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VAGIF SABIR oglu GULIYEV

(to the 65th birthday)

On February 22, 2022 was the 65th birthday of Vagif Sabir oglu Guliyev,
editor-in-chief of the Transactions of the Azerbaijan National Academy of Science,
Issue Mathematics, Series of physical-technical and mathematics science (Scopus,
Q3), deputy editor-in-chief of the Applied and Computational Mathematics (Web
of Science, Q1), deputy director of the Institute of Applied Mathematics (IAM)
of the Baku State University (BSU), head of the Department of Mathematical
Analysis at the Institute of Mathematics and Mechanics (IMM) of the Azerbaijan
National Academy of Sciences (ANAS), member of the Editorial Board of the
Eurasian Mathematical Journal.

V.S. Guliyev was born in the city of Salyan in Azerbaijan. In 1978 Vagif
Guliyev graduated from the Faculty of Mechanics and Mathematics of the Azerbaijan State University
(now the Baku State University) with an honors degree and then completed his postgraduate studies
at this university. His scienti�c supervisors were distinguished mathematicians A.A. Babayev and
S.K. Abdullayev. In 1983 he defended his PhD thesis at the BSU. From 1983 he continued his
scienti�c activities at the V.A. Steklov Mathematical Institute of the Academy of Sciences of the
USSR. In 1987-1991 he was in internship at this institute and in 1994 defended there his DSc thesis.

From 1983 to 1995 he worked as assistant, a senior lecturer, docent and from 1995 to 2018 as a
professor of Mathematical Analysis Chair of the BSU. In 1995-2008 he worked on part-time basis
at the Institute of the IMM. From 2008 to 2014 he was a chief researcher of the Department of
Mathematical Analysis of the IMM, from 2014 to the present day he is the head of this department.

In 2014 V.S. Guliyev was elected a corresponding member of the ANAS.
From 2015 to 2019, he worked as deputy director on science at the IMM. From 2019 to the present

day, he has been working as a chief researcher at the IAM. Since May 2021, he has been working as
a deputy director on science of the IAM.

Professor Vagif Guliyev has been a member of the Presidium of the Higher Attestation Commis-
sion under the President of the Republic of Azerbaijan since 2014 to the present day.

V.S. Guliyev is a world recognized specialist in real and harmonic analysis, function spaces and
partial di�erential equations. He obtained seminal scienti�c results in several areas of functional
analysis and the theory of partial di�erential and integral equations. He was one of the �rst to study
local Morrey-type spaces, generalized weighted Morrey-type spaces and anisotropic Banach-valued
Sobolev spaces, for which appropriate embedding theorems were established.

Some of his results and methods are named after him: the Adams-Guliyev and Spanne-Guliyev
conditions for the boundedness of operators in Morrey-type spaces, Guliyev's method of local esti-
mates of integral operators of harmonic analysis, the Burenkov-Guliyevs conditions for the bound-
edness of operators in general local Morrey-type spaces.

On the whole, the results obtained by V.S. Guliyev have laid a groundwork for new perspec-
tive scienti�c directions in the theory of functions spaces and its applications to partial di�erential
equations.

Vagif Sabir oglu Guliyev is an author of more than 250 scienti�c publications including 2 mono-
graphs. Among his pupils there are more than 20 candidates of sciences and 5 doctors of sciences.
The results obtained by V.S. Guliyev, his pupils, collaborators and followers gained worldwide recog-
nition.

The mathematical community, many his friends and colleagues and the Editorial Board of the
Eurasian Mathematical Journal cordially congratulate Vagif Sabir oglu Guliyev on the occasion of
his 65th birthday and wish him good health, happiness and new achievements in mathematics and
mathematical education.
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Abstract. In this paper, we study a periodic boundary value problem for a partial di�erential
equation of the third order. An algorithm for �nding a solution to this boundary value problem is
proposed, and su�cient conditions for the convergence of the proposed algorithm are obtained.

DOI: https://doi.org/10.32523/2077-9879-2022-13-1-69-85

1 Introduction

On Ω = [0, ω]× [0, T ] we consider the periodic boundary value problem

∂3u

∂x2∂t
= A(x, t)

∂2u

∂x2
+B(x, t)

∂u

∂x
+ C(x, t)u+ f(x, t), (x, t) ∈ Ω, (1.1)

u(x, 0) = u(x, T ), x ∈ [0, ω], (1.2)

u(0, t) = ϕ(t), t ∈ [0, T ], (1.3)

∂u(0, t)

∂x
= ψ(t), t ∈ [0, T ], (1.4)

where (n × n) - matrix functions A(x, t), B(x, t), C(x, t), n-vector functions f(x, t) are continuous
on Ω, n-vector functions ϕ(t), ψ(t) are continuously di�erentiable on [0, T ] satisfying the conditions
ϕ(0) = ϕ(T ), ψ(0) = ψ(T ).

In particular, for A(x, t) ≡ 1, B(x, t) ≡ C(x, t) ≡ f(x, t) ≡ 0 the general solution of equation
(1.1) satisfying conditions (1.3), (1.4) has the form:

u(x, t) = ϕ(t) + ψ(t)x+ etV (x),

where V (x) is an arbitrary twice continuously di�erentiable function. Substituting it in conditions
(1.2) and taking into account the conditions ϕ(0) = ϕ(T ), ψ(0) = ψ(T ) we obtain that V (x) = 0.
Then the solution of problem (1.1)-(1.4) for A(x, t) ≡ 1, B(x, t) ≡ C(x, t) ≡ f(x, t) ≡ 0 is u(x, t) =
ϕ(t) + ψ(t)x.

Modeling of various processes of physics, mechanics, biology, and others sciences leads to the
study of boundary value problems for partial di�erential equations of the third order [1], [3], [4], [6],
[7], [12] and construction of approximate methods for �nding their solutions. Application of di�er-
ent approaches, ideas and methods leads to results formulated in di�erent terms. In this paper we
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investigate the existence of a solution to problem (1.1)-(1.4) and propose a method for constructing
an approximate solution. With the help of additional functions [2], [8]-[10] the considered problem
reduces to an equivalent problem consisting of a family of multipoint problems for an ordinary di�er-
ential equation of the �rst order with a functional parameter and an integral relation. An algorithm
for �nding an approximate solution to the problem under study is proposed and its convergence is
proved. Su�cient conditions for the existence and uniqueness of the solution of the periodic problem
for the system of partial di�erential equations of the third order are established. Works [5], [11], are
devoted to singular di�erential equations of the third order.

