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Abstract. This paper is dealing with the shrinkage estimators of a multivariate normal mean and their
minimaxity properties under the balanced loss function. We present here two di�erent classes of estimators:
the �rst which generalizes the James-Stein estimator, and show that any estimator of this class dominates the
maximum likelihood estimator (MLE), consequently it is minimax, and the second dominates the James-Stein
estimator and we conclude that any estimator of this class is also minimax.
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1 Introduction

Estimation of several mean parameters in multivariate analysis has a long, rich and in�uential history and
has received a great attention from researchers and practitioners in a variety of �elds. Among di�erent
methods, the shrinkage estimation is of interest. The latter has become a very important technique for
modelling data and provides useful techniques for combining data from various sources. However, these
methods 'shrink' the estimate with high bias to an estimate with high variance. In other words, it is the sum
of an estimator with high variance and an estimator with high bias, with some weighting between the two. In
addition shrinkage estimation strategy attempts to incorporate prior uncertain information in the estimation
procedure. Early references concerning the estimation of the mean of a multivariate normal distribution
by shrinkage estimation can be found in Stein [18], James and Stein [11] and Yang and Berger [21]. Efron
and Morris [6] studied the James-Stein estimators in an empirical Bayes framework and proposed several
competing shrinkage estimators. Berger and Strawderman [3] discussed this problem from a hierarchical
Bayesian perspective. For applications of shrinkage techniques in practice, see Efron and Morris [5] and
Brown [4]. Recently, Tsukuma and Kubokawa [19] addresses the problem of estimating the mean vector of
a singular multivariate normal distribution with an unknown singular covariance matrix. Xie et al. [20]
introduced a class of semi-parametric/parametric shrinkage estimators and established their asymptotic
optimality properties. Benkhaled and Hamdaoui [2], have considered the model X ∼ Np

(
θ, σ2Ip

)
where σ2

is unknown. They studied two di�erent forms of shrinkage estimators of θ: estimators of the form δψ = (1−
ψ(S2, ‖X‖2)S2/ ‖X‖2)X, and estimators of Lindley-Type given by δϕ = (1−ϕ(S2, T 2)S2/T 2)(X −X) +X,
that shrink the components of the MLE X to the random variable X. The authors showed that if the
shrinkage function ψ (respectively ϕ) satis�es the new conditions di�erent from the known results in the
literature, then the estimator δψ (respectively δϕ) is minimax. When the sample size and the dimension of
parameters space tend to in�nity, they studied the behaviour of risks ratio of these estimators to the MLE.
Hamdaoui et al. [9], have treated the minimaxity and limits of risks ratios of shrinkage estimators of a
multivariate normal mean in the Bayesian case. The authors have considered the model X ∼ Np

(
θ, σ2Ip

)
where σ2 is unknown and have taken the prior law θ ∼ Np

(
υ, τ2Ip

)
. They constructed a modi�ed Bayes

estimator δ∗B and an empirical modi�ed Bayes estimator δ∗EB. When n and p are �nite, they showed that the
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estimators δ∗B and δ∗EB are minimax. The authors have also been interested in studying the limits of risks
ratios of these estimators, to the MLE X, when n and p tend to in�nity. The majority of these authors have
considered the quadratic loss function for computing the risk.

Zellner [22] proposes a balanced loss function that takes error of estimation and goodness of �t into
account. This balanced loss function consists of weighting the predictive loss function and the goodness of
�t term. In addition for estimation under the balanced loss function we cite, for example, Guikai et al. [8],
Karamikabir et al. [13], Marchand and Strawderman [14]. Sanjari Farsipour and Asgharzadeh [15] have
considered the model: X1, ..., Xn to be a random sample from Np

(
θ, σ2

)
with σ2 known and the aim is to

estimate the parameter θ. They studied the admissibility of the estimator of the form aX + b under the
balanced loss function. Selahattin and Issam [16] introduced and derived the optimal extended balanced loss
function (EBLF) estimators and predictors and discussed their performances.

In this work, we deal with the modelX ∼ Np

(
θ, σ2Ip

)
, where the parameter σ2 is unknown and estimated

by S2 (S2 ∼ σ2χ2
n). Our aim is to estimate the unknown parameter θ by shrinkage estimators deduced from

the MLE. The adopted criterion to compare two estimators is the risk associated to the balanced loss function.
The paper is organized as follows. In Section 2, we recall some preliminaries that are useful for our main
results. In Section 3, we establish the minimaxity of the estimators de�ned by δa,r =

(
1− a((S2)r/2/‖X‖r

)
X,

where 2 ≤ r < (p + 2)/2 and the real constant a may depend on n and p. In Section 4, we consider the
estimators of the form δb,r = δJS + b

(
(S2)r/2/‖X‖r

)
X with 2 ≤ r < (p+ 2)/2 and the real constant b may

depend on n and p. We show that these estimators dominate the James-Stein estimator δJS under some
condition on the parameter b. In Section 5, we conduct a simulation study that shows the performance of
the considered estimators. We end the manuscript by giving an Appendix which contains the proofs of some
of our main results.

2 Preliminaries

We recall that if X is a random variable in Rp that follow the multivariate normal distribution with a mean
vector θ and identity covariance matrix σ2Ip (i.e. X ∼ Np

(
θ, σ2Ip

)
), then ‖X‖

2

σ2 ∼ χ2
p (λ) where χ2

p (λ) denotes

the non-central chi-square distribution with p degrees of freedom and non-centrality parameter λ = ‖θ‖2
2σ2 .

We also recall the following de�nition given in formula (1.2) by Arnold [1]. It will be used to calculate
the expectation of functions of a non-central chi-square law's variable.

De�nition 1. Let U ∼ χ2
p (λ) be non-central chi-square with p degrees of freedom and non-centrality param-

eter λ. The density function of U is given by

f(x) =
+∞∑
k=0

e−
λ
2 (λ2 )k

k!

x(p/2)+k−1e−x/2

Γ(p2 + k)2(p/2)+k
, 0 < x < +∞.

The right-hand side (RHS) of this equality is none other than the formula

+∞∑
k=0

e−
λ
2 (λ2 )k

k!
χ2
p+2k,

where χ2
p+2k is the density of the central χ2 distribution with p+ 2k degrees of freedom.

