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VAGIF SABIR oglu GULIYEV

(to the 65th birthday)

On February 22, 2022 was the 65th birthday of Vagif Sabir oglu Guliyev,
editor-in-chief of the Transactions of the Azerbaijan National Academy of Science,
Issue Mathematics, Series of physical-technical and mathematics science (Scopus,
Q3), deputy editor-in-chief of the Applied and Computational Mathematics (Web
of Science, Q1), deputy director of the Institute of Applied Mathematics (IAM)
of the Baku State University (BSU), head of the Department of Mathematical
Analysis at the Institute of Mathematics and Mechanics (IMM) of the Azerbaijan
National Academy of Sciences (ANAS), member of the Editorial Board of the
Eurasian Mathematical Journal.

V.S. Guliyev was born in the city of Salyan in Azerbaijan. In 1978 Vagif
Guliyev graduated from the Faculty of Mechanics and Mathematics of the Azerbaijan State University
(now the Baku State University) with an honors degree and then completed his postgraduate studies
at this university. His scienti�c supervisors were distinguished mathematicians A.A. Babayev and
S.K. Abdullayev. In 1983 he defended his PhD thesis at the BSU. From 1983 he continued his
scienti�c activities at the V.A. Steklov Mathematical Institute of the Academy of Sciences of the
USSR. In 1987-1991 he was in internship at this institute and in 1994 defended there his DSc thesis.

From 1983 to 1995 he worked as assistant, a senior lecturer, docent and from 1995 to 2018 as a
professor of Mathematical Analysis Chair of the BSU. In 1995-2008 he worked on part-time basis
at the Institute of the IMM. From 2008 to 2014 he was a chief researcher of the Department of
Mathematical Analysis of the IMM, from 2014 to the present day he is the head of this department.

In 2014 V.S. Guliyev was elected a corresponding member of the ANAS.
From 2015 to 2019, he worked as deputy director on science at the IMM. From 2019 to the present

day, he has been working as a chief researcher at the IAM. Since May 2021, he has been working as
a deputy director on science of the IAM.

Professor Vagif Guliyev has been a member of the Presidium of the Higher Attestation Commis-
sion under the President of the Republic of Azerbaijan since 2014 to the present day.

V.S. Guliyev is a world recognized specialist in real and harmonic analysis, function spaces and
partial di�erential equations. He obtained seminal scienti�c results in several areas of functional
analysis and the theory of partial di�erential and integral equations. He was one of the �rst to study
local Morrey-type spaces, generalized weighted Morrey-type spaces and anisotropic Banach-valued
Sobolev spaces, for which appropriate embedding theorems were established.

Some of his results and methods are named after him: the Adams-Guliyev and Spanne-Guliyev
conditions for the boundedness of operators in Morrey-type spaces, Guliyev's method of local esti-
mates of integral operators of harmonic analysis, the Burenkov-Guliyevs conditions for the bound-
edness of operators in general local Morrey-type spaces.

On the whole, the results obtained by V.S. Guliyev have laid a groundwork for new perspec-
tive scienti�c directions in the theory of functions spaces and its applications to partial di�erential
equations.

Vagif Sabir oglu Guliyev is an author of more than 250 scienti�c publications including 2 mono-
graphs. Among his pupils there are more than 20 candidates of sciences and 5 doctors of sciences.
The results obtained by V.S. Guliyev, his pupils, collaborators and followers gained worldwide recog-
nition.

The mathematical community, many his friends and colleagues and the Editorial Board of the
Eurasian Mathematical Journal cordially congratulate Vagif Sabir oglu Guliyev on the occasion of
his 65th birthday and wish him good health, happiness and new achievements in mathematics and
mathematical education.
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Abstract. We investigate a quasilinear system of partial integro-di�erential equations with the
operator of di�erentiation in the direction of a vector �eld, which describes the process of hereditary
propagation with an ε-period of heredity. Under some conditions on the input data, conditions for the
solvability of the initial problem for a quasilinear system of integro-di�erential equations are obtained.
On this basis, su�cient conditions for the existence of multiperiodic solutions of integro-di�erential
systems are found under the exponential dichotomy additional assumption on the corresponding
homogeneous integro-di�erential system. The unique solvability of an operator equation in the space
of smooth multiperiodic functions is proved, to which the main question under consideration reduces.
Thus, su�cient conditions are established for the existence of a unique multiperiodical in all time
variables solution of a quasilinear system of integro-di�erential equations with the di�erentiation
operator in the directions of a vector �eld and a �nite period of hereditarity.

DOI: https://doi.org/10.32523/2077-9879-2022-13-1-86-100

1 Introduction

In this paper, we investigate the problem of the existence of (θ, ω)-periodic solutions u(τ, t), where
(τ, t) = (τ, t1, ..., tm) ∈ R× R× · · · × R = R× Rm, of the system

Dcu(τ, t) = A(τ, t)u(τ, t) +

τ∫
τ−ε

K(τ, t, s, t− cτ + cs)u(s, t− cτ + cs)ds+

+f

τ, t, u(τ, t),

τ∫
τ−ε

K(τ, t, s, t− cτ + cs)u(s, t− cτ + cs)ds

 (1.1)

with the di�erentiation operator Dc of the form

Dc = ∂/∂τ + 〈c, ∂/∂t〉 , (1.2)

that turns into the operator of the total derivative d/dτ along the characteristics t = cτ − cs + σ
with the initial data (s, σ) ∈ R × Rm, where c = (c1, . . . , cm) is a constant vector with non-zero
coordinates cj, j = 1,m; ∂/∂t = (∂/∂t1, . . . , ∂/∂tm); 〈c, ∂/∂t〉 is the scalar product of vectors; A(τ, t)
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and K(τ, t, s, σ) are given n × n-matrices; f(τ, t, u, v) is an n-vector-function, u, v ∈ Rn

∆, R
n

∆ is
the closure of Rn

∆ = {w ∈ Rn : |w| < ∆ = const}, (θ, ω) = (θ, ω1, . . . , ωm) is a vector-period with
rationally incommensurable coordinates, ε is a positive constant.

