e2
−(x, k, t)

)′]
dx

= −γ(t)F (u(0, t)) lim
R→∞

[
k2e2
−(x, k, t) +

(
e′−(x, k, t)

)2]∣∣∣R
−R

= γ(t)F (u(0, t))v(k, t)ω(k, t).

One can prove the second equality in (3.10) analogously.

In view of Lemma 3.1 and formula (3.7) we get ωt(k, t) = 0. Therefore, we deduce that

dλj(t)

dt
= 0,

∂S(k, t)

∂t
=

[
ik

p∑
l=0

cl
(
2k2
)l

+ 2ikγ(t)F (u(0, t))

]
S(k, t),

(
|Imk| < ε

2

)
.

Let us now describe the evolution of the normalizing chain {χn0 , χn1 , . . . , χnmn−1} that corresponds to the
complex eigenvalue λn, n = 1, N . For this, we rewrite equality (3.6) in the following form:

∂e−(x, k, t)

∂t
= Ype−(x, k, t) +

1

2
ik

p∑
l=0

cl(2k
2)le−(x, k, t)

− 1

2ik

[
e−(x, k, t)

∫ x

−∞
e−(x, k, t)e−(x,−k, t)G(x, t) dx

−e−(x,−k, t)
∫ x

−∞
e2
−(x, k, t)G(x, t) dx

]
= Ype−(x, k, t) +

1

2
ik

p∑
l=0

cl(2k
2)le−(x, k, t)

−γ(t)F (u(0, t))e−(x, k, t)

2ik

[
e−(x, k, t)e−(x, −k, t)u(x, t)

−
∫ x

−∞
u(x, t)

(
e′−(x, k, t)e−(x, −k, t) + e−(x, k, t)e′−(x, −k, t)

)
dx

]
+
γ(t)F (u(0, t))e−(x, −k, t)

2ik

[
e2
−(x, k, t)u(x, t)−

∫ x

−∞
2e′−(x, k, t)e−(x, k, t)u(x, t) dx

]

= Ype−(x,
√
λ, t) +

1

2
ik

p∑
l=0

cl(2k
2)le−(x,

√
λ, t)

+γ(t)F (u(0, t))e′−(x, k, t) + ikγ(t)F (u(0, t))e−(x, k, t).
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Therefore, we have

∂e−(x, k, t)

∂t
= Ype−(x, k, t) +

1

2
ik

p∑
l=0

cl(2k
2)le−(x, k, t)

+γ(t)F (u(0, t))e′−(x, k, t) + ikγ(t)F (u(0, t))e−(x, k, t). (3.11)

Di�erentiating equality (3.11) mn − 1 times in k, setting k = kn, x→∞, using equality (2.8) and equating
the coe�cients of (ix)l ·eiknx, l = mn−1, mn−2, . . . , 0, we �nd an analogue of the Gardner-Greene-Kruskal-
Miura equations

dχnr
dt

= i

 p∑
q=0

cq2
qk2q+1
n + 2knγ(t)F (u(0, t))

 χnr

+i

 p∑
q=0

cq2
q(2q + 1)k2q

n + 2γ(t)F (u(0, t))

 χnr−1

+i
r∑
l=2

 p∑
q=0

cq2
q 1

l !

(2q + 1) !

(2q + 1− l) !
k2q+1−l
n

χnr−l.
Thus, we have proved the following theorem.

Theorem 3.1. If a complex-valued function u(x, t) is a solution to the Cauchy problem (1.1)-(1.4), then the

scattering data
{
S(k, t), λj(t), χ

j
0(t), χj1(t), . . . , χjmj−1(t), j = 1, N

}
of the non-self-adjoint operator L(t),

t > 0, with the potential u(x, t) depend on t in the following way:

∂S(k, t)

∂t
=

[
ik

p∑
l=0

cl
(
2k2
)l

+ 2ikγ(t)F (u(0, t))

]
S(k, t),

(
|Imk| < ε

2

)

λn(t) = λn(0),

dχnr
dt

= i

 p∑
q=0

cq2
qk2q+1
n + 2knγ(t)F (u(0, t))

 χnr

+i

 p∑
q=0

cq2
q(2q + 1)k2q

n + 2γ(t)F (u(0, t))

 χnr−1

+i

r∑
l=2

 p∑
q=0

cq2
q 1

l !

(2q + 1) !

(2q + 1− l) !
k2q+1−l
n

χnr−l,
n = 1, N, r = 0, 1, . . . ,mn − 1.