To this de�nition we deduce that if U ∼ χ2
p (λ) , then for any function f : R+ −→ R, χ2

p (λ) integrable,
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we have

E [f(U)] = Eχ2
p(λ) [f(U)]

=

∫
R+

f(x)χ2
p (λ) dx

=
+∞∑
k=0

[∫
R+

f(x)χ2
p+2k (0) dx

]
e−

λ
2

(
λ
2

)k
k!

=

+∞∑
k=0

[∫
R+

f(x)χ2
p+2kdx

]
P

(
λ

2
; dk

)
, (2.1)

where P
(
λ
2 ; dk

)
being the Poisson distribution of parameter λ2 and χ2

p+2k is the central chi-square distribution
with p+ 2k degrees of freedom.

Using the last equality, we conclude the following Lemma.

Lemma 2.1. Let U ∼ χ2
p(λ) be non-central chi-square with p degrees of freedom and non-centrality parameter

λ. Then for 0 ≤ r < p
2 ,

E(U−r) = E[(χ2
p(λ))−r]

= E[(χ2
p+2K)−r]

= 2−rE

(
Γ(p2 − r +K)

Γ(p2 +K)

)
,

where K has a Poisson distribution with mean λ
2 .

We recall the following lemma given by Stein [17], that we will often use in the sequel.

Lemma 2.2. Let X be a N
(
υ, σ2

)
real random variable and let f : R −→ R be an inde�nite integral of the

Lebesgue measurable function, f ′ be the derivative of f. Suppose also that E (|f ′ (X)|) < +∞, then

E

[(
X − υ
σ

)
f (X)

]
= E

(
f ′ (X)

)
.

3 A class of minimax shrinkage estimators

In this section, we consider the model X ∼ Np

(
θ, σ2Ip

)
where σ2 is unknown and estimated by S2 (S2 ∼

σ2χ2
n). Our aim is to estimate the unknown mean parameter θ by the shrinkage estimators under the

balanced squared error loss function. It is well known from the literature that the estimators of type James-
Stein of the mean of a multivariate normal distribution, namely δa =

(
1− a(S2)/‖X‖2

)
X are minimax for

a certain range of values of a. Here, we introduce a more general class of estimators depending on another
real parameter r and study its minimaxity property according to this parameter.

De�nition 2. Suppose that X is a random vector having a multivariate normal distribution Np

(
θ, σ2Ip

)
where the parameters θ and σ2 is unknown. The balanced squared error loss function is de�ned as follows:

Lω(δ, θ) = ω‖δ − δ0‖2 + (1− ω)‖δ − θ‖2, 0 ≤ ω < 1, (3.1)

where δ0 is the target estimator of θ, ω is the weight given to the proximity of δ to δ0, 1 − ω is the relative
weight given to the precision of estimation portion and δ is a given estimator.

For more details about this loss see Jafari Jozani et al. [10], Zinodiny et al. [23] and Karamikabir and
Afsahri [12].

We associate with this balanced squared error loss function the risk function de�ned by Rω(δ, θ) =
E(Lω(δ, θ)).
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In this model, it is clear that the MLE is X := δ0, its risk function is (1− ω)pσ2.
Indeed: We have

Rω(X, θ) = ωE(‖X −X‖2) + (1− ω)E(‖X − θ‖2)

= (1− ω)E(‖X − θ‖2).

As X ∼ Np

(
θ, σ2Ip

)
, then X−θ

σ ∼ Np (0, Ip), thus
‖X−θ‖2
σ2 ∼ χ2

p.
Hence, E(‖X − θ‖2) = E(σ2χ2

p) = σ2p, and the desired result follows.
It is well known that δ0 is minimax and inadmissible for p ≥ 3, thus any estimator it dominates is also

minimax. We give the following Lemma, that will be used in our proofs and its proof is postponed to the
Appendix.

Lemma 3.1. Let U ∼ χ2
p(λ) be non-central chi-square with p degrees of freedom and non-centrality parameter

λ then,

i) for any real numbers s and r where −p
2 < s ≤ r < 0, the real-valued function

Hp,r,s(λ) =
E(U r)

E(U s)
=

∫
R+

xrχ2
p(λ; dx)∫

R+
xsχ2

p(λ; dx)

is nondecreasing in λ.

ii) Furthermore, if X ∼ Np

(
θ, σ2Ip

)
, we get

sup
‖θ‖

(
E(‖X‖−2r+2)

E(‖X‖−r)

)
= 2

−r+2
2

Γ(p2 − r + 1)

Γ(p−r2 )
.

Now, we consider the estimator

δa,r =

(
1− a(S2)

r
2

‖X‖r

)
X = X − a(S2)

r
2

‖X‖r
X, (3.2)

where 2 ≤ r < p+2
2 and the real positive constant a may depend on n and p.

Proposition 3.1. Under the balanced squared error loss function Lω, the risk function of the estimator δa,r
given in (3.2) is

Rω(δa,r, θ) = (1− ω)σ2

{
p− (p− r)a2

r+2
2

Γ(n+r
2 )

Γ(n2 )
E

(
1

‖y‖r

)}
+ a2σ22r

Γ(n+2r
2 )

Γ(n2 )
E

(
1

‖y‖2r−2

)
,

where y = X
σ = (y1, ..., yp)

t and for all i = 1, ..., p, yi = Xi
σ ∼ N

(
θi
σ , 1

)
.

Proof. Using the risk function associated with the balanced squared error loss function de�ned in (3.1) we
obtain

Rω(δa,r, θ) = ωE(‖δa,r −X‖2) + (1− ω)E(‖δa,r − θ‖2).

From the independence between two random variable S2 and ‖X‖2, we obtain

E(‖δa,r −X‖2) = E

∥∥∥∥∥−a(S2)
r
2

‖X‖r
X

∥∥∥∥∥
2


= a2E((S2)r)E

(
‖X‖2

(‖X‖2)r

)
= a2E((σ2χ2

n)r)(σ2)1−rE

(
1

‖y‖2r−2

)
= a2σ22r

Γ(n+2r
2 )

Γ(n2 )
E

(
1

‖y‖2r−2

)
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and

E(‖δa,r − θ‖2) = E

∥∥∥∥∥X − a(S2)
r
2

‖X‖r
X − θ

∥∥∥∥∥
2


= E(‖X − θ‖2) + E

∥∥∥∥∥a(S2)
r
2

‖X‖r
X

∥∥∥∥∥
2
− 2E

(〈
X − θ, a(S2)

r
2

‖X‖r
X

〉)
.