Partial integro-di�erential equation (1.1) describes many problems of hydrodynamics, acoustics,
transport theory and other branches of continuum mechanics. The research of the theory of integro-
di�erential equations was carried out by many authors. The foundations of the hereditary theory of
elasticity are laid in the works of Boltzmann and Volterra.

As we know, V. Volterra used integro-di�erential equations in problems of hereditary elasticity
[24], developed the theory of hereditary elasticity in the case of hereditary vibrations [25], investi-
gated the phenomena of electric and magnetic hysteresis [26], substantiated the existence of periodic
�uctuations in biological associations, and created a general theory of functionals [27].

Numerous researches of the authors are devoted to integro-di�erential equations, which form the
basis of the theory of oscillatory processes in natural science and technology, we note books [14], [18].
It is known that if the oscillation phenomenon is hereditary in nature, then the equation the motion
of a string at a certain moment m(τ) is speci�ed by a change in the torsion angle of a string, and
the eriditic biological phenomenon of "predator-prey" related to the law of oscillation [14], [15]. It
should be noted that the mathematical model of hereditary phenomena described by the system of
equations

dx

dτ
= P (τ)x(τ) +

τ∫
τ−ε

Q(τ, s)x(s)ds+ ψ

τ, x(τ),

τ∫
τ−ε

Q(τ, s)x(s)ds

 (1.3)

is the �rst approximation of the desired n-vector-function x(τ) with given n× n-matrices P (τ) and
Q(τ, s) and the n-vector-function ψ(τ, x, y), where ε is the hereditary period of the phenomenon.
Since the process is oscillatory, as a rule, the matrix P (τ) and the vector-function ψ(τ, x, y), in the
general case are almost periodic in τ . The kernel Q(τ, s) has the property of the diagonal periodicity
in (τ, s) ∈ R× R.

Particularly, if the indicated input data of system (1.3) are quasiperiodic in τ ∈ R with the
frequency basis ν0 = θ−1, ν1 = ω−1

1 , . . . , νm = ω−1
m , then in the theory of �uctuations, the question

of the existence of quasiperiodic solutions x(τ) of system (1.3) with a modi�ed frequency basis is
important, namely with ν̃0 = θ−1, ν̃1 = c1ω

−1
1 , . . . , ν̃m = cmω

−1
m . We assume that 0 < ε < θ = ω0 <

ω1 < . . . < ωm.

The well-known theorem of G. Bohr plays an important role in solving this problem. It de-
cribes the deep connection between quasiperiodic functions and periodic functions of many variables
(multiperiodic functions). According to this theorem, the matrix and vector functions are de�ned
A = A(τ, t), K = K(τ, t, s, σ), σ = t − cτ + cs, f = f(τ, t, u), u = u(τ, t) with the properties:

A|t=cτ = P (τ), K|t=cτ = Q(τ, s), f |t=cτ = ψ

(
τ, x(τ),

τ∫
τ−ε

Q(τ, s)x(s)ds

)
, u|t=cτ = x(τ) and the

operator d/dτ is replaced by the di�erentiation operator Dc of form (1.2).

Thus, the problem of quasiperiodic �uctuations in system (1.3) becomes equivalent to the problem
on the existence of (θ, ω)-periodic in (τ, t) solutions u(τ, t) of the system partial integro-di�erential
equations of form (1.1) with di�erentiation operator (1.2).

In [2], [6], [8] the questions of qualitative theory of integro-di�erential equations were investigated
and in [3] the solution of integro-di�erential equations via the kernel resolvent is given. The existence
of periodic solutions of nonlinear integro-di�erential systems is considered in [5], [7]. For the systems
with aftere�ect, the existence of families of forced motions was established, which, under unlimited
increase in time, exponentially tend to periodic modes [22].

Integro-di�erential equations describe rheological processes [9], [17], hereditary elasticity of the
model, creep of the metal at high temperatures [17]. Integro-di�erential equations can be applied in
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descriptions of the processes with aftere�ects [21], are used in the problems of the theory of heredity
[15], and arise in the problems of the interaction of waves of electromagnetic �elds.

At present, a development of the theory of nonlinear integro-di�erential equations with partial
derivatives causes a certain interest in studying multiperiodic and almost periodic solutions of such
equations. The study of multiperiodic and almost periodic oscillations is of theoretical and practical
importance in science and technology. The variety of problems in mechanics, physics, and technology
that describe periodic and almost periodic processes leads to the study of nonlinear integro-di�erential
equations containing a small parameter. To the researh of such issues works of many authors are
devoted. Monograph [11] is devoted to the study of almost periodic solutions of equation systems
with quasiperiodic right-hand sides. In monograph [23], multiperiodic and almost periodic solutions
of systems of partial di�erential evolution equations containing various small parameters are inves-
tigated both in time and in spatial variables. The existence and construction of multiperiodic and
pseudoperiodic solutions of the system of integro-di�erential equations were studied in [20], [21]. In
[4], the existence of multiperiodic in spatial variables solutions of a countable system of quasilinear
equations was established. Some results in this direction were obtained in [1], [12], [13], [16].