The obtained equalities completely determine the evolution of the scattering data, which makes it possible
to apply the method of the inverse scattering problem to solve problem (1.1)-(1.4).



Integration of the loaded general Korteweg-de Vries equation 51

4 Examples

In conclusion, we present examples illustrating the application of Theorem 3.1.
Example 4.1. Consider the problem

ut = uxxxxx − 20uxuxx − 10uuxx + 30u2ux + γ(t)u(0, t)ux, (4.1)

u(x, 0) =
8a2e2iax

(1 + e2iax)2
, Ima > 0, x ∈ R, (4.2)

where

γ(t) = −8a2(t2 + 1) +

√
t2 + 1

2ia3
.

One can easily �nd the scattering data of the operator L(0), namely:

λ(0) = k2 = a2; v(k, 0) = 0, S(k, 0) = 0, χ0(0) = 1.

In view of Theorem 3.1 we get

λ(t) = λ(0) = a2, S(k, t) = 0, χ0(t) = eβ(t),

where

β(t) = 32ia5t+ 2ia

∫ t

0
γ(τ)u(0, τ) dτ.

Substituting these data into formula (2.12), we �nd the kernel

F+(x, t) = −2iaeiax+β(t)

of the Gelfand-Levitan-Marchenko integral equation. Furthermore, by solving the integral equation

K+(x, y; t)− 2iaeβ(t) · eia(x+y) − 2iaeβ(t) · eiay
∫ ∞
x

K+(x, s; t)eiasds = 0,

we get

K+(x, y; t) =
2iaeβ(t) · eia(x+y)

1 + eβ(t) · e2iax
.

Hence, we �nd the solution to the Cauchy problem (4.1)-(4.2)

u(x, t) =
8a2e2iax+2arcsh t

(1 + e2iax+2arcsh t)
2 .

Example 4.2. In equation (1.1), if we assume that γ(t) ≡ 0 and p = 2, c0 = 0, c1 = 0, c2 = 8, then this
equation has the following form

ut = uxxxxx − 20uxuxx − 10uuxx + 30u2ux. (4.3)

Consider equation (4.3) with the initial condition

u(x, 0) = u0(x), x ∈ R, (4.4)

u0(x) =
4 ((A+ 2Bx) ia+B) e2iax − 4B2

a2 e
4iax + B2

4a4 ((A+ 2Bx) ia− 3B) e6iax(
1 + 1

2a2

(
(A+ 2Bx) ia− B2

16a4 e4iax
))2 ,

where Ima > 0, A = −4ia(aχ1
1 + χ1

0), B = 4a2χ1
0.

The scattering data of the operator

L(0) = − d2

dx2
+ u0(x), x ∈ R,
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have the form
λ1,2(0) = a2, S(k, 0) = 0, χ1

0(0) = χ0 , χ
1
1(0) = χ1.

By virtue of Theorem 3.1, we �nd the scattering data for the operator L(t), t > 0 with potential u(x, t):

λ(t) = λ(0) = a2; S(k, t) = 0, χ1
0(t) := χ0(t), χ1

1(t) := χ1(t).

In this case, χ1
0(t) and χ1

1(t) are determined from the system of equations

dχ1
0(t)

dt
= 32ia5χ1

0(t), χ1
0(0) = χ1

0;

dχ1
1(t)

dt
= 32ia5χ1

1(t) + 160ia4χ1
0(t), χ1

1(0) = χ1
1.

Solving this system of equations, we obtain

χ1
0(t) = χ1

0(0)e32ia5t, χ1
1(t) =

[
160ia4χ1

0(0)t+ χ1
1(0)

]
e32ia5t.

Substituting these data into formula (2.12), we �nd

F+(x, t) = [A(t) +B(t)x]eiax,

where
A(t) = −4ai

(
aχ1

1(t) + χ1
0(t)
)
, B(t) = 4a2χ1

0(t).

Further, solving the integral equation

K+(x, y; t) + [A(t) +B(t)(x+ y)]eia(x+y)

+

∫ ∞
x

K+(x, s; t)[A(t) +B(t)(s+ y)]eia(s+y)ds = 0,

we obtain the solution to the Cauchy problem (4.3)-(4.4)

u(x, t) =

(
4 ((A(t) + 2B(t)x) ia+B(t)) eiax

−4B2(t)

a2
e4iax +

B4(t)

4a4

((
A(t) + 2B(t)x

)
ia− 3B(t)

)
e6iax

)

×
(

1 +
1

2a2

((
A(t) + 2B(t)x

)
ia−B(t)

)
e2iax − B2(t)

16a4
e4iax

)−2

.
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