As,

E

(〈
X − θ, a(S2)

r
2

‖X‖r
X

〉)
= aE((S2)

r
2 )

p∑
i=1

E

[
(Xi − θi)

1

‖X‖r
Xi

]

= a(σ2)
r
2 2

r
2

Γ(n+r
2 )

Γ(n2 )
(σ2)1− r

2

p∑
i=1

E

[(
yi −

θi
σ

)
1

‖y‖r
yi

]
,

and using the Lemma 2.2 we get

E

(〈
X − θ, a(S2)

r
2

‖X‖r
X

〉)
= aσ22

r
2

Γ(n+r
2 )

Γ(n2 )

p∑
i=1

E

(
∂

∂yi

1

‖y‖r
yi

)

= aσ22
r
2

Γ(n+r
2 )

Γ(n2 )

p∑
i=1

E

(
1

‖y‖r
− ry2

i

‖y‖r+2

)
= aσ22

r
2

Γ(n+r
2 )

Γ(n2 )
(p− r)E

(
1

‖y‖r

)
.

Then

Rω(δa,r, θ) = ωa2σ22r
Γ(n+2r

2 )

Γ(n2 )
E

(
1

‖y‖2r−2

)
+ (1− ω)pσ2

+ (1− ω)

[
a2σ22r

Γ(n+2r
2 )

Γ(n2 )
E

(
1

‖y‖2r−2

)
− 2aσ22

r
2

Γ(n+r
2 )

Γ(n2 )
(p− r)E

(
1

‖y‖r

)]

= (1− ω)σ2

{
p− (p− r)a2

r+2
2

Γ(n+r
2 )

Γ(n2 )
E

(
1

‖y‖r

)}
+ a2σ22r

Γ(n+2r
2 )

Γ(n2 )
E

(
1

‖y‖2r−2

)
,

and the desired result is obtained.

Theorem 3.1. Assume that the estimator δa,r is de�ned by (3.2).

i) A su�cient condition that δa,r dominates the MLE (so it is minimax), is

0 ≤ a ≤ (1− ω)(p− r)
Γ(n+r

2 )Γ(p−r2 )

Γ(n+2r
2 )Γ(p−2r+2

2 )
,

ii) the optimal value for a that minimizes the risk function Rω(δa,r, θ), is

â =
(1− ω)(p− r)

2

Γ(n+r
2 )Γ(p−r2 )

Γ(n+2r
2 )Γ(p−2r+2

2 )
.
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Proof. i) By using Proposition 3.1 we have

Rω(δa,r, θ) = (1− ω)σ2

{
p− (p− r)a2

r+2
2

Γ(n+r
2 )

Γ(n2 )
E

(
1

‖y‖r

)}

+ a2σ22r
Γ(n+2r

2 )

Γ(n2 )

E
(

1
‖y‖2r−2

)
E
(

1
‖y‖r

)
E

(
1

‖y‖r

)
.

Application of Lemma 3.1 leads to

Rω(δa,r, θ) ≤ (1− ω)σ2

{
p− (p− r)a2

r+2
2

Γ(n+r
2 )

Γ(n2 )
E

(
1

‖y‖r

)}
+ a2σ22r

Γ(n+2r
2 )

Γ(n2 )
2−

r−2
2

Γ(p−2r+2
2 )

Γ(p−r2 )
E

(
1

‖y‖r

)
= σ2(1− ω)p− 2

r+2
2 (1− ω)a(p− r)

Γ(n+r
2 )

Γ(n2 )
E

(
1

‖y‖r

)
+ 2

r+2
2 a2 Γ(n+2r

2 )

Γ(n2 )

Γ(p−2r+2
2 )

Γ(p−r2 )
E

(
1

‖y‖r

)
. (3.3)

From the RHS of the last equality, it is easy to show that a su�cient condition for the validity of the inequality
Rω(δa,r, θ) ≤ Rω(X, θ) = (1− ω)pσ2 which implies that δa,r dominates the MLE (so it is minimax), is

−2
r+2

2 (1− ω)a(p− r)
Γ(n+r

2 )

Γ(n2 )
E

(
1

‖y‖r

)
+ 2

r+2
2 a2 Γ(n+2r

2 )

Γ(n2 )

Γ(p−2r+2
2 )

Γ(p−r2 )
E

(
1

‖y‖r

)
≤ 0,

that is equivalent to

2
r+2

2 a
1

Γ(n2 )
E

(
1

‖y‖r

)[
−(1− ω)(p− r)Γ(

n+ r

2
) + aΓ(

n+ 2r

2
)
Γ(p−2r+2

2 )

Γ(p−r2 )

]
≤ 0,

which leads to

0 ≤ a ≤ (1− ω)(p− r)
Γ(n+r

2 )Γ(p−r2 )

Γ(n+2r
2 )Γ(p−2r+2

2 )
.

ii) Using the convexity on a of the function given in RHS of equality (3.3) one can easily obtain the result.

For r = 2, we note â by d := (1−ω)(p−2)
n+2 , then we obtain the James-Stein estimator

δJS = δd,2 =

(
1− d S2

‖X‖2

)
X. (3.4)

From Proposition 3.1 the risk function of δJS is

Rω(δJS , θ) = (1− ω)pσ2 − (p− 2)2(1− ω)2 n

n+ 2
E

(
1

p− 2 + 2K

)
, (3.5)

where K ∼ P
(
‖θ‖2
2σ2

)
.

From formula (3.5) we note that

Rω(δJS , θ) ≤ (1− ω)pσ2 = Rω(X, θ),

then δJS dominates the MLE X, therefore, it is also minimax.
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4 Estimators dominating the James-Stein estimator

Since the estimator δa,r = X−a (S2)
r
2

‖X‖r X dominates the MLE X for certain values of a and r, we think to add

the term b (S2)
r
2

‖X‖r X to the James-Stein estimator δJS to obtain an estimator that outperforms δJS . Namely,
we consider

δb,r = δJS + b
(S2)

r
2

‖X‖r
X, (4.1)

where 2 ≤ r < p+2
2 and the real positive constant b may depend on n and p.

