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Abstract. We consider a system of ordinary di�erential equations with piecewise-constant argument
of generalized type. An interval is divided into N parts, the values of a solution at the interior points
of the subintervals are considered as additional parameters, and a system of ordinary di�erential
equations with piecewise-constant argument of generalized type is reduced to the Cauchy problems
on the subintervals for linear system of ordinary di�erential equations with parameters. Using the
solutions to these problems, new general solutions to system of di�erential equations with piecewise-
constant argument of generalized type are introduced and their properties are established. Based on
the general solution, boundary condition, and continuity conditions of a solution at the interior points
of the partition, the system of linear algebraic equations with respect to parameters is composed.
Its coe�cients and right-hand sides are found by solving the Cauchy problems for a linear system of
ordinary di�erential equations on the subintervals. It is shown that the solvability of boundary value
problems is equivalent to the solvability of composed systems. Methods for solving boundary value
problems are proposed, which are based on the construction and solving of these systems.
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1 Introduction and statement of problem

It is well known that mathematical modeling of processes with discontinuity e�ects has necessitated
the need to develop the theory of di�erential equations with discontinuities. An important class of
such equations is comprised of di�erential equations with a piecewise constant argument (DEPCA).
The study of DEPCA was initiated by Busenberg, Cooke, Shah, and Wiener [22], [19], [39]. The
problems of the existence and uniqueness of solutions to DEPCA, their oscillations and stability,
integral manifolds and periodic solutions have been extensively discussed by many authors [33], [20],
[34], [40], [23], [38], [15], [16], [14].

When modeling DEPCA, the deviation of the argument, taken as the greatest integer function,
is always constant and equal to one. But this approach can contradict real phenomena. The gener-
alization of DEPCA has been undertaken by M.U.Akhmet [1], [2], [3], [4]. In his works the greatest
integer function as deviating argument was replaced by an arbitrary piecewise constant function.
Thus, di�erential equations with piecewise constant argument of generalized type (DEPCAG) are
more suitable for modeling and solving various applied problems, including areas of neural networks,
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discontinuous dynamical systems, hybrid systems, etc. To date, the theory of DEPCAG on the en-
tire axis has been developed and their applications have been implemented. The results have been
extended to periodic impulse systems of DEPCAG [5], [6], [11], [9], [10], [21], [7]. Note that an
electronic neural networks were modeled as di�erential equations with piecewise constant arguments
of generalized type [18], [11], [9]. By reducing these equations to an equivalent integral equation,
some new stability conditions are obtained.

Along with the study of various properties of DEPCA, a number of authors investigated the
problems of solvability and construction of solutions to boundary value problems for these equations
on a �nite interval [35], [37], [24], [8].

For DEPCAG, however, the problems of solvability of boundary value problems on a �nite interval
still remain open.

This issue can be resolved by developing constructive methods.

So, on [0, T ], we consider the following multi-point boundary value problem for a system of
DEPCAG:

dx

dt
= A(t)x+ A0(t)x(γ(t)) + f(t), x ∈ Rn, t ∈ (0, T ), (1.1)

N∑
i=0

Bix(θi) = d, d ∈ Rn. (1.2)

Here x(t) = col(x1(t), x2(t), ..., xn(t)) is the unknown function, (n × n) matrices A(t), A0(t) and
n-vector f(t) are continuous on [0, T ];
γ(t) = ζj if t ∈ [θj, θj+1), j = 0, N − 1; θj ≤ ζj ≤ θj+1 for all j = 0, 1, . . . , N − 1; 0 = θ0 < θ1 <
. . . < θN−1 < θN = T ; Bi are constant (n× n) matrices, i = 0, N , and d is a constant vector.

The aim of the present paper is to develop a constructive method for investigating and solving
the boundary value problem, including an algorithm for �nding a solution to problem (1.1), (1.2) as
well.

To this end, we use a new concept of general solution and Dzhumabaev's parametrization method
[25], [26]. This concept of general solution has been introduced for the linear Fredholm integro-
di�erential equation in [27] and for the linear loaded di�erential equation and a family of such
equations in [28], [29]. New general solutions are also introduced to ordinary di�erential equations
and their properties are established in [30]. Results are developed to nonlinear Fredholm integro-
di�erential equations [31], [32] and to problems with a parameter for integro-di�erential equations
[13]. Based on the general solution methods for solving boundary value problems are proposed.

