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TYNYSBEK SHARIPOVICH KAL'MENOV

(to the 75th birthday)

Tynysbek Sharipovich Kal'menov was born in the village of Koksaek
of the Tolebi district of the Turkestan region (earlier it was the Lenger
district of the South-Kazakhstan region of the Kazakh SSR). Although
�according to the passport� his birthday was recorded on May 5, his real
date of birth is April 6, 1946.

Tynysbek Kal'menov is a graduate of the Novosibirsk State University
(1969), and a representative of the school of A.V. Bitsadze, an outstand-
ing scientist, corresponding member of the Academy of Sciences of the
USSR. In 1972, he completed his postgraduate studies at the Institute of
Mathematics of the Siberian Branch of the Academy of Sciences of the
USSR. In 1983, he defended his doctoral thesis at the M.V. Lomonosov
Moscow State University. Since1989, he is a corresponding member of the
Academy of Sciences of the Kazakh SSR, and since 2003, he is an academi-
cian of the National Academy of Sciences of the Republic of Kazakhstan.

Tynysbek Kal'menov worked at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR (1972-1985). From 1986 to 1991, he was the dean of the Faculty of
Mathematics of Al-Farabi Kazakh State University. From 1991 to 1997, he was the rector of the
Kazakh Chemical-Technological University (Shymkent).

From 2004 to 2019, Tynysbek Kal'menov was the General Director of the Institute of Mathematics
and Mathematical Modeling. He made it one of the leading scienti�c centers in the country and the
best research institute in Kazakhstan. It su�ces to say, that in terms of the number of scienti�c
publications (2015-2018) in international rating journals indexed in the Web of Science, the Institute
of Mathematics and Mathematical Modeling was ranked fourth among all Kazakhstani organizations,
behind only three large universities: the Nazarbaev University, Al-Farabi National University and
L.N. Gumilyov Eurasian National University.

Since 2019, Tynysbek Kal'menov has been working as the head of the Department of Di�erential
Equations of the Institute of Mathematics and Mathematical Modeling. He is a member of the
National Scienti�c Council �Scienti�c Research in the Field of Natural Sciences�, which is the main
Kazakhstan council that determines the development of science in the country.

T.Sh. Kal'menov was repeatedly elected to maslikhats of various levels, was a member of the
Presidium of the Committee for Supervision and Attestation in Education and Science of the Ministry
of Education and Science of the Republic of Kazakhstan. He is a Laureate of Lenin Komsomol Prize
of the Kazakh SSR (1978), an Honored Worker of Science and Technology of Kazakhstan (1996),
awarded with the order �Kurmet� (2008 Ði.) and jubilee medals.

In 2013, he was awarded the State Prize of the Republic of Kazakhstan in the �eld of science and
technology for the series of works �To the theory of initial- boundary value problems for di�erential
equations�.

The main areas of scienti�c interests of academician Tynysbek Kal'menov are di�erential equa-
tions, mathematical physics and operator theory. He has obtained fundamental scienti�c results,
many of which led to the creation of new scienti�c directions in mathematics.

Tynysbek Kal'menov, using a new maximum principle for an equation of mixed type (Kal'menov's
maximum principle), was the �rst to prove that the Tricomi problem has an eigenfunction, thus he
solved the famous problem of the Italian mathematician Francesco Tricomi, set in 1923 This marked
the beginning of a new promising direction, that is, the spectral theory of equations of mixed type.

He established necessary and su�cient conditions for the well-posed solvability of the classical
Darboux and Goursat problems for strongly degenerate hyperbolic equations.
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Tynysbek Kal'menov solved the problem of completeness of the system of root functions of the
nonlocal Bitsadze-Samarskii problem for a wide class of multidimensional elliptic equations. This
result is �nal and has been widely recognized by the entire mathematical community.

He developed a new e�ective method for studying ill-posed problems using spectral expansion of
di�erential operators with deviating argument. On the basis of this method, he found necessary and
su�cient conditions for the solvability of the mixed Cauchy problem for the Laplace equation.