Proposition 4.1. Under the balanced squared error loss function Lω, the risk function of the estimator δb,r
given in (4.1) is

Rω(δb,r, θ) = Rω(δJS , θ) + b2σ22r
Γ(n+2r

2 )

Γ(n2 )
E

(
1

‖y‖2r−2

)
+ bσ22

r+2
2 [(1− ω)(p− r)− d(n+ r)]

Γ(n+r
2 )

Γ(n2 )
E

(
1

‖y‖r

)
,

where y = X
σ = (y1, ..., yp)

t and for all i = 1, ..., p, yi = Xi
σ ∼ N

(
θi
σ , 1

)
.

Proof. Using the risk function associated with the balanced loss function de�ned in (3.1) we obtain

Rω(δb,r, θ) = ωE

∥∥∥∥∥δJS + b
(S2)

r
2

‖X‖r
X −X

∥∥∥∥∥
2
+ (1− ω)E

∥∥∥∥∥δJS + b
(S2)

r
2

‖X‖r
X − θ

∥∥∥∥∥
2


= ωE(‖δJS −X‖2) + ωE

∥∥∥∥∥b(S2)
r
2

‖X‖r
X

∥∥∥∥∥
2
+ 2ωE

(〈
δJS −X, b

(S2)
r
2

‖X‖r
X

〉)

+ (1− ω)E(‖δJS − θ‖2) + (1− ω)E

∥∥∥∥∥b(S2)
r
2

‖X‖r
X

∥∥∥∥∥
2


+ 2(1− ω)E

(〈
δJS − θ, b

(S2)
r
2

‖X‖r
X

〉)
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= Rω(δJS , θ) + b2E(S2)rE

(
1

‖X‖2r−2

)
− 2ωdbE(S2)

r
2

+1E

(
1

‖X‖r

)
+ 2(1− ω)E

(〈
X − θ − d S2

‖X‖2
X, b

(S2)
r
2

‖X‖r
X

〉)

= Rω(δJS , θ) + b2E(S2)rE

(
1

‖X‖2r−2

)
− 2ωdbE(S2)

r
2

+1E

(
1

‖X‖r

)
− 2(1− ω)dbE(S2)

r
2

+1E

(
1

‖X‖r

)
+ 2(1− ω)bE(S2)

r
2

p∑
i=1

E

[
(Xi − θi)

Xi

‖X‖r

]
= Rω(δJS , θ) + b2E(S2)rE

(
1

‖X‖2r−2

)
− 2dbE(S2)

r
2

+1E

(
1

‖X‖r

)
+ 2(1− ω)bE(S2)

r
2 (σ2)1− r

2

p∑
i=1

E

[
(Xi − θi)

σ

1

(‖X‖
2

σ2 )
r
2

Xi

σ

]

= Rω(δJS , θ) + b2E(σ2χ2
n)r(σ2)1−rE

(
1

(χ2
p+2k)

r−1

)

− 2dbE(σ2χ2
n)

r
2

+1(σ2)−
r
2E

(
1

(χ2
p+2k)

r
2

)

+ 2(1− ω)bE(σ2χ2
n)

r
2 (σ2)1− r

2

p∑
i=1

E

[
∂

∂yi

(
1

‖y‖2
yi

)]

= Rω(δJS , θ) + b2σ22r
Γ(n+2r

2 )

Γ(n2 )
E

(
1

‖y‖2r−2

)
− 2dbσ22

r
2

+1 Γ(n+r+2
2 )

Γ(n2 )
E

(
1

‖y‖r

)
+ 2(1− ω)bσ22

r
2

Γ(n+r
2 )

Γ(n2 )
(p− r)E

(
1

‖y‖r

)
= Rω(δJS , θ) + b2σ22r

Γ(n+2r
2 )

Γ(n2 )
E

(
1

‖y‖2r−2

)
+ bσ22

r+2
2 [(1− ω)(p− r)− d(n+ r)]

Γ(n+r
2 )

Γ(n2 )
E

(
1

‖y‖r

)
.

Theorem 4.1. Under the balanced squared error loss function Lω, the estimator δb,r with

b =
(1− ω)(r − 2)

2

n+ r

n+ 2

Γ(n+r
2 )

Γ(n+2r
2 )

Γ(p−r2 )

Γ(p−2r+2
2 )

,

dominates the James-Stein estimator δJS .

Proof. By using Proposition 4.1, we have

Rω(δb,r, θ) ≤ Rω(δJS , θ) + b2σ22r
Γ(n+2r

2 )

Γ(n2 )

E
(

1
‖y‖2r−2

)
E
(

1
‖y‖r

) E

(
1

‖y‖r

)

+ bσ22
r+2

2

[
(1− ω)(p− r)n+ r

n+ 2
− (1− ω)(p− 2)

n+ 2
(n+ r)

]
×

Γ(n+r
2 )

Γ(n2 )
E

(
1

‖y‖r

)
.
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Using Lemma 3.1 we have

Rω(δb,r, θ) ≤ Rω(δJS , θ) + b2σ22
r+2

2
Γ(n+2r

2 )

Γ(n2 )

Γ(p−2r+2
2 )

Γ(p−r2 )
E

(
1

‖y‖r

)
− bσ22

r+2
2 (1− ω)(r − 2)

n+ r

n+ 2

Γ(n+r
2 )

Γ(n2 )
E

(
1

‖y‖r

)
. (4.2)

The optimal value for b that minimizes the RHS of the inequality (4.2) is

b̂ =
(1− ω)(r − 2)

2

n+ r

n+ 2

Γ(n+r
2 )

Γ(n+2r
2 )

Γ(p−r2 )

Γ(p−2r+2
2 )

.

Thus

Rω(δ
b̂,r
, θ) ≤ Rω(δJS , θ)− 2

r−2
2 σ2(1− ω)2(r − 2)2

(
n+ r

n+ 2

)2

×
Γ2(n+r

2 )

Γ(n2 )Γ(n+2r
2 )

Γ(p−r2 )

Γ(p−2r+2
2 )

E

(
1

‖y‖r

)
≤ Rω(δJS , θ).