The paper is organized as follows.

The interval [0, T ] is divided into N parts according to the partition ∆N : θ0 = 0 < θ1 <
θ2 < ... < θN = T , and the ∆N general solution to a linear system of di�erential equation with a
piecewise-constant argument of generalized type is introduced. The ∆N general solution, denoted by
x(∆N , t, λ), contains an arbitrary vectors λ = (λ1, λ2, ..., λN) ∈ RnN . Using x(∆N , t, λ), we establish
solvability criteria of considered problem and propose an algorithm for �nding its solution.

A function x∗(t) : [0, T ]→ Rn is a solution to problem (1.1), (1.2) if:

(i) x∗(t) is continuous on [0, T ];

(ii) x∗(t) is di�erentiable on [0, T ] with the possible exception of the points θj, j = 0, N − 1, at
which the one-sided derivatives exist;

(iii) x∗(t) satis�es the system of equations (1.1) on each interval (θj, θj+1), j = 0, N − 1; at the
points θj, j = 0, N − 1, system (1) is satis�ed by the right-hand derivative of x∗(t);

(iv) x∗(t) satis�es boundary condition (1.2) at t = θi, i = 0, N .



10 A. Abildayeva, A. Assanova, A. Imanchiyev

2 Scheme of the method and ∆N general solution

Let ∆N denote the partition of the interval [0, T ) by points t = θr, r = 1, N − 1:

[0, T ) =
N⋃
r=1

[θr−1, θr).

We de�ne the following spaces:
C([0, T ],Rn) is the space of all continuous functions x : [0, T ]→ Rn with the norm

‖x‖1 = max
t∈[0,T ]

||x(t)|| = max
t∈[0,T ]

max
i=1,n
|xi(t)|;

C([0, T ],∆N ,RnN) is the space of function systems x[t] = (x1(t), x2(t), . . . , xN(t)), where xr :
[θr−1, θr)→ Rn are continuous functions that have �nite left-hand limits lim

t→θr−0
xr(t) for all r = 1, N ,

with the norm
‖x[·]‖2 = max

r=1,N
sup

t∈[θr−1,θr)

|xr(t)|.

Denote by xr(t) the restriction of a function x(t) to the rth interval [θr−1, θr), i.e.
xr(t) = x(t) for t ∈ [θr−1, θr), r = 1, N.
Then the function system x[t] = (x1(t), x2(t), . . . , xN(t)) belongs to

C([0, T ],∆N ,RnN), and its elements xr(t), r = 1, N, satisfy the following system of ordinary di�er-
ential equations with piecewise-constant argument of generalized type

dxr
dt

= A(t)xr(t) + A0(t)xr(ζr−1) + f(t), t ∈ [θr−1, θr), r = 1, N. (2.1)

In (2.1) we take into account that γ(t) = ζj if t ∈ [θj, θj+1), j = 0, N − 1.
We introduce additional parameters λr = xr(ζr−1) for all r = 1, N. Making the substitution

zr(t) = xr(t) − λr on every r-th interval [θr−1, θr), we obtain the system of ordinary di�erential
equations with parameters

dzr
dt

= A(t)(zr(t) + λr) + A0(t)λr + f(t), t ∈ [θr−1, θr), r = 1, N, (2.2)

and initial conditions
zr(ζr−1) = 0, r = 1, N. (2.3)

Problems (2.2), (2.3) are Cauchy problems for system of ordinary di�erential equations with parame-
ters on the intervals [θr−1, θr), r = 1, N . For any �xed λr ∈ Rn and r, the Cauchy problem (2.2), (2.3)
has a unique solution zr(t, λr), and the function system z[t, λ] = (z1(t, λ1), z2(t, λ2), . . . , zN(t, λN))
belongs to C([0, T ],∆N ,RnN).