Tynysbek Kal'menov was the �rst to construct boundary conditions of the classical Newton
potential. That is a fundamental result at the level of a classical one. Prior to the research of
Kal'menov T.Sh., it was believed that the Newton potential gives only a particular solution of an
inhomogeneous equation and does not satisfy any boundary conditions. Thanks for these results, for
the �rst time, it was possible to construct the spectral theory of the classical Newton potential.

He developed a new e�ective method for constructing Green's function for a wide class of boundary
value problems. Using this method, Green's function of the Dirichlet problem was �rst constructed
explicitly for a multidimensional polyharmonic equation.

From 1989 to 1993, Tynysbek Kal'menov was the chairman of the Inter- Republican (Kazakhstan,
Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan) Dissertation Council. He is a member of the
International Mathematical Society and he repeatedly has been a member of organizing committee
of many international conferences. He carries out a lot of organizational work in training of highly
quali�ed personnel for the Republic of Kazakhstan and preparing international conferences. Under
his direct guidance, the First Congress of Mathematicians of Kazakhstan was held. He presented
his reports in Germany, Poland, Great Britain, Sweden, France, Spain, Japan, Turkey, China, Iran,
India, Malaysia, Australia, Portugal and countries of CIS.

In terms of the number of articles in scienti�c journals with the impact- factor Web of Science, in
the research direction of �Mathematics�, the Institute of Mathematics and Mathematical Modeling
is on one row with leading mathematical institutes of the Russian Federation, and is ahead of all
mathematical institutes in other CIS countries in this indicator.

Tynysbek Kal'menov is one of the few scientists who managed to leave an imprint of their indi-
viduality almost in all branches of mathematics in which he has been engaged.

Tynysbek Kal'menov has trained 11 doctors and more than 60 candidate of sciences and PhD,
has founded a large scienti�c school on equations of mixed type and di�erential operators recognized
all over the world. Many of his disciples are now independent scientists recognized in the world of
mathematics.

He has published over 150 scienti�c articles, most of which are published in international math-
ematical journals, including 14 articles published in �Doklady AN SSSR/ Doklady Mathematics�.
In the last 5 years alone (2016-2020), he has published more than 30 articles in scienti�c journals
indexed in the Web of Science database. To date, academician Tynysbek Kal'menov has a Hirsch
index of 18 in the Web of Science and Scopus databases, which is the highest indicator among all
Kazakhstan mathematicians.

Outstanding personal qualities of academician Tynysbek Kalmenov, his high professional level,
adherence to principles of purity of science, high exactingness towards himself and his colleagues, all
these are the foundations of the enormous authority that he has among Kazakhstan scientists and
mathematicians of many countries.

Academician Tynysbek Sharipovich Kalmenov meets his 75th birthday in the prime of his life,
and the mathematical community, many of his friends and colleagues and the Editorial Board of the
Eurasian Mathematical Journal heartily congratulate him on his jubilee and wish him good health,
happiness and new successes in mathematics and mathematical education, family well-being and long
years of fruitful life.
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IDEAL CONNES-AMENABILITY OF LAU PRODUCT
OF BANACH ALGEBRAS

A. Minapoor, A. Bodaghi, O.T. Mewomo
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gebra.
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Abstract. Let A and B be Banach algebras and θ be a non-zero character on B. In the current
paper, we study the ideal Connes-amenability of the algebra A ×θ B so-called the θ-Lau product
algebra. We also prove that if A ×θ B is ideally Connes-amenable, then both A and B are ideally
Connes-amenable. As a result, we show that l1(S) ×θ l1(S) is ideally Connes-amenable, where S is
a Rees matrix semigroup.