2 Linear systems of integro-di�erential equations

We start with recalling necessary information on the zeros of the di�erential operator Dc.

By a zero of the operator Dc we mean a smooth function u = u(τ, t) ∈ C(1,e)
τ,t (R× Rm) satisfying

the equation

Dcu = 0. (2.1)

It is easy to verify that the base zero of the operator Dc is the vector-function

h(s, τ, t) = t− cτ + cs (2.2)

with the parameter s ∈ R that has the following properties

h(s, s, t) = t,

h(s, σ, h(σ, τ, t)) = h(s, τ, t),

h(s+ θ, τ + θ, t+ qω) = h(s, τ, t) + qω, q ∈ Zm,

(2.3)

where Zm is the set of integer m-vectors.

A zero of the operator Dc with the initial data u|τ=τ0 = u0(t) ∈ C(e)
t (Rm) is represented by the

relation

u(τ 0, τ, t) = u0(h(τ 0, τ, t)). (2.4)

The condition

p0cθ − pω = 0, (2.5)

means commensurability of the vectors cθ and ω, where (p0, p) ∈ Z × Zm, pω = (p1ω1, . . . , pmωm).

If condition (2.5) is satis�ed and the initial function u0(t) is ω-periodic, then

u0(t+ qω) = u0(t) ∈ C(e)
t (Rm), q ∈ Zm.

Solution (2.4) of equation (2.1) is a (p0θ, pω)-periodic zero of Dc.

If the vectors c and (θ, ω) do not satisfy the condition of form (2.5), then the (q0θ, qω)-periodic
zeros of the operator Dc are constants: u = const, where (q0, q) ∈ Z × Zm.
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For the linear homogeneous integro-di�erential system

Dcu(τ, t) = A(τ, t)u(τ, t) +

τ∫
τ−ε

K(τ, t, s, h(s, τ, t))u(s, h(s, τ, t))ds (2.6)

with a certain constant period of heredity ε > 0 and under the conditions

A(τ + θ, t+ qω) = A(τ, t) ∈ C(1,2e)
τ,t (R× Rm), q ∈ Zm (2.7)

K(τ + θ, t+ qω, s, σ) = K(τ, t, s+ θ, σ + qω)

= K(τ, t, s, σ) ∈ C(1,2e,1,2e)
τ,t,s,σ (R× Rm × R× Rm), q ∈ Zm,

(2.8)

by the method of successive approximations, we can determine the resolving operator U(s, τ, t) with
the initial condition U(s, s, t) = E and which has the properties

DcU(s, τ, t) = A(τ, t)U(s, τ, t) +

τ∫
τ−ε

K(τ, t, ξ, h(ξ, τ, t))U(s, ξ, h(ξ, τ, t))dξ, (2.9)

U(s+ θ, τ + θ, t+ qω) = U(s, τ, t), q ∈ Zm, (2.10)

where E is the identity n-matrix.
If for system (2.6) we consider the initial problem with the condition

u|τ=τ0 = u0(t) ∈ C(e)
t (Rm), (2.11)

then under conditions (2.7) and (2.8) we can establish the existence of a unique solution u = u(τ 0, τ, t)
of the form

u(τ 0, τ, t) = U(τ 0, τ, t)u0(h(τ 0, τ, t)), (2.12)

where τ 0 ∈ R.
For the (θ, ω)-periodicity of a solution u = u(τ, t) of system (2.6) with the initial condition

u(0, t) = u0(t), based on relations (2.7)�(2.12), we can prove that the initial function u0(t) is an
ω-periodic solution of the linear functional-di�erence system

U(0, θ, t)u0(t− cθ) = u0(t) (2.13)

with the di�erence c′ = cθ in t belongs to the class of smooth functions: u0(t) ∈ C(e)
t (Rm).

In the case of splitting the resolving operator U(s, τ, t) into the sum of two matrices U−(s, τ, t)
and U+(s, τ, t), possessing properties similar to (2.9) and (2.10) and satisfying the estimates

|U−(s, τ, t)| ≤ ae−α(τ−s), τ ≥ s; |U+(s, τ, t)| ≤ aeα(τ−s), τ ≤ s (2.14)

with some constants a ≥ 1 and α > 0. System (2.6) is called a system possessing the property of
exponential dichotomy.

By virtue of conditions (2.7), (2.8) and (2.13), we can prove that the system (2.6), which has a
property of exponential dichotomy, has no (θ, ω)-periodic solutions except zero.

Under the same conditions (2.7), (2.8) and (2.14), it can be established that a linear inhomoge-
neous integro-di�erential system

Dcu(τ, t) = A(τ, t)u(τ, t) +

τ∫
τ−ε

K(τ, t, s, h(s, τ, t))u(s, h(s, τ, t))ds+ f(τ, t) (2.15)
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with n-vector-function f(τ, t) satisfying the requirements

f(τ + θ, t+ qω) = f(τ, t) ∈ C(0,e)
τ,t (R× Rm), q ∈ Zm (2.16)

has a unique solution

u(τ 0, τ, t) = U(τ 0, τ, t)u0(h(τ 0, τ, t)) +

τ∫
τ0

U(s, τ, t)f(s, h(s, τ, t))ds (2.17)

for any initial function u0(t) ∈ C(e)
t (Rm) and has a unique (θ, ω)-periodic solution

u∗(τ, t) =

+∞∫
−∞

G(s, τ, t)f(s, h(s, τ, t))ds (2.18)

in the case of exponential dichotomy of system (2.6).
Here the matrix function G(s, τ, t) has the structure

G(s, τ, t) =

{
U−(s, τ, t), τ ≥ s,

−U(s, τ, t), τ < s
(2.19)

and has the following properties
1.