5 Simulation results

5.1 On simulated data

We recall the form of the James-Stein estimator δJS given in (3.4)

δJS =

(
1− d S2

‖X‖2

)
X =

(
1− (1− ω)(p− 2)

n+ 2

S2

‖X‖2

)
X,

its risk function associated with the balanced squared error loss function Lω is given by the formula (3.5).
It is well known that the Positive-part of James-Stein estimator is de�ned by

δ+
JS =

(
1− d S2

‖X‖2

)+

X =

(
1− d S2

‖X‖2

)
XI

d S2

‖X‖2
≤1
,

where
(

1− d S2

‖X‖2

)+
= max

(
0, 1− d S2

‖X‖2

)
and d = (1−ω)(p−2)

n+2 , its risk function associated with Lω is

Rω(δ+
JS , θ) = Rω(δJS , θ)

+ E

[(
‖X‖2 − d2 S4

‖X‖2
+ 2(1− ω)σ2(p− 2)d

S2

‖X‖2
− pσ2

)
I
d S2

‖X‖2
≥1

]
,

where I
d S2

‖X‖2
≥1

denotes the indicating function of the set (d S2

‖X‖2 ≥ 1).

We also recall the estimator δa,r given in (3.2) where

a =
(1− ω)(p− r)

2

Γ(n+r
2 )Γ(p−r2 )

Γ(n+2r
2 )Γ(p−2r+2

2 )
,

its risk function associated with Lω is given in Proposition 3.1 and the estimator δb,r given in (4.1) where

b =
(1− ω)(r − 2)

2

(n+ r)

(n+ 2)

Γ(n+r
2 )

Γ(n+2r
2 )

Γ(p−r2 )

Γ(p−2r+2
2 )

,

its risk function associated with Lω is given in Proposition 4.1.
In this part, we �rstly present the graphs of the risks ratios of the estimators δJS , δ

+
JS , δa,r and δb,r,

to the MLE X denoted respectively: Rω(δJS ,θ)
Rω(X,θ) ,

Rω(δ+
JS ,θ)

Rω(X,θ) ,
Rω(δa,r,θ)
Rω(X,θ) and

Rω(δb,r,θ)
Rω(X,θ) as a function of λ = ‖θ‖2

2σ2 ,

for various values of n, p, r and ω. Secondly, we give tables that present the values of risks ratios Rω(δJS ,θ)
Rω(X,θ) ,

Rω(δa,r,θ)
Rω(X,θ) and

Rω(δb,r,θ)
Rω(X,θ) where in this case we �x r and vary the values of n, p and ω.
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Figure 1: n = 6, p = 3, r = 2.25 and ω = 0.1

Figure 2: n = 8, p = 4, r = 2.25 and ω = 0.2
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Figure 3: n = 6, p = 3, r = 2.25 and ω = 0.7

Figure 4: n = 8, p = 4, r = 2.25 and ω = 0.9

The previous �gures show that the risks ratios Rω(δJS ,θ)
Rω(X,θ) ,

Rω(δ+
JS ,θ)

Rω(X,θ) ,
Rω(δa,r,θ)
Rω(X,θ) and

Rω(δb,r,θ)
Rω(X,θ) are less than 1,

then the estimators δJS , δ
+
JS , δa,r and δb,r dominate the MLE X for diverse values of n, p, r and ω, therefore

are minimax. We note that the estimator δb,r dominates the James-Stein estimator δJS . We also observe
that the gain increases if ω is near to 0 and decreases if ω is near to 1. The following tables illustrate this

note. In these tables we give the values of the risks ratios Rω(δJS ,θ)
Rω(X,θ) ,

Rω(δa,r,θ)
Rω(X,θ) and

Rω(δb,r,θ)
Rω(X,θ) for the di�erent

values of λ, n, p and ω when r = 2.25. The �rst entry is
Rω(δa,r,θ)
Rω(X,θ) , the middle entry is Rω(δJS ,θ)

Rω(X,θ) , and the

third entry is
Rω(δb,r,θ)
Rω(X,θ) .
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Table 1: n = 6, p = 3 and r = 2.25
λ ω = 0.0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.5 ω = 0.7 ω = 0.9

0.4359

0.9002
0.7833
0.7694

0.9101
0.8050
0.7925

0.9201
0.8267
0.8156

0.9301
0.8483
0.8386

0.9501
0.8917
0.8847

0.9700
0.9350
0.9308

0.9900
0.9783
0.9769

1.2418

0.9226
0.8318
0.8216

0.9303
0.8486
0.8389

0.9381
0.8654
0.8568

0.9458
0.8822
0.8747

0.9613
0.9159
0.9105

0.9768
0.9495
0.9463

0.9923
0.9832
0.9821

5.0019

0.9712
0.9360
0.9320

0.9741
0.9424
0.9388

0.9770
0.9488
0.9456

0.9799
0.9552
0.9524

0.9856
0.9680
0.9660

0.9914
0.9808
0.9796

0.9971
0.9936
0.9932

10.4311

0.9883
0.9725
0.9709

0.9895
0.9752
0.9738

0.9907
0.9780
0.9767

0.9918
0.9807
0.9796

0.9942
0.9862
0.9855

0.9965
0.9917
0.9912

0.9988
0.9972
0.9971

15.4110

0.9928
0.9824
0.9814

0.9935
0.9841
0.9833

0.9943
0.9859
0.9851

0.9950
0.9877
0.9870

0.9964
0.9912
0.9907

0.9978
0.9947
0.9944

0.9993
0.9982
0.9981

20.0000

0.9947
0.9867
0.9860

0.9953
0.9881
0.9874

0.9958
0.9894
0.9888

0.9963
0.9907
0.9902

0.9974
0.9934
0.9930

0.9984
0.9960
0.9958

0.9998
0.9987
0.9986

In tables 1-4, we note that: if ω and λ = ‖θ‖2
2σ2 are small, the gain of the risks ratios Rω(δJS ,θ)

Rω(X,θ) ,
Rω(δa,r,θ)
Rω(X,θ)

and
Rω(δb,r,θ)
Rω(X,θ) is very important. Also, if the values of ω and λ increase, the gain decreases and approach

to zero, a little improvement is then obtained. We also observe that, if the values of p increase, the gain
increases and this for each �xed value of ω. Moreover, the in�uence of n on the risks ratios is the same
as for p, but with a small gain. We also see that, if the values of p and n are large, the gain is large and
consequently we obtain more improvement. We conclude that, the gain is important when the parameters
p, n and λ are large and ω is near to 0. As seen above, the gain of the risks ratios is in�uenced by various
values of ω, p, n and λ.
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Table 2: n = 6, p = 8 and r = 2.25
λ ω = 0.0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.5 ω = 0.7 ω = 0.9

