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Abstract. Let Λ = {λn} be the sequence of all zeros of the entire function ∆(λ) = 1 − iλ
∫ 1

0 f(t)eiλtdt
of exponential type. We consider exponential system of functions e(Λ) = {tp−1eiλnt, 1 ≤ p ≤ mn}, where
mn�is the multiplicity of the zero λn. The question is: for which a, b (a < b) is the system e(Λ) complete
(incomplete) in the space L2(a, b)? Let D be the length of the indicator conjugate diagram of the entire
function ∆(λ). Then the following statements are valid:

• when b− a > D the system e(Λ) is incomplete in L2(a, b);

• when b− a < D the system e(Λ) is complete in L2(a, b);

• if we remove from Λ any two points λ and µ, then the system e(Ω),Ω = Λ\{λ, µ} is incomplete in
L2(a, b) also when b− a = D.

DOI: https://doi.org/10.32523/2077-9879-2022-13-2-37-42

1 Introduction

Let Λ = {λn} be the sequence of all zeros of the entire function of exponential type

∆(λ) = 1− iλ
∫ 1

0
f(t)eiλtdt, λ = reiϕ = x+ iy, (1.1)

where f ∈ L2(0, 1) (in the sequence Λ, each point λn counts as many times as its multiplicity mn). We
assume that it is impossible to reduce the interval of integration without changing the value of the integral
itself, that is for any positive number ε < 1

2 the function f is not equivalent to 0 on the intervals (0, ε) and
(1− ε, 1).

We consider the following exponential system

e(Λ) = {tp−1eiλnt, 1 ≤ p ≤ mn}.

We set the following question: for which a, b (a < b) is the system e(Λ) complete (incomplete) in the space
L2(a, b) (or, what is the same, in C[a,b])?

It is enough to consider the case L2(−ρ, ρ) (or C[−ρ, ρ]), since the completeness (or incompleteness) of
e(Λ) is invariant under the shift of the argument. The question posed is reduced to clarifying the quantity
ρ(Λ), the radius of completeness of the system e(Λ). By de�nition, ρ(Λ) is the exact upper bound of the
numbers ρ for which the system e(Λ) is complete in C[−ρ, ρ] (the radius of completeness of the system e(Λ)
is the same for the space L2(−ρ, ρ)). An estimate of the radius of completeness of a system of exponentials
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was investigated in [3]. In terms of entire functions, ρ(Λ) can be interpreted as the exact lower bound of
the types of entire functions F of exponential type, bounded on R and vanishing on Λ (see [5]). The latter
means that at each point λn ∈ Λ the function F vanishes with a multiplicity of at least mn. We write this
fact as follows: F (Λ) = 0.

We have

∆(λ) = 1− iλei
λ
2

1
2∫

− 1
2

eiλtg(t)dt, g(t) = f

(
t+

1

2

)
.

Since g ∈ L1(−1
2 ,

1
2) then we obtain that

G(t) =

t∫
− 1

2

g(τ)dτ

is absolutely continuous on [−1
2 ,

1
2 ] and equation (1.1) may be rewritten in the form

∆(λ) = 1− iλei
λ
2P (λ),

where

P (λ) =

1
2∫

− 1
2

eiλtdG(t)

is the Lebesgue-Stieltjes integral (see [4, pp. 337-359]). Thus Λ is the null set of the entire function of
exponential type

Φ(λ) = e−i
λ
2 − iλP (λ). (1.2)

The type of this entire function is σ(Φ) ≤ 1
2 , however, it is possible that it is strictly less than

1
2 . Then, the

indicatrix of the growth of the function P (λ) is hp(ϕ) = 1
2 | sinϕ|. This follows from the fact that for almost

all ϕ there exists the following limit (see [6, p.109])

lim
r→∞

ln |P (reiϕ)|
r

=
1

2
| sinϕ|

Because the function hp(ϕ) is continuous, then hp(ϕ) = 1
2 | sinϕ| for all ϕ, 0 ≤ ϕ ≤ 2π. Then, the adjoint

diagram of the function iλP (λ) is a segment of the imaginary axis I = [−1
2 i,

1
2 i]. Therefore, all singularities

of the function γp(λ), associated with P (λ) in the sense of Borel, lie in this segment, moreover, the points
t = ± i

2 are singular for γp(t). Since

γΦ(t) =
1

t+ i
2

− γp(t),

singularities of the function γΦ(t) also lie in the segment I. The point t = − i
2 is obviously singular for γΦ(t)

but possible removable. Indeed, t = − i
2 is singular for γp(t) and, hence, it is possible that at the point

t = − i
2 the function γΦ(t) is holomorphic. Therefore the length of the adjoint diagram J of the function

Φ(λ) is equal to

|J | = hΦ(
π

2
) + hΦ(−π

2
) =

1

2
+ hΦ(−π

2
) < 1.