DcG(s, τ, t) = A(τ, t)G(s, τ, t)

+

τ∫
τ−ε

K(τ, t, ξ, h(ξ, τ, t))G(s, ξ, h(ξ, τ, t))dξ, s 6= τ.
(2.20)

2.
G(s− 0, τ, t)−G(s+ 0, τ, t) = E. (2.21)

3.

|G(s, τ, t)| ≤ ae−α|τ−s|,

∣∣∣∣ ∂∂tjG(s, τ, t)

∣∣∣∣ ≤ ae−α|τ−s|,

j = 0,m, a = const ≥ 1, α = const > 0.

(2.22)

4.
G(s+ θ, τ + θ, t+ qω) = G(s, τ, t), q ∈ Zm. (2.23)

The matrix G(s, τ, t) de�ned by (2.19) and satisfying conditions (2.20)�(2.23) is called the Green
matrix of the problem on (θ, ω)-periodic solutions for systems of form (2.15) with constant term
(2.16).

3 Solvability of the initial problem for a quasilinear system of integro-
di�erential equations

Representing system (1.1) in the form

Dcu(τ, t) = A(τ, t)u(τ, t) + (Bu)(τ, t) + f(τ, t, u(τ, t), (Bu)(τ, t)),

(Bu)(τ, t) =

τ∫
τ−ε

K(τ, t, s, h(s, τ, t))u(s, h(s, τ, t))ds
(3.1)
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we consider the initial problem with the condition

u|τ=τ0 = u0(t) ∈ Sωρ (3.2)

in the space Sω∆,δ of ω-periodic in t, continuously di�erentiable in t ∈ Rm and τ ∈ Rδ =
{τ ∈ R : |τ − τ 0| < δ} n-vector-functions u(τ, t):

u(τ, t+ qω) = u(τ, t) ∈ C(1,e)
τ,t (Rδ × Rm),

for which ||u|| ≤ ∆.

Here ||u|| = ||u||0 +
m∑
j=0

∥∥∥ ∂u∂tj ∥∥∥0
, ||u||0 = sup|u(τ, t)| for (τ, t) ∈ Rδ × Rm, where Rδ is the closure

of Rδ, t0 = τ , δ > 0 and ∆ > 0 are constants, Sωρ is the space of all ω-periodic functions u0(t)
continuously di�erentiable in t ∈ Rm, for which ||u0|| ≤ ρ with the constant ρ from the interval
0 < ρ < ∆. Obviously, Sωρ ⊂ Sω∆,δ.

Let Dc, A and B in system (3.1) have the same meanings, and the n-vector-function f(τ, t, u, v)
have the following properties

f(τ + θ, t+ qω, u, v) = f(τ, t, u, v) ∈ C1,2e,2ẽ,2ẽ
τ,t,u,v (R× Rm × Rn

∆ × Rn

∆), q ∈ Zm, (3.3)

where the vectors e and ẽ have the unit components and they di�er from each other in their sizes m
and n, Rn

∆ = {u ∈ Rn : |u| < ∆}, Rn

∆ is a closure Rn
∆.

It is easy to show that, in accordance with the structure of solution (2.17) of the initial problem
for linear system (2.15), problem (3.1)�(3.2) is equivalent to the unique solvability of the integral
equation

u(τ, t) = U(τ 0, τ, t)u0(h(τ 0, τ, t))

+

τ∫
τ0

U(s, τ, t)f(s, h(s, τ, t), u(s, h(s, τ, t)), (Bu)(s, h(s, τ, t)))ds
(3.4)

in the space Sω∆,δ0 with some constant δ0 from the interval 0 < δ0 ≤ δ.
In order to investigate the smoothness of the solution u = u(τ, t) of system (3.4), it is necessary

to determine the matrix equation for the Jacobi matrix
(
∂u
∂t

)
(τ, t) of the desired solution u = u(τ, t)

and its initial condition ∂u
∂t
|τ=τ0 .

Obviously, the Jacobi matrix J(τ, t) =
(
∂u
∂t

)
(τ, t) of the vector function u(τ, t) =

{u1(τ, t), ..., un(τ, t)} in t = (t1, ..., tm) can be represented as a row vector of column vectors of

the form ∂u(τ,t)
∂t

=
(
∂u
∂t1
, ..., ∂u

∂tm

)
. Here ∂u

∂tj
=
[
∂u1(τ,t)
∂tj

, ..., ∂un(τ,t)
∂tj

]
, and

∣∣∂u
∂t

∣∣ =
m∑
j=1

∣∣∣ ∂u∂tj ∣∣∣.
When computing the Jacobi matrix of the product of the matrix T = [Tij]n×n and vector u =

(u1, ..., un), it is convenient to represent the matrix T in the form of a column vector T = [(T1), ..., (Tn)]
of row vectors (Ti) = (Ti1, ..., Tin), i = 1, n.