DOI: https://doi.org/10.32523/2077-9879-2021-12-4-74-81

1 Introduction

Johnson in [8] initiated the concept of amenability for Banach algebras. After this pioneering work
of Johnson, several modi�cations of the original notion of amenability in Banach algebras were in-
troduced, see [13] for details and more information. In [4], Gorgi (this author is the same as Gordji)
and Yazdanpanah introduced a notion of amenability on Banach algebras which was called ideal
amenability. They connected this notion of amenability to the weak amenability and amenability of
Banach algebras, and showed that ideal amenability is di�erent from amenability and weak amenabil-
ity. Further investigations on this notion of amenability and its approximate version can be found
in [3, 11, 12].

When there is a natural weak∗-topology on the algebra, it is suggested to restrict the attention
to those derivations which enjoy certain weak∗-continuity. This is successfully done by Johnson,
Kadison and Ringrose for von Neumann algebras [9]. Due to some important contribution of Connes,
Helemskii coined the term Connes-amenability for this concept [5]. Later V. Runde extended this
notion to the setting of dual Banach algebras [20] (see also [19] and [21]).

Suppose that A,B are Banach algebras and θ ∈ 4(B), where 4(B) is the set of all non-zero
characters on B. The θ-Lau product of A and B is denoted by A ×θ B and is de�ned as the space
A× B with the multiplication

(a, b)×θ (c, d) = (ac+ θ(b)c+ θ(d)a, bd), (1.1)

for all a, c ∈ A and b, d ∈ B. The algebra A×θ B with the norm ‖(a, b)‖ = ‖a‖+ ‖b‖ and the above
multiplication is a Banach algebra that is called Lau product algebra. In fact, this product was
introduced by Lau in [10] for a certain class of Banach algebras and by Monfared [22] for the general
case. This product not only induces some new examples of Banach algebras which are interesting
in their own but also they are known as a fertile source of (counter) examples in functional analysis
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and abstract harmonic analysis. A very familiar example, which is of special interest, is the case in
which B = C and θ is the identity character i on B. In this case, we get the unitization A] = A×iC
of A. Monfared [22] showed that A×θ B is amenable if and only if A,B are amenable and moreover
he proved that if A,B are weakly amenable, then A×θ B is weakly amenable but if A×θ B is weakly
amenable, then B is weakly amenable and A is cyclic amenable. The Connes-amenability of A×θ B
was investigated by Razi and Pourabbas in [18]. They showed that if A and B are dual Banach
algebras, then A ×θ B is a dual Banach algebra and vice versa. Furthermore, they proved that
Connes-amenability of A×θ B implies Connes-amenability of both Banach algebras A and B.

Ideal Connes-amenability for dual Banach algebras was studied for the �rst time in [16]. Among
other things, the authors in [16] showed that von Neumann algebras are always ideally Connes-
amenable. In addition, for a locally compact group G, the Fourier�Stieltjes algebra of G is ideally
Connes-amenable, but not ideally amenable. Recently, the �rst author investigated the ideal Connes-
amenability of discrete Beurling algebras and l1-Munn algebras in [14] and [15], respectively.

In this paper, we are mainly concerned with the investigation of ideal Connes-amenability of
A×θ B and show that if A×θ B is ideally Connes-amenable, then A,B are ideally Connes-amenable.
Finally, we present some examples regarding to the ideal Connes-amenability of Lau product algebras.

2 Ideal Connes-amenability

We start this section by recalling some standard notions which are available in [1, 13]. Let A be a
Banach algebra and X be a Banach A-bimodule. A bounded linear map D : A −→ X is called a
derivation if

D(ab) = D(a) · b+ a ·D(b) (a, b ∈ A).

The space of all derivations of A into X is denoted by Z1(A, X). For each x ∈ X, the map a 7→
δx(a) := a ·x−x ·a is a derivation, and these maps form the space B1(A, X) of inner derivations. The
quotient space H1(A, X) = Z1(A, X)/B1(A, X) is the �rst cohomology group of A with coe�cients
in X.