The function system z[t, λ] is referred to as a solution to Cauchy problems with parameters (2.2),
(2.3). If a function system x̃[t] = (x̃1(t), x̃2(t), ..., x̃N(t)) belongs to C([0, T ],∆N ,RnN), and the

functions x̃r(t), r = 1, N, satisfy equations (2.1), then the function system z[t, λ̃] = (z1(t, λ̃1), z2(t, λ̃2),

..., zN(t, λ̃N)) with the elements zr(t, λ̃r) = x̃r(t) − λ̃r, λ̃r = x̃r(ζr−1), r = 1, N, is a solution

to the Cauchy problems with parameters (2.2), (2.3) for λr = λ̃r, r = 1, N. Conversely, if a function
system z[t, λ∗] = (z1(t, λ∗1), z2(t, λ∗2), . . . , zN(t, λ∗N)) is a solution to problems (2.2), (2.3) for λr = λ∗r,
r = 1, N, then the function system x∗[t] = (x∗1(t), x∗2(t), . . . , x∗N(t)) with x∗r(t) = λ∗r + zr(t, λ

∗
r),

r = 1, N, belongs to C([0, T ],∆N ,RnN), and the functions x∗r(t), r = 1, N, satisfy system of equations
(2.1).

Let us now introduce a new general solution to the system of ordinary di�erential equations with
piecewise-constant argument of generalized type (2.1).
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De�nition 1. Let z[t, λ] = (z1(t, λ1), z2(t, λ2), . . . , zN(t, λN)) be the solution to the Cauchy problems
(2.2), (2.3) for the parameters λ = (λ1, λ2, ..., λN) ∈ RnN . Then the function x(∆N , t, λ), given by
the equalities

x(∆N , t, λ) = λr + zr(t, λr), for t ∈ [θr−1, θr), r = 1, N, and
x(∆N , T, λ) = λN + lim

t→T−0
zN(t, λN),

is called the ∆N general solution to system of equations (2.1).

As follows from De�nition 2.1, the ∆N general solution depends on N arbitrary vectors λr ∈ Rn
and satis�es system of equations (2.1) for all t ∈ (0, T )\{θp, p = 1, N − 1}.

Take Xr(t), a fundamental matrix of the ordinary di�erential equation

dzr
dt

= A(t)zr(t), t ∈ [θr−1, θr], r = 1, N,

and write down the solutions to the Cauchy problems with parameters (2.2), (2.3) in the form:

zr(t) = Xr(t)

t∫
ζr−1

X−1
r (τ)[A(τ) + A0(τ)]dτλr +Xr(t)

t∫
ζr−1

X−1
r (τ)f(τ)dτ,

t ∈ [θr−1, θr), r = 1, N.

Consider the Cauchy problems on the subintervals

dx

dt
= A(t)x+ P (t), x(ζr−1) = 0, t ∈ [θr−1, θr], r = 1, N, (2.4)

where P (t) is a square matrix or a vector of dimension 2, continuous on [0, T ], θr−1 ≤ ζr−1 ≤ θr
for all r = 1, 2, ..., N . Denote by Ar(P, t) a unique solution to Cauchy problem (2.4) on each
rth interval. The uniqueness of the solution to the Cauchy problem for linear ordinary di�erential
equations yields

Ar(P, t) = Xr(t)

t∫
ζr−1

X−1
r (τ)P (τ)dτ, t ∈ [θr−1, θr], r = 1, N.

Therefore, we can represent the ∆N general solution to system of equations (2.1) in the form:

x(∆N , t, λ) = λp + Ap(A+ A0, t)λp + Ap(f, t), t ∈ [θp−1, θp), p = 1, N − 1, (2.5)

x(∆N , t, λ) = λN + AN(A+ A0, t)λN + AN(f, t), t ∈ [θN−1, θN ]. (2.6)

The following statement a�rms the function x(∆N , t, λ) as a "general solution".

Theorem 2.1. Let a piecewise continuous on [0, T ] function x̃(t) with the possible discontinuity points

t = θp, p = 1, N − 1, be given, and x(∆N , t, λ) be the ∆N general solution to system of equations

(2.1). Suppose that the function x̃(t) has a continuous derivative and satis�es system of equations

(2.1) for all t ∈ (0, T )\{θp, p = 1, N − 1}. Then there exists a unique λ̃ = (λ̃1, λ̃2, ..., λ̃N) ∈ RnN such

that the equality x(∆N , t, λ̃) = x̃(t) holds for all t ∈ [0, T ].

The proof of this theorem is quite simple. Therefore, we do not present it.

Corollary 2.1. Let x∗(t) be a solution to system of equations (2.1) and x(∆N , t, λ) be the ∆N general

solution to system of equations (2.1). Then there exists a unique λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
N) ∈ RnN such

that the equality x(∆N , t, λ
∗) = x∗(t) holds for all t ∈ [0, T ].
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If x(t) is a solution to system of equations (2.1), and x[t] = (x1(t), x2(t), ..., xN(t)) is a function
system composed of its restrictions to the subintervals [θr−1, θr), r = 1, N, then the equations

lim
t→θp−0

xp(t) = xp+1(θp), p = 1, N − 1, (2.7)

hold. These equations are the continuity conditions for the solution to system of equations (2.1) at
the interior points of the partition ∆N .