Then the Jacobi matrix JT of the matrix T can be represented as the matrix of the vector elements
∂(Ti)/∂tj

JT =

[
∂(Ti)

∂tj

]
n×m

,

and ∂(Tu)/∂t is calculated according to the rule

∂

∂t
(Tu) = T

∂u

∂t
+

[〈
∂Ti
∂tj

, u

〉]
≡ T

∂u

∂t
+
(
Ṫ u
)

(3.5)
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by using the operation of the 〈, 〉-scalar product, where
(
Ṫ u
)

=
[〈

∂Ti
∂tj
, u
〉]
. Therefore, by virtue of

(3.5), we have the following:

∂

∂t
(Bu)(τ, t) =

τ∫
τ−ε

K(τ, t, s, h(s, τ, t))

(
∂u

∂t
(s, h(s, τ, t))

)
ds

+

τ∫
τ−ε

{[〈
∂Ki

∂tj
, u

〉]
(τ, t, s, h(s, τ, t)) +

[〈
∂Ki

∂σj
, u

〉]
(τ, t, s, h(s, τ, t))

}
ds

=

(
B
∂u

∂t

)
(τ, t) +

(
Ḃu
)

(τ, t) + (B′u) (τ, t),

(3.6)

where, when di�erentiating σ = h(s, τ, t) in tj, we used the equalities ∂hα/∂tβ = 1 at α = β and
∂hα/∂tβ = 0 at α 6= β,

Ḃu =

[〈
∂Ki

∂tj
, u

〉]
, B′u =

[〈
∂Ki

∂σj
, u

〉]
.

By virtue of (3.1)�(3.2), the Jacobi matrix ∂u
∂t

of the sought solution u = u(τ, t) satis�es the
matrix equation

Dc

(
∂u

∂t

)
(τ, t) = A(τ, t)

(
∂u

∂t

)
(τ, t) +

(
B
∂u

∂t

)
(τ, t)

+F

(
τ, t, u(τ, t), (Bu)(τ, t),

∂u

∂t
(τ, t)

) (3.7)

and the condition
∂u

∂t
|τ=τ0 =

(
∂u0

∂t

)
(t). (3.8)

Here the n×m-matrix function F
(
τ, t, u, (Bu), ∂u

∂t

)
constructed according to the formulas (3.5) and

(3.6), applied to A, (Bu) and f(τ, t, u, Bu); moreover, it has form

F

(
τ, t, u, (Bu),

∂u

∂t

)
=
∂A

∂t
u+

(
Ḃu
)

+ (B′u) +
∂f

∂t
+
∂f

∂u

∂u

∂t

+
∂f

∂v

{(
B
∂u

∂t

)
+
(
Ḃu
)

+ (B′u)

}
.

(3.9)

Thus, the matrix ∂u
∂t

is a solution to problem (3.7)�(3.8) with vector-function (3.9).
Now, similarly, we de�ne the initial problem for the partial derivative ∂u

∂τ
(τ, t) in τ of the sought

solution u = u(τ, t) of integral system (3.4).
Supposing that C = diag(c1, . . . , cm),

K0(τ, t) = K(τ, t, τ, t),

Kε(τ, t) = K(τ, t, τ − ε, h(τ − ε, τ, t)),

(B0u) =

τ∫
τ−ε

∂K

∂τ
(τ, t, s, h(s, τ, t))u(s, h(s, τ, t))ds,

(B
′

cu) =

[〈
∂Ki

∂σj
C, u

〉]
, j = 1,m
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we have
∂

∂τ
(Bu)(τ, t) = K0(τ, t)u(τ, t)−Kε(τ, t)u(τ − ε, h(τ − ε, τ, t))

+ (B0u) (τ, t)−
(
B
′

cu
)

(τ, t)−
(
B
∂u

∂t
C

)
(τ, t).

Assuming continuous di�erentiability of the solution u = u(τ, t) of system (3.4), taking into
account its equivalence with problem (3.1)�(3.2) and di�erentiating system (3.1) in τ , we obtain

Dc
∂u

∂τ
(τ, t) = A(τ, t)

∂u

∂τ
(τ, t) +

(
B
∂u

∂τ

)
(τ, t) + ϕ

(
τ, t, u, (Bu),

∂u

∂τ
,
∂u

∂t

)
, (3.10)

where the vector-function ϕ
(
τ, t, u, (Bu), ∂u

∂τ
, ∂u
∂t

)
is de�ned by the relation

ϕ

(
τ, t, u, (Bu),

∂u

∂τ
,
∂u

∂t

)
=
∂A(τ, t)

∂τ
u(τ, t)−

(
B
∂u

∂τ

)
(τ, t) +

∂

∂τ
(Bu)(τ, t)+

+
∂f(τ, t, u, (Bu))

∂τ
+
∂f(τ, t, u, (Bu))

∂u

∂u

∂τ
+
∂f(τ, t, u, (Bu))

∂v

∂

∂τ
(Bu).

(3.11)

The derivative ∂u
∂τ

of the sought solution u = u(τ, t) in τ determined by system (3.10), by virtue of
condition (3.2), satis�es the initial condition

∂u

∂τ
|τ=τ0 = 0. (3.12)

Under conditions (2.7), (2.8) and (3.3), the matrix function F = F
(
τ, t, u, (Bu), ∂u

∂t

)
and the

vector-function ϕ = ϕ
(
τ, t, u, (Bu), ∂u

∂τ
, ∂u
∂t

)
have the following properties

ϕ(τ + θ, t+ qω, u, v, w,W ) = ϕ(τ, t, u, v, w,W ) ∈
∈ C(0,e,ẽ,ẽ,ẽ,ê)

τ,t,u,v,w,W (R× Rm × Rn
∆ × Rn

∆ × Rnm), q ∈ Zm,
(3.13)

F (τ + θ, t+ qω, u, v,W ) = F (τ, t, u, v,W ) ∈
∈ C(0,e,ẽ,ẽ,ê)

τ,t,u,v,W (R× Rm × Rn
∆ × Rn

∆ × Rnm), q ∈ Zm,
(3.14)

where the smoothness of the functions with the respect to the vectors and matrices means the
smoothness with respect to their elements, and the vectors of orders e, ẽ, ê have unit elements of the
dimensions m,n,mn respectively.