To �nd the solution, we introduce the function z(x, t) = ∂u(x,t)
∂x

, and we rewrite problem (1.1)-(1.4)
in the form

∂2z

∂x∂t
= A(x, t)

∂z

∂x
+B(x, t)z + C(x, t)u+ f(x, t), (x, t) ∈ Ω, (1.5)

z(x, 0) = z(x, T ), x ∈ [0, ω], (1.6)

z(0, t) = ψ(t), t ∈ [0, T ], (1.7)

u(x, t) = ϕ(t) +

x∫
0

z(ξ, t)dξ. (1.8)

For a �xed u(x, t) problem (1.5)-(1.7) is a periodic boundary value problem for a system of hyperbolic
equations of the second order.

We next introduce the notation v(x, t) = ∂z(x,t)
∂x

, and reduce problem (1.5)-(1.8) to the problem

∂v

∂t
= A(x, t)v +B(x, t)z + C(x, t)u+ f(x, t), (x, t) ∈ Ω, (1.9)

v(x, 0) = v(x, T ), x ∈ [0, ω], (1.10)

and functional relations

z(x, t) = ψ(t) +

x∫
0

v(ξ, t)dξ, (x, t) ∈ Ω, (1.11)

u(x, t) = ϕ(t) +

x∫
0

z(ξ, t)dξ, (x, t) ∈ Ω. (1.12)

To solve problem (1.9)-(1.12) we apply the method of a parametrization .

For the step h > 0 : Nh = T we partition [0, T ) =
N⋃
r=1

[(r − 1)h, rh), N = 1, 2, .... In this case,

Ω is divided into N parts. By vr(x, t), zr(x, t), ur(x, t) we denote, respectively, the restrictions
of the functions v(x, t), z(x, t), u(x, t) on Ωr = [0, ω] × [(r − 1)h, rh), r = 1, N. By λr(x) we
denote the value of the function vr(x, t) at t = (r − 1)h, i.e. λr(x) = vr(x, (r − 1)h) and denote
ṽr(x, t) = vr(x, t) − λr(x), r = 1, N . We obtain an equivalent boundary value problem for the
unknown functions λr(x):

∂ṽr
∂t

= A(x, t)ṽr + A(x, t)λr(x) +B(x, t)zr(x, t) + C(x, t)ur(x, t) + f(x, t), (1.13)

ṽr(x, (r − 1)h) = 0, x ∈ [0, ω], r = 1, N, (1.14)

λ1(x)− λN(x)− lim
t→T−0

ṽN(x, t) = 0, x ∈ [0, ω], (1.15)

λs(x) + lim
t→sh−0

ṽs(x, t)− λs+1(x) = 0, x ∈ [0, ω], s = 1, N − 1. (1.16)
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zr(x, t) = ψ(t) +

x∫
0

ṽr(ξ, t)dξ +

x∫
0

λr(ξ)dξ, (x, t) ∈ Ωr, r = 1, N, (1.17)

ur(x, t) = ϕ(t) +

x∫
0

zr(ξ, t)dξ, (x, t) ∈ Ωr, r = 1, N, (1.18)

where (1.17) is the condition of gluing functions on the internal lines of the partition.
Problem (1.13), (1.14) for �xed λr(x), zr(x, t), ur(x, t) is a one-parameter family of Cauchy prob-

lems for systems of ordinary di�erential equations, where x ∈ [0, ω], which are equivalent to the
integral equations

ṽr(x, t) =

t∫
(r−1)h

A(x, τ)ṽr(x, τ)dτ +

t∫
(r−1)h

A(x, τ)dτ · λr(x) +

t∫
(r−1)h

F (x, τ, zr, ur)dτ, (1.19)

where

t∫
(r−1)h

F (x, τ, zr, ur)dτ =

t∫
(r−1)h

B(x, τ)zr(x, τ)dτ +

t∫
(r−1)h

C(x, τ)ur(x, τ)dτ +

t∫
(r−1)h

f(x, τ)dτ.

Instead of ṽr(x, τ) we substitute the corresponding right-hand side of (1.19) and repeating this process
ν (ν = 1, 2, ...) times we obtain

ṽr(x, t) = Dνr(x, t)λr(x) + Fνr(x, t, zr, ur) +Gνr(x, t, ṽr), r = 1, N, (1.20)

where

Dνr(x, t) =

t∫
(r−1)h

A(x, τ1)dτ1 + ...+

t∫
(r−1)h

A(x, τ1)...

τν−1∫
(r−1)h

A(x, τν)dτν ...dτ1,

Fνr(x, t, zr, ur) =

t∫
(r−1)h

[
B(x, τ1)zr(x, τ1) + C(x, τ1)ur(x, τ1) + f(x, τ1)

]
dτ1+

+
ν−1∑
j=1

t∫
(r−1)h

A(x, τ1)...

τj−1∫
(r−1)h

A(x, τj)

τj∫
(r−1)h

[
B(x, τj+1)zr(x, τj+1)+

+C(x, τj+1)ur(x, τj+1) + f(x, τj+1)
]
dτj+1dτj...dτ1,

Gνr(x, t, ṽr) =

=

t∫
(r−1)h

A(x, τ1)...