We give su�cient conditions for the case when the length of the adjoint diagram J of the function Φ(λ)
is equal to 1. To do so we rewrite equation (1.2) in the following form

Φ(λ) = e−i
λ
2 −

1
2∫

− 1
2

g(t)d(eiλt).
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If the function g(t) is of bounded variation, then by integrating by parts, we obtain

Φ(λ) = e−i
λ
2

(
1 + g

(
−1

2

))
− ei

λ
2 g

(
1

2

)
+ Ψ(λ)

where

Ψ(λ) =

1
2∫

− 1
2

eiλtd(g(t)).

Now it is easily seen that if g
(
−1

2

)
= −1, g

(
1
2

)
= 0 and the function g(t) not constant in the neighborhood

of points ±1
2 , then the adjoint diagrams of the function Φ and Ψ coincide with J = [−1

2 i,
1
2 i].

The points ±1
2 are singularities for γΨ(t) associated with Ψ(λ) in the sense of Borel, hence,

|J | = hΨ

(
−π

2

)
+ hΨ

(π
2

)
= 1.

Thus, if the function f is of bounded variation and not constant near the points t = 0, t = 1 and f(0) = −1,
f(1) = 0, then |J | = 1.

Now we consider another case when g(t) may be constant near the points ±1
2 or in a neighborhood of at

least one of these points.
If g(t) is constant near −1

2 and g
(
−1

2

)
= −1, then |J | < 1. If g(t) is constant near 1

2 and g
(

1
2

)
= 0, then

|J | < 1. If g(t) is constant in neighborhoods of both points ±1
2 and g

(
−1

2

)
6= −1, g

(
1
2

)
6= 0, then |J | = 1

since the adjoint diagram JΨ of the entire function Ψ has a length less than 1, while the adjoint diagram of
the entire function

a(λ) = C1e
−iλ

2 + C2e
iλ

2 , C1 6= 0, C2 6= 0

is a segment Ja = [−1
2 i,

1
2 i], moreover JΨ ⊂ Ja.

If g(t) is constant near −1
2 and g

(
−1

2

)
6= −1, and g

(
1
2

)
= 0, g(t) is not constant near 1

2 , then |J | = 1.
If g(t) is constant near 1

2 and g
(

1
2

)
6= 0, and g(t) is not constant near −1

2 , g
(
−1

2

)
= −1, then |J | = 1 again.

If it is only known that, for example g(t) is not constant near 1
2 and g

(
1
2

)
= 0, then we can only assert that

|J | ≤ 1.
Since |Φ(x)| = O(|x|) as x→∞, then the entire function Φ(λ) belongs to the Cartwright class C, i.e.

∞∫
−∞

ln+ |Φ(x)|
1 + x2

dx <∞.

By the Beurling-Malliavin multiplier theorem [2], we obtain ρ(Λ) = σ(Λ), where

σ(Λ) = inf {σ(F ) : F ∈ C,F (Λ) = 0, F (z) 6≡ 0}

(see also [5]). Therefore, the radius of completeness of the system e(Λ) satis�es the inequality ρ(Λ) ≤ 1
2 . In

other words, the system e(Λ) is not complete in C[a, b] (or L2(a, b)), if b− a > 1.

Let us clarify this fact. Consider the function Φ1(λ) = Φ(λ)eiαλ, where α = 1−|J |
2 . Then the adjoint

diagram of the function Φ1(λ) is the segment of the imaginary axis [−i |J |2 , i
|J |
2 ]. We also have Φ1 ∈ C,

Φ1(Λ) = 0 (there are no other zeros of this function). Therefore, we obtain that ρ(Λ) = |J |
2 . This means

that when ρ > |J |
2 the system e(Λ) is not complete in C[−ρ, ρ] (orL2(−ρ, ρ)).