Note that the functions ϕ and F are linear with the respect to the arguments w and W .
Hereinafter, similarly to the transition from problem (3.1)�(3.2) to system (3.4), from problems

(3.10)�(3.12) and (3.7)�(3.8), we pass to the equivalent integral systems

w(τ, t) =

τ∫
τ0

U(s, τ, t)ϕ(s, h(s, τ, t), u(s, h(s, τ, t)), v(s, h(s, τ, t)),

w(s, h(s, τ, t),W (s, h(s, τ, t))))ds,

(3.15)

W (τ, t) = U(τ 0, τ, t)W 0(h(τ 0, τ, t)) +

τ∫
τ0

U(s, τ, t)×

×F (s, h(s, τ, t), u(s, h(s, τ, t)), v(s, h(s, τ, t)),W (s, h(s, τ, t)))ds,

(3.16)
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where W 0(t) = ∂u0(t)
∂t

, v(τ, t) = (Bu)(τ, t), w(τ, t) = ∂u(τ,t)
∂τ

, W (τ, t) = ∂u(τ,t)
∂t

. Now we investigate the
problem of the existence of a solution ξ(τ, t) = (u(τ, t), w(τ, t),W (τ, t)) continuous in (τ, t) ∈ Rδ×Rm

and ω-periodic in t ∈ Rm, integral systems of integral equations (3.4), (3.15), (3.16) satisfying the
inequality ||ξ|| = ||u||0 + ||w||0 + ||W ||0 ≤ ∆ for (τ, t) ∈ Rδ×Rm. By virtue of conditions (3.3), (3.13),
(3.14), the function Φ(τ, t, ξ) = (f(τ, t, u, v), ϕ(τ, t, u, v, w,W ), F (τ, t, u, v,W )) has the properties

Φ(τ, t+ qω, ξ) = Φ(τ, t, ξ) ∈ C(0,e,e)
τ,t,ξ (Rδ × Rm × Rn

∆), q ∈ Zm, (3.17)

where e, e are vectors with unit components of the dimensions m and n = n+m+ nm.
Condition (3.17) implies the Lipschitz condition

|Φ(τ, t, ξ)− Φ(τ, t, η)| ≤ l|ξ − η| (3.18)

with some constant l > 0 for (τ, t) ∈ Rδ × Rm, ξ, η ∈ Rn

∆.
Next, suppose that |Φ(τ, t, 0)| ≤ r, by virtue of condition (3.18), we have

|Φ(τ, t, ξ)| ≤ r + l∆, (τ, t, ξ) ∈ Rδ × Rm × Rn

∆, (3.19)

where r = const > 0.
By notation ξ0(t) = (u0(t), 0,W 0(t)), system {(3.4), (3.15), (3.16)} can be represented as a single

integral equation

ξ(τ, t) = U(τ 0, τ, t)ξ0(h(τ 0, τ, t)) +

τ∫
τ0

U(s, τ, t)Φ(s, h(s, τ, t), ξ(s, h(s, τ, t)))ds, (3.20)

which we consider in the space Sω∆,δ of n-vector-functions ξ = ξ(τ, t) continuous in (τ, t) ∈ Rδ×Rm and

ω-periodic in t ∈ Rm and bounded with respect to the norm ||ξ|| = sup|ξ(τ, t)| for (τ, t) ∈ Rδ × Rm,
where U(τ 0, τ, t) = diag [U(τ 0, τ, t), U(τ 0, τ, t), U(τ 0, τ, t)].

Since U = U(τ 0, τ, t) at τ = τ 0 turns into the identity matrix E, |ξ0| ≤ ρ, then

|Uξ0| ≤ |ξ0 + [U − E]ξ0| ≤ (1 + α)ρ (3.21)

where α→ 0 at δ → 0, |τ − τ 0| ≤ δ.
Then, by virtue of estimates (3.19) and (3.21) we obtain

|ξ(τ, t)| ≤ (1 + α)[ρ+ (r + l∆)δ].

Since the parameters ρ and δ are controlled by us, we can assume that the conditions

(1 + α)lδ < 1, (1 + α)[ρ+ (r + l∆)δ] ≤ ∆. (3.22)

are satis�ed.
Therefore, the operator Q is de�ned by the relation

(Qξ)(τ, t) = U(τ 0, τ, t)ξ0(h(τ 0, τ, t))+

+

τ∫
τ0

U(s, τ, t)Φ(s, h(s, τ, t), ξ(s, h(s, τ, t)))ds,
(3.23)

maps space Sω∆,δ into itself and is a contraction. Then it has a unique �xed point ξ
∗(τ, t) = (Qξ∗)(τ, t)

in Sω∆,δ, which, by virtue of (3.23), is the only solution to equation (3.20).
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Obviously, the �rst component u∗(τ, t) of the solution is the unique solution ξ∗(τ, t) =
(u∗(τ, t), w∗(τ, t),W ∗(τ, t)) to integral system (3.4), while the other components w∗(τ, t) andW ∗(τ, t),
being solutions of systems (3.15) and (3.16), are related to the �rst component by the relations

w∗(τ, t) =
∂u∗(τ, t)

∂τ
,W ∗(τ, t) =

∂u∗(τ, t)

∂t

by virtue of systems (3.10) and (3.7) with initial conditions (3.12) and (3.8) for them.
Thus, the following theorem is proved.