τν−2∫
(r−1)h

A(x, τν−1)

τν−1∫
(r−1)h

A(x, τν)ṽr(x, τν)dτνdτν−1...dτ1,

τ0 = t, r = 1, N. Passing to the limit as t→ rh− 0 in (1.20) we have

lim
t→rh−0

ṽr(x, t) = Dνr(x, rh)λr(x) + Fνr(x, rh, zr, ur) +Gνr(x, rh, ṽr),
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x ∈ [0, ω], r = 1, N. Substituting in (1.15), (1.16) instead of lim
t→rh−0

ṽr(x, t), r = 1, N, the correspond-

ing to them right-hand sides, for the unknown functions λr(x), r = 1, N, we obtain the system of
functional equations:

Qν(x, h)λ(x) = −Fν(x, h, z, u)−Gν(x, h, ṽ), (1.21)

where Qν(x, h) =

=


I 0 . . . 0 −[I +DνN(x,Nh)]

I +Dν1(x, h) −I . . . 0 0
0 I +Dν2(x, 2h) . . . 0 0
0 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . I +Dν,N−1(x, (N − 1)h) −I

 ,

Fν(x, h, z, u) = (−FνN(x,Nh, zN , uN), Fν1(x, h, z1, u1), ..., Fν,N−1(x, (N − 1)h, zN−1, uN−1)),

Gν(x, h, ṽ) = (−GνN(x,Nh, ṽN), Gν1(x, h, ṽ1), ..., Gν,N−1(x, (N − 1)h, ṽN−1)),

and I is the unit matrix of dimension n.
For �nding a system of four functions {λr(x), ṽr(x, t), zr(x, t), ur(x, t)}, r = 1, N, we have a closed

system consisting of equations (1.21), (1.20), (1.18) and (1.17).
Assuming the invertibility of the matrix Qν(x, h) for all x ∈ [0, ω], from equation (1.21), where

ṽr(x, t) = 0, zr(x, t) = ψ(t), ur(x, t) = ϕ(t), we �nd λ(0)(x) =

= (λ
(0)
1 (x), λ

(0)
2 (x), ..., λ

(0)
N (x))′ :

λ(0)(x) = −[Qν(x, h)]−1{Fν(x, h, ψ, ϕ) +Gν(x, h, 0)
}
.

Using equation (1.20), at λr(x) = λ
(0)
r (x) we �nd the functions {ṽ(0)

r (x, t)}, r = 1, N, i.e.

ṽ(0)
r (x, t) = Dνr(x, t)λ

(0)
r (x) + Fνr(x, t, ψ, ϕ) +Gνr(x, t, 0).

The functions z
(0)
r (x, t), u

(0)
r (x, t), r = 1, N, are de�ned from the relations

z(0)
r (x, t) = ψ(t) +

x∫
0

ṽ(0)
r (ξ, t)dξ +

x∫
0

λ(0)
r (ξ)dξ, (x, t) ∈ Ωr, r = 1, N,

u(0)
r (x, t) = ϕ(t) +

x∫
0

z(0)
r (ξ, t)dξ, (x, t) ∈ Ωr, r = 1, N.

2 Main results

For the initial approximation of problem (1.13)-(1.18) we take the system (λ
(0)
r (x), ṽ

(0)
r (x, t), z

(0)
r (x, t),

u
(0)
r (x, t)), r = 1, N and construct successive approximations by using the following algorithm.
Step 1. A) Assuming that

zr(x, t) = z(0)
r (x, t), ur(x, t) = u(0)

r (x, t), r = 1, N,

we �nd the �rst approximations of λr(x), ṽr(x, t), r = 1, N, by solving problem (1.13)-(1.16). Taking

λ(1,0)
r (x) = λ(0)

r (x), ṽ(1,0)
r (x, t) = ṽ(0)

r (x, t),
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we �nd the system of couples {λ(1)
r (x), ṽ

(1)
r (x, t)}, r = 1, N, as the limit of the sequence

λ
(1,m)
r (x), ṽ

(1,m)
r (x, t), de�ned in the following way.

Step 1.1. Assuming the invertibility of the matrix Qν(x, h), x ∈ [0, ω], from equation (1.21),
where

ṽr(x, t) = ṽ(1,0)
r (x, t),

we �nd λ(1,1)(x) = (λ
(1,1)
1 (x), λ

(1,1)
2 (x), ..., λ

(1,1)
N (x))′ :

λ(1,1)(x) = −[Qν(x, h)]−1
{
Fν(x, h, z

(0), u(0)) +Gν(x, h, ṽ
(1,0))

}
.

Substituting the found λ
(1,1)
r (x), r = 1, N, in (1.20) we �nd

ṽ(1,1)
r (x, t) = Dνr(x, t)λ

(1,1)
r (x) + Fνr(x, t, z

(0), u(0)) +Gνr(x, t, ṽ
(1,0)).

Step 1.2. From equation (1.21), where ṽr(x, t) = ṽ
(1,1)
r (x, t), we de�ne

λ(1,2)(x) = −[Qν(x, h)]−1
{
Fν(x, h, z

(0), u(0)) +Gν(x, h, ṽ
(1,1))

}
.

Using expression (20) again, we �nd the functions {ṽ(1,2)
r (x, t)}, r = 1, N,

ṽ
(1,2)
r (x, t) = Dνr(x, t)λ

(1,2)
r (x) + Fνr(x, t, z

(0), u(0)) +Gνr(x, t, ṽ
(1,1)).

On step (1,m) we obtain the system of couples

{λ(1,m)
r (x), ṽ(1,m)

r (x, t)}, r = 1, N.

Suppose that the solution of problem (1.13)-(1.16) is a sequence of systems of couples {λ(1,m)
r (x),

ṽ
(1,m)
r (x, t)} which are de�ned for x ∈ [0, ω], respectively, and converge as m → ∞ to continuous

functions λ
(1)
r (x), ṽ

(1)
r (x, t), r = 1, N.

B) The functions z
(1)
r (x, t), u

(1)
r (x, t), r = 1, N, are de�ned from the relations

z(1)
r (x, t) = ψ(t) +

x∫
0

ṽ(1)
r (ξ, t)dξ +

x∫
0

λ(1)
r (ξ)dξ, (x, t) ∈ Ωr, r = 1, N,

u(1)
r (x, t) = ϕ(t) +

x∫
0

z(1)
r (ξ, t)dξ, (x, t) ∈ Ωr, r = 1, N.

Step 2. A) Assuming that

zr(x, t) = z(1)
r (x, t), ur(x, t) = u(1)

r (x, t), r = 1, N,

we �nd the second approximations of λr(x), ṽr(x, t), r = 1, N, by solving problem (1.13)-(1.16).
Taking

λ(2,0)
r (x) = λ(1)

r (x), ṽ(2,0)
r (x, t) = ṽ(1)

r (x, t),

we �nd the system of couples {λ(2)
r (x), ṽ

(2)
r (x, t)}, r = 1, N, as the limit of the sequence

λ
(2,m)
r (x), ṽ

(2,m)
r (x, t), de�ned in the following way:

Step 2.1. Assuming the invertibility of the matrix Qν(x, h), x ∈ [0, ω], from equation (1.21), where

ṽr(x, t) = ṽ(2,0)
r (x, t),

we �nd λ(2,1)(x) = (λ
(2,1)
1 (x), λ

(2,1)
2 (x), ..., λ

(2,1)
N (x))′ :
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λ(2,1)(x) = −[Qν(x, h)]−1
{
Fν(x, h, z

(1), u(1)) +Gν(x, h, ṽ
(2,0))

}
.