0.4359

0.5441
0.4669
0.4647

0.5897
0.5202
0.5182

0.6353
0.5735
0.5717

0.6809
0.6268
0.6253

0.7721
0.7334
0.7323

0.8632
0.8401
0.8394

0.9544
0.9467
0.9465

1.2418

0.5854
0.5150
0.5130

0.6268
0.5635
0.5617

0.6683
0.6120
0.6104

0.7098
0.6605
0.6591

0.7927
0.7575
0.7565

0.8756
0.8545
0.8539

0.9585
0.9515
0.9513

5.0019

0.7161
0.6668
0.6655

0.7445
0.7001
0.6989

0.7729
0.7334
0.7324

0.8013
0.7667
0.7658

0.8581
0.8334
0.8327

0.9148
0.9000
0.8996

0.9716
0.9667
0.9665

10.4311

0.8115
0.7769
0.7760

0.8303
0.7992
0.7984

0.8492
0.8215
0.8208

0.8680
0.8438
0.8432

0.9057
0.8884
0.8880

0.9434
0.9331
0.9328

0.9811
0.9777
0.9776

15.4110

0.8579
0.8305
0.8298

0.8721
0.8474
0.7984

0.8863
0.8644
0.8639

0.9006
0.8813
0.8809

0.9290
0.9152
0.9149

0.9574
0.9491
0.9490

0.9858
0.9830
0.9830

20.0000

0.8849
0.8616
0.8611

0.8964
0.8755
0.8750

0.9079
0.8893
0.8889

0.9194
0.9031
0.9028

0.9424
0.9308
0.9306

0.9655
0.9585
0.9583

0.9885
0.9862
0.9861

5.2 Real data application

Here we apply the theoretical results obtained in the previous section to real data. More precisely, we examine
the performance of the shrinkage estimators δJS , δa,r and δb,r compared to the natural estimator. For this
purpose application, we consider the air pollution dataset of USA cities in 1981, from Everitt and Hothorn
[7]. We have the following list of variables: SO2 content of air in micrograms per cubic meter (SO2), average
annual temperature in degrees Fahrenheit (temp), number of manufacturing enterprises employing 20 or more
workers (manu), population size (1970 census) in thousands (popul), average annual wind speed in miles per
hour (wind), average annual precipitation in inches (precip), average number of days with precipitation per
year (predays). Table 5 lists the values of the risks ratios Rω(δJS , θ)/Rω(X, θ), Rω(δa,r, θ)/Rω(X, θ) and
Rω(δb,r, θ)/Rω(X, θ) for di�erent value of ω when p = 7 and r = 3.

We note that, all the values in this table are less than 1 and we also observe that
Rω(δa,r,θ)
Rω(X,θ) < Rω(δJS ,θ)

Rω(X,θ) <
Rω(δb,r,θ)
Rω(X,θ) for each value of ω. Thus, the values on the table are compatible with the theoretical results
obtained in the previous sections.
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Table 3: n = 20, p = 3 and r = 2.25
λ ω = 0.0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.5 ω = 0.7 ω = 0.9

0.4359

0.8739
0.7374
0.7221

0.8865
0.76365
0.7499

0.8991
0.7899
0.7777

0.9117
0.8162
0.8055

0.9370
0.8687
0.8611

0.9622
0.9212
0.9166

0.9874
0.9737
0.9722

1.2418

0.9022
0.7961
0.7843

0.9120
0.8165
0.8058

0.9218
0.8369
0.8274

0.9316
0.8573
0.8490

0.9511
0.8980
0.8921

0.9707
0.9388
0.9353

0.9902
0.9796
0.9784

5.0019

0.9637
0.9224
0.9180

0.9673
0.9301
0.9262

0.9709
0.9379
0.9344

0.9746
0.9457
0.9426

0.9818
0.9612
0.9590

0.9891
0.9767
0.9754

0.9964
0.9922
0.9918

10.4311

0.9852
0.9666
0.9649

0.9867
0.9700
0.9684

0.9882
0.9733
0.9719

0.9897
0.9766
0.9754

0.9926
0.9833
0.9824

0.9956
0.9900
0.9895

0.9985
0.9967
0.9965

15.4110

0.9909
0.9786
0.9776

0.9918
0.9808
0.9798

0.9928
0.9829
0.9821

0.9937
0.9851
0.9843

0.9955
0.9893
0.9888

0.9973
0.9936
0.9933

0.9991
0.9979
0.9978

20.0000

0.9934
0.9839
0.9831

0.9940
0.9855
0.9848

0.9947
0.9871
0.9865

0.9954
0.9887
0.9882

0.9967
0.9920
0.9916

0.9980
0.9952
0.99497

0.9993
0.9984
0.9983

6 Appendix

Proof. (Proof of Lemma 3.1) i) First, we show that, for any real υ

∂

∂λ
E(Uυ) =

∂

∂λ

∫
R+

xυχ2
p(λ; dx) = υ2υ−1

+∞∑
k=0

Γ(p2 + υ + k)

Γ(p2 + 1 + k)
P

(
λ

2
; dk

)
,

where P (λ2 ) is the Poisson distribution of parameter λ
2 .

Using the formula (2.1) we have, for any real υ

E(Uυ) = E[(χ2
p(λ))υ] = E[(χ2

p+2K)υ] = 2υE

[
Γ(p2 +K + υ)

Γ(p2 +K)

]
, (6.1)

where K ∼ P (λ2 ) is the Poisson distribution of parameter λ
2 . Then

∂

∂λ
E(Uυ) =

∂

∂λ

∫
R+

xυχ2
p(λ; dx)

= 2υ
+∞∑
k=0

[
Γ(p2 + k + υ)

Γ(p2 + k)

]
1

k!

∂

∂λ

[(
λ

2

)k
exp

(
−λ

2

)]

= 2υ−1
+∞∑
k=0

[
Γ(p2 + k + υ)

Γ(p2 + k)

]
1

k!
exp

(
−λ

2

)[
−
(
λ

2

)k
+ k

(
λ

2

)k−1
]

= 2υ−1exp

(
−λ

2

){
−

+∞∑
k=0

[
Γ(p2 + k + υ)

Γ(p2 + k)

]
1

k!

(
λ

2

)k}

+ 2υ−1exp

(
−λ

2

){+∞∑
k=0

[
Γ(p2 + k + υ + 1)

Γ(p2 + k + 1)

]
1

k!