Theorem 2.2. Let a function system x[t] = (x1(t), x2(t), ..., xN(t)) belong to C([0, T ],∆N ,RnN).
Assume that the functions xr(t), r = 1, N, satisfy system of equations (2.1) and continuity conditions

(2.7). Then the function x∗(t), given by the equalities

x∗(t) = xr(t) for t ∈ [θr−1, θr), r = 1, N,
and x∗(T ) = lim

t→T−0
xN(t),

is continuous on [0, T ], continuously di�erentiable on (0, T ) and satis�es system of equations (2.1).

Proof. Equations (2.7), the equality x∗(T ) = lim
t→T−0

xN(t), and belonging of x[t] = (x1(t), x2(t),

..., xN(t)) to C([0, T ],∆N ,RnN) ensure continuity of the function x∗(t) on the interval [0, T ]. Since
the functions xr(t), r = 1, N , satisfy system of equations (3), the function x∗(t) has continuous
derivative and satis�es system of equations (2.1) for all t ∈ [0, T ]\{θp, p = 1, N − 1}. The existence
and continuity of the derivative of the function x∗(t) at the points t = θp, p = 1, N − 1, follow from
the relations:

lim
t→θp−0

ẋ∗(t) = A(θp)x
∗(θp) + A0(θp)x

∗(ζp−1) + f(θp) = lim
t→θp+0

ẋ∗(t), p = 1, N − 1.

Hence the function x∗(t) satis�es system of equations (2.1) at the interior points of the partition ∆N

as well.

3 Main results and algorithm

The ∆N general solution allows us to transfer the solvability of a multi-point boundary value problem
to the solvability of a system of linear algebraic equations with respect to arbitrary vectors λr ∈ R2,
r = 1, N .

Substituting the suitable expressions of ∆N general solution (2.5), (2.6) into the multi-point
condition (1.2) and continuity conditions (2.7), we obtain the system of linear algebraic equations

N∑
i=0

Bi

{
I + Ai(A+ A0, θi)

}
λi = d−

N∑
i=0

BiAi(f, θi), (3.1)

{
I + Ap(A, θp)

}
λp −

{
I + Ap+1(A+ A0, θp)

}
λp+1

= −Ap(f, θp) + Ap+1(f, θp), p = 1, N − 1, (3.2)

where I is the unit matrix of dimension n.
Denote by Q∗(∆N) nN × nN matrix corresponding to the left-hand side of system (3.1), (3.2)

and write the system as
Q∗(∆N)λ = −F∗(∆N), λ ∈ RnN , (3.3)

where F∗(∆N) =
(
−d+

N∑
i=0

BiAi(f, θi), A1(f, θ1)− A2(f, θ1),

A2(f, θ2) + A3(f, θ2), ..., AN−1(f, θN−1) + AN(f, θN−1)
)
∈ RnN .

For any partition ∆N , Theorems 2.1 and 2.2 ensure the validity of the next assertion.
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Lemma 3.1. If x∗(t) is a solution to multi-point problem (1.1), (1.2) and λ∗r = x∗(ζr−1), r = 1, N ,

then the vector λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
N) ∈ RnN is a solution to system (3.3). Conversely, if λ̃ =

(λ̃1, λ̃2, . . . , λ̃N) ∈ RnN is a solution to system (3.3) and z[t, λ̃] = (z1(t, λ̃1), z2(t, λ̃2), . . . , zN(t, λ̃N)) is

the solution to Cauchy problems (2.2), (2.3) for the parameter λ̃ ∈ RnN , then the function x̃(t) given

by the equalities x̃(t) = λ̃r + zr(t, λ̃r), t ∈ [θr−1, θr), r = 1, N, and x̃(T ) = λ̃N + lim
t→T−0

zN(t, λ̃N), is a

solution to multi-point problem (1.1), (1.2).

De�nition 2. The multi-point boundary value problem (1.1), (1.2) is called uniquely solvable if for
any pair (f(t), d), with f(t) ∈ C([0, T ],Rn) and d ∈ Rn, it has a unique solution.