Let X be a A-bimodule. Then, the dual space X∗ of X is also a Banach A-bimodule by the
following module actions:

〈a · f, x〉 = 〈f, x · a〉, 〈f · a, x〉 = 〈f, a · x〉, (a ∈ A, x ∈ X, f ∈ X∗).

In this case, X∗ is said to be the dual Banach A-bimodule. With the above notations, a Banach
algebra A is called amenable if H1(A, X∗) = {0} for every Banach A-bimodule X. Moreover,
A is called weakly amenable if H1(A,A∗) = {0}. For n ∈ N, A is called n-weakly amenable if
H1(A,A(n)) = {0}, where A(n) is n-th dual of A. Furthermore, A is said to be n-ideally amenable if
H1(A, I(n)) = {0} for every closed two sided ideal I in A [4].

A Banach algebraA is said to be dual if there is a closed submoduleA∗ ofA∗ such thatA = (A∗)∗.
One can see that a Banach algebra which is also a dual space is a dual Banach algebra if and only if
the multiplication map is separately w∗-continuous [20]. Examples of dual Banach algebras include
all Von Neumann algebras, the algebra B(E) = (E⊗̂E∗)∗ of all bounded operators on a re�exive
Banach space E, the measure algebra M(G) = C0(G)∗, the Fourier-Stieljes algebra B(G) = C∗(G)∗,
and the second dual B∗∗ of an Arens regular Banach algebra B.

Let A be a Banach algebra. A dual Banach A-bimodule X is called normal if for each x ∈ X, the
maps a 7→ a ·x and b 7→ x · b from A into X are w∗-continuous, and A is said to be Connes-amenable
if for every normal dual Banach A-bimodule X, every w∗-continuous derivation D : A −→ X is
inner [20]. We denote Z1

w∗(A, X∗) and B1
w∗(A, X∗) for the w∗-continuous derivations and inner w∗-

continuous derivations from A into X∗, respectively and H1
w∗(A, X∗) = Z1

w∗(A, X∗)/B1(A, X∗).
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Let A be a dual Banach algebra and I be a weak∗-closed two-sided ideal of A (such ideals are
also dual Banach algebra by [16, Lemma 2.1]). A dual Banach algebra A is I-Connes-amenable if
H1
w∗(A, I) = {0} and A is ideally Connes-amenable if it is I-Connes-amenable for every weak∗-closed

two-sided ideal I in A [16].
It is shown in [16, Proposition 2.3] that every ideally Connes-amenable dual Banach algebra is

unital. Hence, we note that Proposition 2.6 of [16] [the ideal Connes-amenability of a dual Banach
algebra A and A# (the unitization of A) are equivalent] is a trivial result.

Let A and B be dual Banach algebras and I, J be w∗-closed two-sided ideals in A and B
respectively. Given θ ∈ 4(B). If J ⊂kerθ, then I ×θ J is a w∗-closed two-sided ideal of A ×θ B,
where kerθ is the kernel of θ. In particular, A×θ J is a w∗-closed two-sided ideal of A×θ B; see [22,
Proposition 2.6].

The upcoming lemma is a tool to achieve our aim in this paper, shows that the ideal Connes-
amenability of A ×θ B implies the ideal Connes-amenability of both dual Banach algebras A and
B.

Lemma 2.1. Let I and J be w∗-closed two-sided ideals in dual Banach algebras A and B, respec-
tively. Given θ ∈ 4(B) and J ⊂kerθ. A mapping D : A ×θ B −→ I ×θ J is a w∗-continuous
derivation if and only if D(a, b) = (DA(a) + TA(b), DB(b) + TB(a)) for all a ∈ A, b ∈ B, where

(1) DA : A −→ I and DB : B −→ J are w∗-continuous derivations;

(2) TA : B −→ I is a bounded linear operator such that aTA(b) = TA(b)c = 0 and

TA(bd) = θ(b)TA(d) + θ(d)TA(b), (2.1)

for all a, c ∈ A, b, d ∈ B;

(3) TB : A −→ J is a bounded linear operator such that TB(ac) = 0, and θ(b)TB(c) = bTB(c) for
all a, c ∈ A and b ∈ B.