(
λ

2

)k}
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Table 4: n = 20, p = 8 and r = 2.25
λ ω = 0.0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.5 ω = 0.7 ω = 0.9

0.4359

0.4243
0.3538
0.3521

0.4819
0.4184
0.4169

0.5395
0.4830
0.4817

0.5970
0.5476
0.5465

0.7122
0.6769
0.6760

0.8273
0.8061
0.8056

0.9424
0.9354
0.9352

1.2418

0.4764
0.4121
0.4106

0.5288
0.4709
0.4695

0.5811
0.5297
0.5285

0.6335
0.5885
0.5874

0.7382
0.7061
0.7053

0.8429
0.8236
0.8232

0.9476
0.9412
0.9411

5.0019

0.6415
0.5961
0.5951

0.6774
0.6365
0.6356

0.7132
0.6769
0.6761

0.7491
0.7173
0.7166

0.8208
0.7981
0.7975

0.8925
0.8788
0.8785

0.9642
0.9596
0.9595

10.4311

0.7619
0.7295
0.7289

0.7857
0.7566
0.7560

0.8095
0.7836
0.7831

0.8333
0.8107
0.8102

0.8810
0.8648
0.8644

0.9286
0.9189
0.9187

0.9762
0.9730
0.9729

15.4110

0.8206
0.7945
0.7940

0.8385
0.8151
0.8146

0.8565
0.8356
0.8352

0.8744
0.8562
0.8558

0.9103
0.8973
0.8970

0.9462
0.9384
0.9382

0.9821
0.9795
0.9794

20.0000

0.8546
0.8323
0.8319

0.8692
0.8491
0.8487

0.8837
0.8658
0.8655

0.8982
0.8826
0.8823

0.9273
0.9161
0.9159

0.9564
0.9497
0.9496

0.9855
0.9832
0.9832

Table 5: p = 7 and r = 3
Risk
ratios ω = 0.2 ω = 0.5 ω = 0.9
Rω(δa,r,θ)

Rω(X,θ)
0.9999998780 0.9999999230 0.9999999840

Rω(δJS ,θ)
Rω(X,θ)

0.9999833589 0.9999895994 0.9999979199
Rω(δb,r,θ)

Rω(X,θ)
0.9999833502 0.9999895940 0.9999979180

= 2υ−1exp

(
−λ

2

){+∞∑
k=0

1

k!

(
λ

2

)k [Γ(p2 + k + υ)

Γ(p2 + k + 1)

] [
−
(p

2
+ k
)

+
(p

2
+ υ + k

)]}

= υ2υ−1
+∞∑
k=0

Γ(p2 + υ + k)

Γ(p2 + 1 + k)
P

(
λ

2
; dk

)
.

Let

Kp,r,s(λ) =

(
∂

∂λ

∫
R+

xrχ2
p(λ; dx)

)(∫
R+

xsχ2
p(λ; dx)

)
−

(
∂

∂λ

∫
R+

xsχ2
p(λ; dx)

)(∫
R+

xrχ2
p(λ; dx)

)
.

For the function Hp,r,s to be strictly increasing, it su�ces that the function Kp,r,s takes positive values. From
equality (6.1), we obtain

Kp,r,s(λ) = 2r+s−1r

+∞∑
i=0

+∞∑
j=0

Γ(p2 + r + i)

Γ(p2 + i+ 1)

Γ(p2 + s+ j)

Γ(p2 + j)
P

(
λ

2
; di

)
P

(
λ

2
; dj

)

− 2r+s−1s

+∞∑
i=0

+∞∑
j=0

Γ(p2 + r + j)

Γ(p2 + j)

Γ(p2 + s+ i)

Γ(p2 + i+ 1)
P

(
λ

2
; dj

)
P

(
λ

2
; di

)
.
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As, r > s then

Kp,r,s(λ) ≥ r2r+s−1
+∞∑
i=0

+∞∑
j=0

lp,r,s(i, j)P

(
λ

2
; di

)
P

(
λ

2
; dj

)
,

where

lp,r,s(i, j) =
Γ(p2 + r + i)Γ(p2 + s+ j)− Γ(p2 + r + j)Γ(p2 + s+ i)

Γ(p2 + i+ 1)Γ(p2 + j)
.

We note that, for any i, lp,r,s(i, j) = 0; then we have

Kp,r,s(i, j) ≥ r2r+s−1
+∞∑
i=0

+∞∑
j>i

(lp,r,s(i, j) + lp,r,s(j, i))P

(
λ

2
; di

)
P

(
λ

2
; dj

)
.

But if i < j, we get

lp,r,s(i, j) + lp,r,s(j, i) =
(

Γ
(p

2
+ r + i

)
Γ
(p

2
+ s+ j

)
− Γ

(p
2

+ r + j
)

Γ
(p

2
+ s+ i

))
×

[
1

Γ(p2 + i+ 1)Γ(p2 + j)
− 1

Γ(p2 + j + 1)Γ(p2 + i)

]
=

Γ(p2 + r + i)Γ(p2 + s+ i)

Γ(p2 + i)Γ(p2 + j)

[
1

p
2 + i

− 1
p
2 + j

]

×

[
j−i−1∏
t=0

(p
2

+ s+ i+ t
)
−
j+i−1∏
t=0

(p
2

+ r + i+ t
)]

≤ 0,

because for any t, p2 + s + i + t < p
2 + r + i + t. As in hypothesis r < 0, we have Kp,r,s(λ) > 0. Thus, we

obtain the desired result.
ii) Using i) it is clear that the function H1

p,r(λ) = E(‖X‖−r)
E(‖X‖−2r+2)

is non-decreasing on λ, then the function
1

H1
p,r(λ)

is non-increasing on λ, thus

sup
‖θ‖

(
E(‖X‖−2r+2)

E(‖X‖−r)

)
= sup

‖θ‖

(
1

H1
p,r(λ)

)
=

1

H1
p,r(0)

= 2
−r+2

2
Γ(p2 − r + 1)

Γ(p−r2 )
.