Substituting the found λ
(2,1)
r (x), r = 1, N, in (1.20) we �nd

ṽ(2,1)
r (x, t) = Dνr(x, t)λ

(2,1)
r (x) + Fνr(x, t, z

(1), u(1)) +Gνr(x, t, ṽ
(2,0)).

Step 2.2. From equation (1.21), where

ṽr(x, t) = ṽ(2,1)
r (x, t),

we de�ne
λ(2,2)(x) = −[Qν(x, h)]−1

{
Fν(x, h, z

(1), u(1)) +Gν(x, h, ṽ
(2,1))

}
.

Using expression (1.20), we �nd the functions {ṽ(2,2)
r (x, t)}, r = 1, N :

ṽ(2,2)
r (x, t) = Dνr(x, t)λ

(2,2)
r (x) + Fνr(x, t, z

(1), u(1)) +Gνr(x, t, ṽ
(2,1)).

On step (2,m) we obtain the system of couples

{λ(2,m)
r (x), ṽ(2,m)

r (x, t)}, r = 1, N.

Suppose that the solution of problem (1.13)-(1.16) is a sequence of systems of couples {λ(2,m)
r (x),

ṽ
(2,m)
r (x, t)} which as m→∞ converges to {λ(2)

r (x), ṽ
(2)
r (x, t)}, r = 1, N.

B) The functions z
(2)
r (x, t), u

(2)
r (x, t), r = 1, N, are de�ned from the relations

z(2)
r (x, t) = ψ(t) +

x∫
0

ṽ(2)
r (ξ, t)dξ +

x∫
0

λ(2)
r (ξ)dξ, (x, t) ∈ Ωr, r = 1, N,

u(2)
r (x, t) = ϕ(t) +

x∫
0

z(2)
r (ξ, t)dξ, (x, t) ∈ Ωr, r = 1, N.

Continuing the process, at the k-th step we obtain the system {λ(k)
r (x), ṽ

(k)
r (x, t), z

(k)
r (x, t), u

(k)
r (x, t)},

r = 1, N.
The conditions of the following statement ensure the feasibility and convergence of the proposed

algorithm, as well as the unique solvability of problem (1.13)-(1.18).

Theorem 2.1. Let for some 0 < µ < 1, h > 0 : Nh = T,N = 1, 2, ..., and ν, ν ∈ N, (nN × nN) the
matrix Qν(x, h) be invertible at all x ∈ [0, ω] and let the following inequalities be satis�ed
1) ‖[Qν(x, h)]−1‖ ≤ γν(x, h);

2) qν(x, h) (α(x)h)ν

ν!
≤ µ < 1,

where

qν(x, h) = 1 + γν(x, h)
ν∑
j=1

(α(x)h)j

j!
, α(x) = max

t∈[0,T ]
‖A(x, t)‖,

‖A(x, t)‖ = max
i=1,n

n∑
j=1

|aij(x, t)|.

Then there exists a unique solution (λ∗r(x), ṽ∗(x, t), z∗(x, t), u∗(x, t)) to problem (1.13)-(1.18) and the
following estimates are valid

a) max
r=1,N

‖λ∗r(x)− λ(k)
r (x)‖+ max

r=1,N
sup

t∈[(r−1)h,rh)

‖ṽ∗r(x, t)− ṽ(k)
r (x, t)‖
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≤ ρν(x, h)

(k − 1)!

( x∫
0

ρν(ξ, h)dξ

)k−1

e

x∫
0

ρν(ξ,h)dξ
x∫

0

dν(ξ, h)dξmax

{
max
t∈[0,T ]

‖ϕ(t)‖, max
t∈[0,T ]

‖ψ(t)‖, ‖f‖0

}
,

b) max
r=1,N

sup
t∈[(r−1)h,rh)

‖z∗r (x, t)− z(k)
r (x, t)‖

≤
x∫

0

max
r=1,N

‖λ∗r(ξ)− λ(k)
r (ξ)‖dξ +

x∫
0

max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ∗r(ξ, t)− ṽ(k)
r (ξ, t)‖dξ,

c) max
r=1,N

sup
t∈[(r−1)h,rh)

‖u∗r(x, t)− u(k)
r (x, t)‖

≤
x∫

0

max
r=1,N

sup
t∈[(r−1)h,rh)

‖z∗r (ξ, t)− z(k)
r (ξ, t)‖dξ, k = 1, 2, ...,

where β(x) = max
t∈[0,T ]

‖B(x, t)‖, σ(x) = max
t∈[0,T ]

‖C(x, t)‖, ‖f‖0 = max
(x,t)∈Ω

‖f(x, t)‖,

‖u(x, t)‖ = max
i=1,n
|ui(x, t)|, ρν(x, h) =

θν(x, h)[β(x) + xσ(x)]

1− qν(x, h) (α(x)h)ν

ν!

,

θν(x, h) = [γν(x, h) + qν(x, h)]h
ν−1∑
j=0

(α(x)h)j

j!
,

dν(x, h) =
θν(x, h)β(x)

1− qν(x, h) (α(x)h)ν

ν!

x∫
0

[β(ξ) + σ(ξ) + 1]θν(ξ, h)dξ

+
θν(x, h)σ(x)

1− qν(x, h) (α(x)h)ν

ν!

x∫
0

ξ∫
0

[β(ξ1) + σ(ξ1) + 1]θν(ξ1, h)dξ1dξ

+
(α(x)h)ν

ν!
qν(x, h)[β(x) + σ(x) + 1]θν(x, h).

Proof. The following inequalities take place

‖Fν(x, h, z, u)‖ ≤ h
ν−1∑
j=0

(α(x)h)j

j!
max
r=1,N

sup
t∈[(r−1)h,rh)

[
β(x)‖zr(x, t)‖+ σ(x)‖ur(x, t)‖+ ‖f(x, t)‖

]
,

‖Gν(x, h, ṽ)‖ ≤ (α(x)h)ν

ν!
max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽr(x, t)‖,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖Dνr(x, t)‖ ≤
ν∑
j=1

(α(x)h)j

j!
.