Theorem 3.1. Under conditions (2.7), (2.8), (3.3) and (3.22), initial problem (3.1)�(3.2) is uniquely
solvable in the space Sω∆,δ of n-vector-functions u(τ, t) that are ω-periodic in t, continuously di�eren-

tiable in (τ, t) ∈ Rδ×Rm and are such that the norm ||u|| = ||u||0 +
∥∥∂u
∂τ

∥∥
0

+
∥∥∂u
∂t

∥∥
0
is bounded by the

constant ∆ > 0, where ||u||0 = sup|u(τ, t)| for (τ, t) ∈ Rδ × Rm.

4 Multiperiodic solution of a quasilinear system of integro-di�erential
equations

We have investigated the problem on the existence of multiperiodic solutions of system (3.1) when
condition of exponential dichotomy (2.14) of homogeneous system (2.6) is satis�ed.

Then, constructing the Green function G(s, τ, t) according to formula (2.19) with properties
(2.20)�(2.23), in accordance with the structure of a multiperiodic solution (2.18) of linear inhomoge-
neous system (2.15), we introduced the operator

(Tu)(τ, t) =

+∞∫
−∞

G(s, τ, t)f(s, h(s, τ, t), u(s, h(s, τ, t)), (Bu)(s, h(s, τ, t)))ds (4.1)

de�ned on the space Sθ,ω∆ of continuous (θ, ω)-periodic by (τ, t) ∈ Rδ ×Rm n-vector-functions whose
norm ||u||0 = sup|u(τ, t)| for (τ, t) ∈ Rδ × Rm is bounded by the number ∆ > 0.

Under condition (3.3), the vector function f = f(τ, t, u, Bu) satis�es the Lipschitz condition with
respect to u with some constant l. Therefore, for u, v ∈ Sθ,ω∆ we have the inequality

|f(τ, t, u, Bu)− f(τ, t, v, Bv)| ≤ l|u− v|. (4.2)

Then, by condition (4.2), we have the estimate

|f(τ, t, u, Bu)| ≤ |f(τ, t, 0, 0)|+ l|u| ≤ r + l∆, (4.3)

where r = ||f(τ, t, 0, 0)||0 > 0.
Let the parameters α, a, l, r,∆ be, such that

a(r + l∆) < α∆. (4.4)

Theorem 4.1. Under conditions (2.7), (2.8), (2.14), (3.3) and (4.4), the operator T de�ned by
formula (4.1) has a unique �xed point u∗(τ, t) = Tu∗(τ, t) in the space Sθ,ω∆ .

In virtue of the conditions the theorem and relations (4.2) and (4.3), it is easy to show that
operator (4.1) maps the space Sθ,ω∆ into itself and is a contraction. Obviously, the space Sθ,ω∆ is
complete. Therefore, by the Banach theorem, the operator T in Sθ,ω∆ has a unique �xed point.
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Now, along with the operator T , we introduce the operators T0 and T∗ de�ned by

(T0w)(τ, t) =

+∞∫
−∞

G(s, τ, t)ϕ(s, h(s, τ, t), u(s, h(s, τ, t)), (Bu)(s, h(s, τ, t)),

w(s, h(s, τ, t)),W (s, h(s, τ, t)))ds,

(4.5)

(T∗w)(τ, t) =

+∞∫
−∞

G(s, τ, t)F (s, h(s, τ, t), u(s, h(s, τ, t)),

(Bu)(s, h(s, τ, t)),W (s, h(s, τ, t)))ds,

(4.6)

where w(τ, t) is the n-vector, W (τ, t) = (w1(τ, t), . . . , wn(τ, t)) is the row vector with the vec-
tors components wj(τ, t) = [w1j(τ, t), . . . , wnj(τ, t)] , j = 1, n. The functions ϕ(τ, t, u, v, w,W ) and
F (τ, t, u, v,W ) are de�ned by the relations

ϕ(τ, t, u, v, w,W ) =
∂A

∂τ
u+ v − (Bw) +

∂f

∂τ
+
∂f

∂u
w +

∂f

∂v

∂

∂τ
(Bu),

∂

∂τ
(Bu) = K0u−Kεuε + (B0u)− (B

′

cu)− (BWC), (4.7)

where uε = u(τ, t, τ − ε, h(τ − ε, τ, t)), C = diag[c1, . . . , cm], and

F (τ, t, u, v,W ) =
∂A

∂t
u+

(
Ḃu
)

+ (B′u) +
∂f

∂t
+
∂f

∂u
W+

+
∂f

∂v

{
(BW ) +

(
Ḃu
)

+ (B′u)
} (4.8)

in accordance with expressions (3.11) and (3.9), (τ, t) ∈ Rδ × Rm, u ∈ Sθ,ω∆ , v ∈ Sθ,ω∆ , W ∈ Sθ,ω∆ ×
· · · × Sθ,ω∆ = Sm,θ,ω∆ .

Obviously, by virtue of conditions (2.7), (2.8) and (3.3), these functions satisfy the Lipschitz
condition with respect to ξ = (u,w,W ). Moreover, we take l as the Lipschitz constant and assume
that the norms of the functions ϕ(τ, t, 0, 0, 0, 0) and F (τ, t, 0, 0, 0) are bounded by a constant r > 0.