Now we show that if ρ < |J |
2 the system e(Λ) is complete in given spaces. Let e(Λ) be incomplete, for

example in C[−ρ, ρ] for ρ < |J |
2 . Then there exists an entire function of exponential type of the following

form

Ψ(λ) =

ρ∫
−ρ

eiλtdΨ(t),Ψ(λ) 6= 0,
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that at points λn has zeros of multiplicities not less than mn. Let ρ1 < ρ, ρ2 < ρ, such that in any neighbor-
hood of points ρ1 and ρ2 the function ψ(t) is non-constant. Then all zeros of the function Ψ, with the possible
exception of sets of zero density, lie inside the angles, S1 = {z : | arg z| < ε}, S2 = {z : | arg z − π| < ε} (ε > 0
is arbitrary, ε < π

2 ), moreover, the sets of zeros inside each of the angles Si(i = 1, 2) have densities ∆i = ρ1+ρ2

2π
(see [6, pp. 109-110]).

We now consider the entire function of exponential type

Ψ1(λ) =
Φ1(λ)

(λ− λ1)(λ− λ2)
.

This function has the same adjoint diagram, i.e. the segment [− |J |2 i,
|J |
2 i], in addition Ψ1(Λ1) = 0, where Λ1 =

Λ\{λ1, λ2}. Since Ψ1 ∈ L2(R), then by the Paley�Wiener theorem there exists a function ψ1 ∈ L2[− |J |2 ,
|J |
2 ]

such that

Ψ1(λ) =

|J|
2∫

− |J|
2

eiλtψ1(t)d(t).

Thus, by the above-mentioned reasoning we obtain that in each of the corners S1 and S2 the corresponding
subsequences of the null set Λ1 of the function Ψ1(λ) have densities equal to ∆(i) = |J |

2π (i = 1, 2). On the
other hand, since the function Ψ1(λ) may have other zeros

∆(i) ≤ ∆i =
ρ1 + ρ2

2π
<
|J |
2π

= ∆(i),

we obtain a contradiction.
Thus, when ρ < |J |

2 the system e(Λ) is complete in C[−ρ, ρ] (or L2(−ρ, ρ)). Therefore, we proved the
following

Theorem 1.1. Let Λ = {λn} be the null set of the entire function (1.1), and hΦ(ϕ) � be an indicatrix of
the growth of the entire function Φ(λ), given by formula (1.2). Assume |J | = hΦ

(
π
2

)
+ hΦ

(
−π

2

)
. Then the

following are valid
1) when |J | < b− a the system e(Λ) is incomplete in C[a, b] (or L2(a, b)),
2) when |J | > b− a the system e(Λ) is complete in C[a, b] (or L2(a, b)),
3) if we remove from Λ any two points, then the system e(Λ1) of remaining sequence of the points Λ1 is
incomplete in C[a, b] (orL2(a, b)) and when |J | = b− a.

In particular, when |J | < 1, the system e(Λ) is incomplete in L2(0, 1), and when |J | > 1, the system is
complete in L2(0, 1). In the latter case, for instance, there exists an entire function

L(λ) =

1∫
0

eiλtdµ(t), dµ(t) = ψ(t)dt,

where ψ ∈ L2(0, 1), such that
L(Λ) = 0, L(λ) 6= 0.

Since the function µ(t) de�nes on (0, 1) some measure µ, then we can introduce the spectrum of this measure.
A point t0 ∈ (0, 1) is called a point of growth of a measure µ, if µ(t0 − ε, t0 + ε) > 0 for any ε > 0. The

set of points of growth of a measure µ is closed and is called the spectrum Sµ of the measure µ. The support
∆µ of the measure µ is the least segment containing the spectrum Sµ. In our case

Sµ ⊂ ∆µ = [0, 1].

A point t0 ∈ (0, 1) is called a mass concentration point, if µ({t0}) > 0. It is clear that the set of such
points is at most countable (see [7]). It is di�cult to say anything more exact about the nature of the
spectrum of Sµ.

Close questions related to the application of the Beurling-Malliavin type theorem are also considered in
[1].
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