Moreover, D = δ(i,j) for some i ∈ I, j ∈ J if and only if DB = δj, DA = δi, TB = 0 and TA = 0.

Proof. A straightforward veri�cation shows that D : A×θB −→ I×θJ is a bounded linear operator
if and only if there exist bounded linear mappings DA : A −→ I, DB : B −→ J , TA : B −→ I,
TB : A −→ J such that

D(a, b) = (DA(a) + TA(b), DB(b) + TB(a)), (2.2)

for all a ∈ A, b ∈ B. In addition, D is a derivation if and only if

D((a, b)×θ (c, d)) = D(a, b)×θ (c, d) + (a, b)×θ D(c, d) (2.3)

for all a, c ∈ A and b, d ∈ B (here and the rest of the proof). By the de�nition of D and (1.1),
relation (2.3) holds if and only if

TA(bd) +DA(ac) + θ(b)DA(c) = TA(b)c+DA(a)c+ θ(d)TA(b) + aTA(d)

+ aDA(c) + θ(b)TA(d) + θ(b)DA(c), (2.4)

and
DB(bd) + TB(ac) + θ(b)TB(c) + θ(d)TB(a) = bDB(d) + bTB(c) +DB(b)d+ TB(a)d. (2.5)

Putting b = d = 0 in (2.4), we have

DA(ac) = aDA(c) +DA(a)c.
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The above equality shows that DA is a derivation on A. Once more, by putting b = d = 0 in (2.5),
we �nd TB(ac) = 0 which is a part of assertion (3). Setting a = c = 0 in (2.4) and (2.5), we get

TA(bd) = θ(b)TA(d) + θ(d)TA(b)

and
DB(bd) = bDB(d) +DB(b)d.

It follows from the relations above that (2.1) is valid and, moreover, DB is a derivation. Replacing
(a, d) by (0, 0) in (2.4), we obtain TA(b)c = 0. On the other hand, by letting a = d = 0 in (2.5), we
obtain

θ(b)TB(c) = bTB(c).

Again, by putting b = c = 0 in (2.4), we �nd aTA(d) = 0. Consequently, we conclude that the above
statements hold if and only if conditions (1), (2) and (3) are satis�ed.

We now let D = δ(i,j) for some i ∈ I and j ∈ J . Then, by (1.1)

D(a, d) = (a, b)×θ (i, j)− (i, j)×θ (a, b) = (ai− ia, bj − jb). (2.6)

Setting b = 0 in (2.6) and in (2.2), we arrive

(DA(a), TB(a)) = (ai− ia, 0).

Thus, DA(a) = δi(a), and TB(a) = 0 for all a ∈ A. Similarly, one can obtain TA(b) = 0, and hence
DB(b) = δj(b).

Conversely, assume that DA = δi, DB = δj, TB = 0 and TA = 0. Then, by (1.1) and (2.2)

D(a, b) = (ai− ia, bj − jb) = (a, b)×θ (i, j)− (i, j)×θ (a, b)

for all (a, b) ∈ A×θ B. This means that D = δ(i,j), which completes the proof.

A direct application of Lemma 2.1 gives the following result.

Theorem 2.1. If A×θ B is ideally Connes-amenable, then so are A and B.

Proof. Let D : A −→ I be a w∗-continuous derivation, where I is an arbitrary w∗-closed two-sided
ideal of A. De�ne D : A×θ B −→ I ×θ J via D(a, b) := (D(a), 0), where J is a w∗-closed two-sided
ideal in B, such that J ⊂kerθ, for example J = {0}. Lemma 2.1 implies that D is a w∗-continuous
derivation and so it is inner. Thus, D is inner and hence A is ideally Connes-amenable.