Lemma 3.1 and well-known theorems of linear algebra imply the following two statements.

Theorem 3.1. The multi-point boundary value problem (1.1), (1.2) is solvable if and only if the

vector F∗(∆N) is orthogonal to the kernel of the transposed matrix (Q∗(∆N))
′
, i.e. if and only if the

equality

(F∗(∆N), η) = 0

is valid for all η ∈ Ker(Q∗(∆N))
′
, where (·, ·) is the inner product in R2N .

Theorem 3.2. The multi-point boundary value problem (1.1), (1.2) is uniquely solvable if and only

if nN × nN matrix Q∗(∆N) is invertible.

So, by Theorems 3.1 and 3.2 it follows that the solvability of multi-point boundary value prob-
lem (1.1), (1.2) is equivalent to the solvability of system of algebraic equations (3.3). This system
composed by solutions of Cauchy problems (2.2), (2.3), of multi-point condition (1.2) and continuity
condition (2.7).

Based on the results of Section 3, we o�er the following algorithm for �nding a solution to the
linear multi-point boundary value problem (1.1), (1.2).

Algorithm.
Step 1. Solve the Cauchy problems on the subintervals

dz

dt
= A(t)z + A(t) + A0(t), z(ζr−1) = 0, t ∈ [θr−1, θr],

dz

dt
= A(t)z + f(t), z(ζr−1) = 0, t ∈ [θr−1, θr],

and �nd Ar(A+ A0, θr) and Ar(f, θr), r = 1, N . Here θr−1 ≤ ζr−1 ≤ θr for all r = 1, 2, ..., N .
Step 2. Using the found matrices and vectors compose the system of linear algebraic equations

(12).
Step 3. Solve the constructed system and �nd λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
N) ∈ RnN . Note that the

elements of λ∗ are the values of the solution to multi-point problem (1.1), (1.2) at the interior points
of the subintervals: λ∗r = u∗(ζr−1), r = 1, N .

Step 4. Solve the Cauchy problems

dz

dt
= A(t)z + f(t), z(ζr−1) = λ∗r, t ∈ [θr−1, θr),

and de�ne the values of the solution x∗(t) at the remaining points of the subintervals [θr−1, θr),
r = 1, N .

The function x∗(t) is a solution to original multi-point problem (1.1), (1.2).
As it follows from Lemma 3.1, any solution to system (3.3) determines the values of the solution

to problem (1.1), (1.2) at the left end-points of the subintervals [θr−1, θr), r = 1, N .
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The accuracy of the algorithm proposed depends on the accuracy of computing the coe�cients
and right-hand sides of system of algebraic equations (3.3).

The Cauchy problem for a system of ordinary di�erential equations is the principal auxiliary
problem in the o�ered algorithm. By choosing an approximate method for solving that problem, we
obtain an approximate method for solving the multi-point boundary value problem (1.1), (1.2). The
solution of the Cauchy problems by numerical methods leads to numerical algorithms for solving
multi-point problem (1.1), (1.2).

Remark 1. In the general case, the points t = θi in the multi-point condition may not coincide with
the left-end points of the subintervals [θr−1, θr), r = 1, N . In this case, we can re-number all the
points so that the points of the multi-point condition become the left-end points of the subintervals.

Conclusion. In the paper, we propose a new approach aimed at studying multi-point boundary value
problems for systems of di�erential equations with a piecewise constant argument of generalized type. This
method is based on a new concept of general solution of di�erential equations with piecewise constant
argument of generalized type and Dzhumabaev's parametrization method. New general solution enables
us to establish the qualitative properties of multi-point boundary value problems for systems of di�erential
equations with a piecewise constant argument of generalized type and to develop algorithms for solving them.
The algorithms are based on constructing and solving systems of linear algebraic equations in arbitrary
vectors of new general solution. The results obtained can be used in a wide range of applications: problems
for impulsive di�erential equations with a piecewise constant argument of generalized type; the theory of
dynamical systems and neural networks; nonlocal problems for hyperbolic equations with a piecewise constant
argument of generalized type, etc. [17], [36].

Acknowledgments

The second author (Assanova) presented the results for a two-point boundary value problems for DEPCAG
at the Mini-Symposium "Di�erential equations, dynamical systems and applications" (MS - ID 52) at the
8th European Congress of Mathematics, 20-26 June, 2021, Portorož, Slovenia [12].
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