From the zero step of the algorithm, the following estimates follow:

max
r=1,N

‖λr(0)(x)‖

≤ [β(x) + σ(x) + 1]γν(x, h)h
ν−1∑
j=0

(α(x)h)j

j!
max

{
max
t∈[0,T ]

‖ϕ(t)‖, max
t∈[0,T ]

‖ψ(t)‖, ‖f‖0

}
,
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max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(0)
r (x, t)‖

≤ [β(x) + σ(x) + 1]qν(x, h)h
ν−1∑
j=0

(α(x)h)j

j!
max

{
max
t∈[0,T ]

‖ϕ(t)‖, max
t∈[0,T ]

‖ψ(t)‖, ‖f‖0

}
,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖z(0)
r (x, t)− ψ(t)‖

≤
x∫

0

[β(ξ) + σ(ξ) + 1]θν(ξ, h)dξmax

{
max
t∈[0,T ]

‖ϕ(t)‖, max
t∈[0,T ]

‖ψ(t)‖, ‖f‖0

}
,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖u(0)
r (x, t)− ϕ(t)‖

≤
x∫

0

ξ∫
0

[β(ξ1) + σ(ξ1) + 1]θν(ξ1, h)dξ1dξmax

{
max
t∈[0,T ]

‖ϕ(t)‖, max
t∈[0,T ]

‖ψ(t)‖, ‖f‖0

}
.

The following estimates are valid:

max
r=1,N

‖λr(1,1)(x)− λr(1,0)(x)‖

≤ γν(x, h)h
ν−1∑
j=0

(α(x)h)j

j!
β(x) max

r=1,N
sup

t∈[(r−1)h,rh)

‖z(0)
r (x, t)− ψ(t)‖

+γν(x, h)h
ν−1∑
j=0

(α(x)h)j

j!
σ(x) max

r=1,N
sup

t∈[(r−1)h,rh)

‖u(0)
r (x, t)− ϕ(t)‖

+γν(x, h)
(α(x)h)ν

ν!
max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(0)
r (x, t)‖,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(1,1)
r (x, t)− ṽ(1,0)

r (x, t)‖

≤ qν(x, h)h
ν−1∑
j=0

(α(x)h)j

j!
β(x) max

r=1,N
sup

t∈[(r−1)h,rh)

‖z(0)
r (x, t)− ψ(t)‖

+qν(x, h)h
ν−1∑
j=0

(α(x)h)j

j!
σ(x) max

r=1,N
sup

t∈[(r−1)h,rh)

‖u(0)
r (x, t)− ϕ(t)‖

+qν(x, h)
(α(x)h)ν

ν!
max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(0)
r (x, t)‖.

Next we establish the inequality

∆(1,1)(x) = max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(1,1)
r (x, t)− ṽ(1,0)

r (x, t)‖+ max
r=1,N

‖λr(1,1)(x)− λr(1,0)(x)‖

≤ θν(x, h)β(x)

x∫
0

[β(ξ) + σ(ξ) + 1]θν(ξ, h)dξmax

{
max
t∈[0,T ]

‖ϕ(t)‖, max
t∈[0,T ]

‖ψ(t)‖, ‖f‖0

}
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+θν(x, h)σ(x)

x∫
0

ξ∫
0

[β(ξ1) + σ(ξ1) + 1]θν(ξ1, h)dξ1dξmax

{
max
t∈[0,T ]

‖ϕ(t)‖, max
t∈[0,T ]

‖ψ(t)‖, ‖f‖0

}

+θν(x, h)
(α(x)h)ν

ν!
qν(x, h)[β(x) + σ(x) + 1] max

{
max
t∈[0,T ]

‖ϕ(t)‖, max
t∈[0,T ]

‖ψ(t)‖, ‖f‖0

}
.

Thus,

max
r=1,N

‖λr(1,m+1)(x)− λr(1,m)(x)‖

≤ γν(x, h)
(α(x)h)ν

ν!
max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(1,m)
r (x, t)− ṽ(1,m−1)

r (x, t)‖, (2.1)

max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(1,m+1)
r (x, t)− ṽ(1,m)

r (x, t)‖

≤ qν(x, h)
(α(x)h)ν

ν!
max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(1,m)
r (x, t)− ṽ(1,m−1)

r (x, t)‖. (2.2)

Owing to the inequality qν(x, h) (α(x)h)ν

ν!
< 1 follows the uniform convergence of the sequence

v
(1,m+1)
r (x, t), at (x, t) ∈ Ωr, to v

(1)
r (x, t) and the convergence of the sequence of systems of func-

tions λ
(1,m+1)
r (x) to continuous on x ∈ [0, ω] functions λ

(1)
r (x) for all r = 1, N :

max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(1,m+1)
r (x, t)− ṽ(1,0)

r (x, t)‖

≤
m∑
j=0

[
qν(x, h)

(α(x)h)ν

ν!

]j
max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(1,1)
r (x, t)− ṽ(1,0)

r (x, t)‖,

max
r=1,N

‖λr(1,m+1)(x)− λr(1,0)(x)‖

≤
m∑
j=0

[
qν(x, h)

(α(x)h)ν

ν!

]j[
1 + γν(x, h)

(α(x)h)ν

ν!

]
max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(1,1)
r (x, t)− ṽ(1,0)

r (x, t)‖

+ max
r=1,N

‖λr(1,1)(x)− λr(1,0)(x)‖.