We note that the operator

Q∗ξ = (Tu, T0w, T∗W ), (4.9)

is obtained by combining operator (4.1) and additional operators (4.5) and (4.6). It is de�ned for
(τ, t) ∈ Rδ × Rm, ξ = (u,w,W ) ∈ Sθ,ω∆ × Sθ,ω∆ × Sm,θ,ω∆ = Sm+2,θ,ω

∆ . Therefore, operator (4.9) satis�es
the conditions

||Q∗ξ|| ≤ a

α
(r + l∆) < ∆, ||Q∗ξ −Q∗η|| ≤ al

α
||ξ − η||, (4.10)

for ξ, η ∈ Sm+2,θ,ω
∆ , ||ξ|| = ||u||0 + ||w||0 + ||W ||0, ||W ||0 =

m∑
j=1

||wj||0.

Obviously, the space Sm+2,θ,ω
∆ is complete. Under condition (4.4), the operator Q∗ de�ned by

formula (4.9), by virtue of (4.10), maps the space Sm+2,θ,ω
∆ into itself and is contractive. Therefore,

there is a unique �xed point ξ∗ = Q∗ξ∗ ∈ Sm+2,θ,ω
∆ for which we have the componentwise system of

identities

u∗(τ, t) = (Tu∗)(τ, t), w∗(τ, t) = (T0w
∗)(τ, t),W ∗(τ, t) = (T∗W

∗)(τ, t), (4.11)

where (u∗(τ, t), w∗(τ, t),W ∗(τ, t)) = ξ∗(τ, t).
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Then, in accordance with the general theory of di�erential equations in Banach spaces, relations
(4.11) imply the continuous di�erentiability of the �xed point u∗(τ, t) of the operator T with respect
to τ and t, and

∂u∗(τ, t)

∂τ
= w∗(τ, t)

∂u∗(τ, t)

∂t
= W ∗(τ, t)

(4.12)

by (3.7)�(3.9), (3.10)�(3.11), (4.7) and (4.8).
Thus, the following theorem on the solvability of the operator equation

u(τ, t) = (Tu)(τ, t) (4.13)

in the space of smooth multiperiodic functions Sθ,ω∆ is proved.

Theorem 4.2. Under the assumptions of Theorem 4.1, the �xed point u∗(τ, t) of the operator T is
continuously di�erentiable with respect to (τ, t) ∈ Rδ × Rm, and relations (4.12) are valid.

Now we can prove the following theorem on the existence of a unique multiperiodic solution to
system of integro-di�erential equations (1.1).

Theorem 4.3. Suppose that, under conditions (2.7) and (2.8), linear homogeneous system of integro-
di�erential equations (2.6) possess exponential dichotomy property (2.14). Then quasilinear system of
integro-di�erential equations (1.1) with nonlinearity possessing property (3.3) under condition (4.4)
has a unique (θ, ω)-periodic solution whose norm is bounded by the number ∆ > 0.

The problem of the existence of a unique (θ, ω)-periodic solution for the system (1.1) is equivalent
to the problem of unique solvability of operator equation (4.13) with operator (4.1) in the space Sθ,ω∆

of smooth (θ, ω)-periodic vector-functions.
Under the assumptions of Theorem 4.3, Theorem 4.1 implies the unique solvability of system

(4.13) in the space Sθ,ω∆ of functions continuous in (τ, t) and ω-periodic in t ∈ Rm, and Theorem 4.2,
together with the unique solvability, implies the di�erentiability of its solution in (τ, t) ∈ Rδ × Rm.
Therefore, system (1.1) has a unique (θ, ω)-periodic solution whose norm is bounded by the number
∆.

In conclusion, we consider system (1.1) along the characteristic t = h(τ, τ 0, t0) with a �xed initial
point (τ 0, t0). Then the operator Dc acting on the function u(τ, t) converts to the operator of the
full total derivative of d/dτ of the function u(τ, h(τ, τ 0, t0)) = ũ(τ). Furthemore, we suppose that

A(τ, h(τ, τ 0, t0)) = Ã(τ),

K(τ, h(τ, τ 0, t0), s, h(s, τ 0, t0)) = K̃(τ, s),

f

τ, h(τ, τ 0, t0), ũ(τ),

τ∫
τ−ε

K̃(τ, s)ũ(s)ds

 = f̃

τ, ũ(τ),

τ∫
τ−ε

K̃(τ, s)ũ(s)ds

 .

Then from system (1.1), we have the following system of ordinary integro-di�erential equations of
the form

dũ(τ)

dτ
= Ã(τ)ũ(τ) +

τ∫
τ−ε

K̃(τ, s)ũ(s)ds+ f̃

τ, ũ(τ),

τ∫
τ−ε

K̃(τ, s)ũ(s)ds

 . (4.14)

Then for system (4.14) by Theorem 4.3 we obtain the following conclusion.
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Corollary 4.1. Let the assumptions of Theorem 4.3 be satis�ed. Then system of ordinary integro-
di�erential equations (4.14), under the assumption of a rational incommensurability of the frequencies
ν̃0 = θ−1, ν̃j = cjω

−1
j , j = 1,m, has a unique quasiperiodic solution ũ∗(τ) = u∗(τ, h(τ, τ 0, t0)) with the

same frequencies, whose norm is bounded by the number ∆ > 0.

Corollary 4.1 can be veri�ed on the basis of G. Bohr's well-known theorem on the connection of
multiperiodic and quasiperiodic functions.
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