Conclusion

In this work, we studied the estimating of the the mean θ of a multivariate normal distribution X ∼
Np

(
θ, σ2Ip

)
where σ2 is unknown. The criterion adopted for comparing two estimators is the risk associated

with the balanced loss function. First, we established the minimaxity of the estimators de�ned by δa,r =(
1− a((S2)r/2/‖X‖r)

)
X, where 2 ≤ r < (p+2)/2 and the real constant a may depend on n and p. Secondly,

we showed that the estimator δb,r = δJS + b
(
(S2)r/2/‖X‖r

)
X with 2 ≤ r < (p+ 2)/2 and the real constant

b may depend on n and p, dominates the James-Stein estimator δJS , thus it is also minimax. In the future,
we will study the behaviour of risks ratios of our considered estimators to the MLE when the sample size n
and the dimension of parameters space p tend to in�nity. An extension of this work is to obtain the similar
results in the case where the model has a symmetrical spherical distribution.



34 A. Benkhaled, A. Hamdaoui, M. Terbeche

Acknowledgments

The authors are extremely grateful to the editor and the referees for carefully reading the paper.
This research was partially supported by the DGRSDT-MESRS-Algeria.



Minimax shrinkage estimators and estimators dominating the James-Stein estimator 35

References

[1] F. Arnold Steven, The theory of linear models and multivariate analysis. John Wiley and Sons, Inc., (1981), 9-10.

[2] A. Benkhaled, A. Hamdaoui, General classes of shrinkage estimators for the multivariate normal mean with
unknown variancee: Minimaxity and limit of risks ratios. Kragujevac J. Math., 46 (2019), 193-213.

[3] J.O. Berger, W.E. Strawderman, Choice of hierarchical priors: Admissibility in estimation of normal means.
Ann. Statist., 24 (1996), 931-951.

[4] L.D. Brown, In-season prediction of batting averages: A �eld test of empirical Bayes and Bayes methodologies.
Ann. Appl. Stat., 2 (2008), 113-152.

[5] B. Efron, C.N. Morris, Data analysis using Stein's estimator and its generalizations. J. Amer. Statist. Assoc., 70
(1975), 311-319.

[6] B. Efron, C.N. Morris, Stein's estimation rule and its competitors: An empirical Bayes approach. J. Amer. Statist.
Assoc., 68 (1973), 117-130.

[7] B. Everitt, T. Hothorn, An introduction to applied multivariate analysis with R. Springer, 2011 (New York)

[8] H. Guikai, L. Qingguo, Y. Shenghua, Risk comparison of improved estimators in a linear regression model with
multivariate errors under balanced loss function. Journal of Applied Mathematics, 354 (2014), 1-7.

[9] A. Hamdaoui, A. Benkhaled, N. Mezouar, Minimaxity and limits of risks ratios of shrinkage estimators of a
multivariate normal mean in the bayesian case. Stat., Optim. Inf. Comput., 8 (2020), 507-520.

[10] M. Jafari Jozani, A. Leblan, E. Marchand, On continuous distribution functions, minimax and best invariant
estimators and integrated balanced loss functions, Canad. J. Statistist., 42 (2014), 470-486.

[11] W. James, C. Stein, Estimation with quadratic loss. Proc 4th Berkeley Symp, Math. Statist.Prob., Univ of
California Press, Berkeley, 1 (1961), 361-379.

[12] H. Karamikabir, M. Afsahri, Generalized Bayesian shrinkage and wavelet estimation of location parameter for
spherical distribution under balanced-type loss: Minimaxity and admissibility. J. Multivariate Anal., 177 (2020),
110-120.

[13] H. Karamikabir, M. Afsahri, M. Arashi, Shrinkage estimation of non-negative mean vector with unknown covari-
ance under balance loss. J. Inequal. Appl., (2018) 1-11.

[14] E. Marchand, W.E. Strawderman, Bayes minimax estimation of the mean matrix of matrix-variate normal
distribution under balanced loss function. Statist. Probap. Lett., 175 (2017), 110-120.

[15] N. Sanjari Farsipour, A. Asgharzadeh, Estimation of a normal mean relative to balanced loss functions. Statist.
Papers, 45 (2004), 279-286.

[16] K. Selahattin, D. Issam, The optimal extended balanced loss function estimators. J. Comput. Appl. Math., 345
(2019), 86-98.

[17] C. Stein, Estimation of the mean of a multivariate normal distribution. Ann. Statist., 9 (1981), 1135-1151.

[18] C. Stein, Inadmissibilty of the usual estimator for the mean of a multivariate normal distribution. Proc 3th
Berkeley Symp, Math. Statist. Prob. Univ. of California Press, Berkeley, 1 (1956), 197-206.

[19] H. Tsukuma, T. Kubukaza, Estimation of the mean vector in a singular multivariate normal distribution. J.
Multivariate Anal., 140(2015), 245-258.

[20] X. Xie, S.C. Kou, L. Brown, Optimal shrinkage estimators of mean parameters in family of distribution with
quadratic variance. Ann. Statist., 44 (2016), 564-597.

[21] R. Yang, J.0. Berger, Estimation of a covariance matrix using the reference prior. Ann. Statist., 22 (1994),
1195-1211.

[22] A. Zellner, Bayesian and non-Bayesian estimation using balanced loss functions. In: Berger, J.O., Gupta, S.S.
(eds.) Statistical Decision Theory and Methods, Volume V, pp. 337-390. Springer, 1994 (New York).



36 A. Benkhaled, A. Hamdaoui, M. Terbeche

[23] S. Zinodiny, S. Leblan, S. Nadarajah,Bayes minimax estimation of the mean matrix of matrix-variate normal
distribution under balanced loss function. Statist. Probab. Lett., 125 (2017), 110-120.

Abdelkader Benkhaled
Department of Biology
Mascara University
Laboratory of Stochastic Models, Statistics and Applications, University Tahar Moulay of Saida
Bp 305, Route de Mamounia 29000, Mascara, Algerie
E-mail: benkhaled08@yahoo.fr

Abdenour Hamdaoui
Department of Mathematics
University of Sciences and Technology, Mohamed Boudiaf, Oran
Laboratory of Statistics and Random Modelisations of University Abou Bekr Belkaid (LSMA), Tlemcen
El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria
E-mails: abdenour.hamdaoui@yahoo.fr, abdenour.hamdaoui@univ-usto.dz

Mekki Terbeche
Department of Mathematics
University of Sciences and Technology, Mohamed Boudiaf, Oran
Laboratory of Analysis and Application of Radiation (LAAR), USTO-MB
El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria
E-mail: mekki.terbeche@gmail.com

Received: 30.06.2021