Passing to the limit at m→∞, we obtain the estimates:

∆(1)(x) = max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(1)
r (x, t)− ṽ(0)

r (x, t)‖+ max
r=1,N

‖λr(1)(x)− λr(0)(x)‖

≤ dν(x, h) max

{
max
t∈[0,T ]

‖ϕ(t)‖, max
t∈[0,T ]

‖ψ(t)‖, ‖f‖0

}
,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖z(1)
r (x, t)− z(0)

r (x, t)‖ ≤
x∫

0

∆(1)(ξ)dξ,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖u(1)
r (x, t)− u(0)

r (x, t)‖ ≤
x∫

0

ξ∫
0

∆(1)(ξ1)dξ1dξ.
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For the systems of the of di�erences λr
(k+1)(x)− λr(k)(x), ṽ

(k+1)
r (x, t)− ṽ(k)

r (x, t),

z
(k+1)
r (x, t)− z(k)

r (x, t), u
(k+1)
r (x, t)− u(k)

r (x, t), r = 1, N, k = 1, 2, ... the following estimates are valid:

max
r=1,N

‖λr(k+1,1)(x)− λr(k+1,0)(x)‖

≤ γν(x, h)h
ν−1∑
j=0

(α(x)h)j

j!
β(x) max

r=1,N
sup

t∈[(r−1)h,rh)

‖z(k)
r (x, t)− z(k−1)

r (x, t)‖

+γν(x, h)h
ν−1∑
j=0

(α(x)h)j

j!
σ(x) max

r=1,N
sup

t∈[(r−1)h,rh)

‖u(k)
r (x, t)− u(k−1)

r (x, t)‖,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(k+1,1)
r (x, t)− ṽ(k+1,0)

r (x, t)‖

≤ qν(x, h)h
ν−1∑
j=0

(α(x)h)j

j!
β(x) max

r=1,N
sup

t∈[(r−1)h,rh)

‖z(k)
r (x, t)− z(k−1)

r (x, t)‖

+qν(x, h)h
ν−1∑
j=0

(α(x)h)j

j!
σ(x) max

r=1,N
sup

t∈[(r−1)h,rh)

‖u(k)
r (x, t)− u(k−1)

r (x, t)‖,

max
r=1,N

‖λr(k+1,m+1)(x)− λr(k+1,m)(x)‖

≤ γν(x, h)
(α(x)h)ν

ν!
max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(k+1,m)
r (x, t)− ṽ(k+1,m−1)

r (x, t)‖,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(k+1,m+1)
r (x, t)− ṽ(k+1,m)

r (x, t)‖

≤ qν(x, h)
(α(x)h)ν

ν!
max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(k+1,m)
r (x, t)− ṽ(k+1,m−1)

r (x, t)‖,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(k+1,m+1)
r (x, t)− ṽ(k+1,0)

r (x, t)‖

≤
m∑
j=0

[
qν(x, h)

(α(x)h)ν

ν!

]j
max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(k+1,1)
r (x, t)− ṽ(k+1,0)

r (x, t)‖,

max
r=1,N

‖λr(k+1,m+1)(x)− λr(k+1,0)(x)‖

≤
m−1∑
j=0

[
qν(x, h)

(α(x)h)ν

ν!

]j
γν(x, h)

(α(x)h)ν

ν!
max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(k+1,1)
r (x, t)− ṽ(k+1,0)

r (x, t)‖

+ max
r=1,N

‖λr(k+1,1)(x)− λr(k+1,0)(x)‖.

Passing to the limit as m→∞, we obtain the following estimates:

max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(k+1)
r (x, t)− ṽ(k)

r (x, t)‖

≤
qν(x, h)h

ν−1∑
j=0

(α(x)h)j

j!
β(x)

1− qν(x, h) (α(x)h)ν

ν!

max
r=1,N

sup
t∈[(r−1)h,rh)

‖z(k)
r (x, t)− z(k−1)

r (x, t)‖
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+

qν(x, h)h
ν−1∑
j=0

(α(x)h)j

j!
σ(x)

1− qν(x, h) (α(x)h)ν

ν!

max
r=1,N

sup
t∈[(r−1)h,rh)

‖u(k)
r (x, t)− u(k−1)

r (x, t)‖, (2.3)

max
r=1,N

‖λr(k+1)(x)− λr(k)(x)‖

≤
γν(x, h)h

ν−1∑
j=0

(α(x)h)j

j!
β(x)

1− qν(x, h) (α(x)h)ν

ν!

max
r=1,N

sup
t∈[(r−1)h,rh)

‖z(k)
r (x, t)− z(k−1)

r (x, t)‖

+

γν(x, h)h
ν−1∑
j=0

(α(x)h)j

j!
σ(x)

1− qν(x, h) (α(x)h)ν

ν!

max
r=1,N

sup
t∈[(r−1)h,rh)

‖u(k)
r (x, t)− u(k−1)

r (x, t)‖, (2.4)

max
r=1,N

sup
t∈[(r−1)h,rh)

‖z(k+1)
r (x, t)− z(k)

r (x, t)‖

≤
x∫

0

max
r=1,N

‖λr(k+1)(ξ)− λr(k)(ξ)‖dξ +

x∫
0

max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(k+1)
r (ξ, t)− ṽ(k)

r (ξ, t)‖dξ,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖u(k+1)
r (x, t)− u(k)

r (x, t)‖

≤
x∫

0

max
r=1,N

sup
t∈[(r−1)h,rh)

‖z(k+1)
r (x, t)− z(k)

r (x, t)‖dξ.

Summing, respectively, the left and right sides of inequalities (2.3), (2.4) we have

∆(k+1)(x) = max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(k+1)
r (x, t)− ṽ(k)

r (x, t)‖+ max
r=1,N

‖λr(k+1)(x)− λr(k)(x)‖

≤ θν(x, h)β(x)

1− qν(x, h) (α(x)h)ν

ν!

max
r=1,N

sup
t∈[(r−1)h,rh)

‖z(k)
r (x, t)− z(k−1)

r (x, t)‖

+
θν(x, h)σ(x)

1− qν(x, h) (α(x)h)ν

ν!

max
r=1,N

sup
t∈[(r−1)h,rh)

‖u(k)
r (x, t)− u(k−1)

r (x, t)‖, (2.5)

max
r=1,N

sup
t∈[(r−1)h,rh)

‖z(k+1)
r (x, t)− z(k)

r (x, t)‖ ≤
x∫

0

∆(k+1)(ξ)dξ,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖u(k+1)
r (x, t)− u(k)

r (x, t)‖ ≤
x∫

0

ξ∫
0

∆(k+1)(ξ1)dξ1dξ.

For the function ∆(k+1)(x) on the basis of (2.5) we establish the inequality

∆(k+1)(x) ≤ ρν(x, h)

x∫
0

∆(k)(ξ)dξ, (2.6)
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∆(k+1)(x) ≤ ρν(x, h)

(k − 1)!

( x∫
0

ρν(ξ, h)dξ

)k−1
x∫

0

∆(1)(ξ)dξ.

Next we establish the inequalities

max
r=1,N

‖λ(k+p)
r (x)− λ(k)

r (x)‖+ max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(k+p)
r (x, t)− ṽ(k)

r (x, t)‖

≤ ρν(x, h)

k+p−2∑
j=k−1

1

j!

( x∫
0

ρν(ξ, h)dξ

)j x∫
0

dν(ξ, h)dξmax

{
max
t∈[0,T ]

‖ϕ(t)‖, max
t∈[0,T ]

‖ψ(t)‖, ‖f‖0

}
,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖z(k+p)
r (x, t)− z(k)

r (x, t)‖

≤
x∫

0

max
r=1,N

‖λr(k+p)(ξ)− λr(k)(ξ)‖dξ +

x∫
0

max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ(k+p)
r (ξ, t)− ṽ(k)

r (ξ, t)‖dξ,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖u(k+p)
r (x, t)− u(k)

r (x, t)‖

≤
x∫

0

max
r=1,N

sup
t∈[(r−1)h,rh)

‖z(k+p)
r (x, t)− z(k)

r (x, t)‖dξ.

By passing to the limit as p → ∞, for all (x, t) ∈ Ωr, r = 1, N, we obtain the estimates of The-
orem 2.1. Finally we show that the uniqueness of a solution to problem (1.13)-(1.18). Let the
quadruples {λ∗r(x), ṽ∗r(x, t), z

∗
r (x, t), u

∗
r(x, t)} and {λ∗∗r (x), ṽ∗∗r (x, t), z∗∗r (x, t), u∗∗r (x, t)} be solutions to

problem (1.13)-(1.18). Using inequality (2.6) for the di�erences λr
∗(x)− λr∗∗(x), ṽ∗r(x, t)− ṽ∗∗r (x, t),

we obtain
max
r=1,N

‖λ∗r(x)− λ∗∗r (x)‖+ max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ∗r(x, t)− ṽ∗∗r (x, t)‖

≤ ρν(x, h)

x∫
0

max
r=1,N

‖λ∗r(ξ)− λ∗r(ξ)‖dξ +

x∫
0

max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ∗r(ξ, t)− ṽ∗∗r (ξ, t)‖dξ, (2.7)

By applying the Gronwall - Bellman inequality to integral equations (2.7), we get

max
r=1,N

‖λ∗r(x)− λ∗∗r (x)‖+ max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ∗r(x, t)− ṽ∗∗r (x, t)‖ = ρν(x, h) · 0. (2.8)

From (2.8) it follows ṽ∗r(x, t) = ṽ∗∗r (x, t) and λr
∗(x) = λr

∗∗(x), for all (x, t) ∈ Ωr, r = 1, N. Then on
the inequality

max
r=1,N

sup
t∈[(r−1)h,rh)

‖z∗r (x, t)− z∗∗r (x, t)‖

≤
x∫

0

(max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ∗r(ξ, t)− ṽ∗∗r (ξ, t)‖+ max
r=1,N

‖λ∗r(ξ)− λ∗∗r (ξ)‖)dξ,

max
r=1,N

sup
t∈[(r−1)h,rh)

‖u∗r(x, t)− u∗∗r (x, t)‖

≤
x∫

0

ξ∫
0

(max
r=1,N

sup
t∈[(r−1)h,rh)

‖ṽ∗r(ξ1, t)− ṽ∗∗r (ξ1, t)‖+ max
r=1,N

‖λ∗r(ξ1)− λ∗∗r (ξ1)‖)dξ1dξ
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we have z∗r (x, t) = z∗∗r (x, t), u∗r(x, t) = u∗∗r (x, t), r = 1, N, for all (x, t) ∈ Ωr, r = 1, N. This contradicts
with our assumption that problem (1.13)-(1.18) has two solution. Therefore, solution to problem
(1.13)-(1.18) is unique.

By virtue of the equivalence of problems (1.1)-(1.4) and (1.13)-(1.18) from Theorem 2.1 follows

Theorem 2.2. Let the conditions of Theorem 2.1 be satis�ed. Then problem (1.1)-(1.4) has a unique
solution u∗(x, t) and the following estimates are valid

max
r=1,N

sup
t∈[(r−1)h,rh)

‖u∗r(x, t)− u(k)
r (x, t)‖

≤
x∫

0

ξ∫
0

ρν(ξ1, h)

(k − 1)!

( ξ1∫
0

ρν(ξ2, h)dξ2

)k−1

e

ξ1∫
0

ρν(ξ2,h)dξ2

ξ1∫
0

dν(ξ2, h)dξ2dξ1dξ

×max

{
max
t∈[0,T ]

‖ϕ(t)‖, max
t∈[0,T ]

‖ψ(t)‖, ‖f‖0

}
, k = 1, 2, ....

The main condition for the unique solvability of the problem under study is the existence of
numbers h > 0 : Nh = T and ν ∈ N, for which the matrix Qν(x, h) is invertible for all x ∈ [0, ω].
Since the (nN × nN) matrix Qν(x, h), for N ≥ 2, has a special block-band structure, then

Lemma 2.1. The (nN × nN) matrix Qν(x, h) for x ∈ [0, ω] is invertible if and only if the (n × n)
matrix

Mν(x) = I −
1∏

s=N

[I +Dνs(x, h)].

Proof. It su�ces to prove that the equation

Qν(x, h) · y = 0, y ∈ RnN , (2.9)

has a nonzero solution if and only if a nonzero solution has the equation

Mν(x) · y1 = 0, y1 ∈ Rn, (2.10)

Let y ∈ RnN , y(x) = (y1(x), ..., yN(x))′, be a solution to equation (2.9). Then, block-wise writing
equation (2.9), we have the following relations

y1(x)− [I +DνN(x, h)]yN(x) = 0, (2.11)

[I +Dνj(x, h)]yj(x)− yj+1(x) = 0, j = 1, ..., N − 1, (2.12)

i.e. the components of the vector y(x) satisfy (2.11) - (2.12). Hence, all components y ∈ RnN can be
expressed in terms of y1 ∈ Rn :

yj+1(x) =
1∏
s=j

[I +Dνs(x, h)]y1(x), j = 1, ..., N − 1, (2.13)

From (2.13) for j = N − 1 we �nd that yN(x) has the form:

yN(x) =
1∏

s=N−1

[I +Dνs(x, h)]y1(x). (2.14)
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Substituting the right-hand side of (2.14) into (2.11) instead of yN(x) we obtain that y1(x) ∈ Rn

is a solution to equation (2.10). Since relation (2.13) is valid for any solution of equation (2.9), it
follows from (2.13) that homogeneous equation (2.9) has a nonzero solution if and only if ‖y1(x)‖ 6=
0, y1(x) ∈ Rn. In view of the fact that y1(x) satis�es equation (2.10), it follows that equation (2.9)
has a nonzero solution if and only if equation (2.10) has a nonzero solution.

Let the matrix Qν(x, h) be invertible. Consider equation (2.10). If it has a nonzero solu-
tion y1(x) ∈ Rn, then this contradicts the invertibility of Qν(x, h). Indeed, if y1(x) ∈ Rn- is
a solution to equation (2.10) and ‖y1(x)‖ 6= 0, then, based on the aforementioned, the vector
y(x) = (y1(x), ..., yN(x))′, where yj+1(x), j = 1, ..., N − 1, is determined by formulas (2.13),
will be a nonzero solution to equation (2.9), and this contradicts the invertibility of the matrix
Qν(x, h) : RnN → RnN for every x ∈ [0, w].

Now, let the matrix Mν(x) be invertible and equation (2.9) has a nonzero solution y(x) ∈ RnN .
As shown above, y(x) ∈ RnN will be a nonzero solution to equation (2.9) if and only if the vector
y1(x) ∈ Rn, is nonzero, which is the �rst component of the vector y(x) and satis�es equation (2.10).
This contradicts our assumption that the matrix Mν(x) is invertible.

Lemma 2.2. If the matrix Mν(x) is invertible, then

[Qν(x, h)]−1 = {qrj(x)}, r, j = 1, N,

where
q11(x) = [Mν(x)]−1,

q1k(x) = −[Mν(x)]−1

k∏
s=N

[I +Dνs(x, h)], 1 < k ≤ N,

qrj(x) = [I +Dν,r−1(x, h)]gr−1,j(x), j 6= r, r = 2, N,

qrr(x) = [I +Dν,r−1(x, h)]gr−1,j(x)− I, r = 2, N.

Proof. Consider the system of equations

Qν(x, h)λ(x) = g(x), (2.15)

where λ(x), g(x),∈ C([0, ω], RnN), can be written block by block in the following form:

λ1(x)− [I +DνN(x, h)]λN(x) = g1(x), (2.16)

[I +Dνs(x, h)]λs(x)− λs+1(x) = gs+1(x), s = 1, ..., N − 1. (2.17)

In system (2.17), sweeping downward, we have

λ2(x) = [I +Dν1(x, h)]λ1(x)− g2(x),

λ3(x) = [I +Dν2(x, h)]λ2(x)− g3(x)

= [I +Dν2(x, h)][I +Dν1(x, h)]λ1(x)− [I +Dν2(x, h)]g2(x)− g3(x), ...

λr(x) = [I +Dν,r−1(x, h)] · ... · [I +Dν,1(x, h)]λ1(x)

−[I +Dν,r−1(x, h)] · ... · [I +Dν2(x, h)]g2(x)− ...− [I +Dν1(x, h)]gr−1(x)− gr(x), (2.18)

r = 2, 3, ...N. From here we �nd λN(x) and substitute it into equation (2.16):

λ1(x)− [I +DνN(x, h)][I +Dν,N−1(x, h)] · ... · [I +Dν1(x, h)]λ1(x)
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+[I +DνN(x, h)][I +Dν,N−1(x, h)] · ... · [I +Dν2(x, h)]g2(x)

+...+ [I +DνN(x, h)][I +Dν1(x, h)]gN−1(x) + [I +DνN(x, h)]gN(x) = g1(x)

or {
I −

1∏
s=N

[I +Dνs(x, h)]

}
λ1(x) = g1(x)−

N∑
j=2

j∏
s=N

[I +Dνs(x, h)]gj(x),

that is

Mν(x)λ1(x) = g1(x)−
N∑
j=2

j∏
s=N

[I +Dνs(x, h)]gj(x). (2.19)

Let the matrix Mν(x) be invertible for all x ∈ [0, ω], then from (2.19) we �nd λ1(x) :

λ1(x) = [Mν(x)]−1

{
g1(x)−

N∑
j=2

j∏
s=N

[I +Dνs(x, h)]gj(x)

}
=

N∑
j=2

q−1
1i (x)gj(x). (2.20)

Substituting (2.20) into (2.18), we �nd the remaining λr(x), r = 1, N, in the form of an expression
in terms of the right-hand sides of gr(x) where r = 2, N :

λr(x) =
1∏

s=r−1

[I +Dνs(x, h)][Mν(x)]−1g1(x)

−
1∏

s=r−1

[I +Dνs(x, h)][Mν(x)]−1

N∑
j=2

j∏
s=N

[I +Dνs(x, h)]gj(x)

−
2∏

s=r−1

[I +Dνs(x, h)]g2(x)− ...− [I +Dν,r−1(x, h)]gr−1(x)− gr(x)

=
N∑
i=1

qri(x)gi(x), r = 1, N.

On the other hand, using expression (2.20) and equations, starting from the second, of system (2.15),
speci�cally

λr+1(x) =
N∑
i=1

qr+1,i(x)gi(x) = [I +Dνr(x, h)]λr(x)− gr+1(x)

= [I +Dνr(x, h)]
N∑
i=1

qri(x)gi(x)− gr+1(x), r = 1, N − 1,

we �nd more convenient recurrent formulas for �nding the matrix elements [Qν(x, h)]−1 =
{qrj(x)}, r, j = 1, N :

q11(x) = [Mν(x)]−1,

q1k(x) = −[Mν(x)]−1

k∏
s=N

[I +Dνs(x, h)], 2 ≤ k ≤ N,

qrj(x) = [I +Dν,r−1(x, h)]gr−1,j(x), j 6= r, r = 2, N,

qrr(x) = [I +Dν,r−1(x, h)]gr−1,j(x)− I, r = 2, N.

Recurrent formulas allow one to determine [Qν(x, h)]−1 via the elements of the matrix A(x, t).
Therefore, Theorems 2.1, 2.2 establish a coe�cient criterion for the unique solvability of boundary
value problem (1.1) - (1.4).
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