For ideal Connes-amenability of B, let D : B −→ J be a w∗-continuous derivation, where J is an
arbitrary w∗-closed two-sided ideal of B. De�ne D : A×θB −→ A×θJ through D(a, b) := (0, D(b)).
Applying again Lemma 2.1, we �nd out that D is a w∗-continuous derivation and therefore it is inner.
This shows that B is ideally Connes-amenable.

It is known from [16, Proposition 2.3] that every ideally Connes-amenable dual Banach algebra
A is unital and automatically A2 is dense in A. Here we recall from Lemma 2.1 of [16] that if I is a
weak∗-closed two-sided ideal of a dual Banach algebra A = (A∗)∗, then it is a dual Banach algebra,
where A∗ is the predual of A. Therefore, I has a predual I∗ and so we can write I = (I∗)∗. We use
this fact and present the next proposition that shows under some mild conditions, for a dual Banach
algebra A, the set A2 is dense in A.

Proposition 2.1. Let I = (I∗)∗ be a w∗-closed two-sided ideals in A such that I2
∗ 6= I∗. If every

w∗-continuous operator D : A −→ I satis�es

D(ac) = D(a)c = cD(a) = 0 (2.7)

for all a, c ∈ A, then D is inner. In particular, D = 0 if and only if A2 is dense in A.
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Proof. Clearly, our assumption implies that D is inner. If A2 is dense in A, then for a ∈ A, there is
a net {aαbα} such that aαbβ → a. Thus, D(a) = limα limβD(aαbα) = 0.

Conversely, suppose contrary to our claim, that A2 is not dense in A. Take non-zero f ∈ A∗
such that f |A2 = 0. Given 0 6= λ ∈ I such that λ|I2∗ = 0. Then, D : A −→ I = (I∗)∗ de�ned
by D(a) = f(a)λ is a w∗-continuous derivation that satis�es (2.7). For each x ∈ I, we have
f(a)λ(x) = D(ax) = 0 for all a ∈ A. This implies that f = 0 and leads us to a contradiction.

Let A be a unital dual Banach algebra with identity eA. Suppose the bounded linear mappings
DA : A −→ I, TB : B −→ J , TA : B −→ I, TB : A −→ J are as in Lemma 2.1. Since A is unital,
by the de�nition of TB, we conclude that TB = 0. Thus, every derivation D : A×θ B −→ I ×θ J is
as the form

D(a, b) = (DA(a) + TA(b), DB(b)),

where TA(b) = −eAθ(DB(b)). Let J ⊂kerθ. Then, DA : A −→ I and DB : B −→ J are w∗-
continuous derivations. If DB = δj for some j ∈ J , then

TA(b) = −eAθ(DB(b)) = 0.

Hence, TA = 0. It now follows from Lemma 2.1 that D = δ(i,j) if and only if DA = δi and DB = δj
for some i ∈ I and j ∈ J . Summing up, we get

Theorem 2.2. Let A be a unital dual Banach algebra, B be a dual Banach algebra and θ ∈ 4(B).
Suppose that I is an arbitrary w∗-closed two-sided ideal of A and J ⊂kerθ is a w∗-closed two sided
ideal of B. Then, H1

w∗(A×θ B, I ×θ J ) = H1
w∗(A, I)

⊕
H1
w∗(B,J ).

Theorem 2.3. Let A and B be 2-weakly amenable, commutative dual Banach algebras. Then, A×θB
is ideally Connes-amenable.

Proof. We �rstly note that by hypothese, A is 2-ideally amenable. In addition, it follows from [16,
Theorem 2.11] that A is ideally Connes-amenable, and so Proposition 2.3 from [16] implies that A is
unital. Since A and B are 2-weakly amenable, A×θ B is 2-weakly amenable by [17, Corollary 4.11].
On the other hand, A×θ B is commutative and hence it is 2-ideally amenable by [16, Theorem 2.11].
Thus, we conclude that A×θ B is ideally Connes-amenable.

Corollary 2.1. Let A be a commutative dual Banach algebra and H1
w∗(A,A) = {0}. Then, A×θ A

is ideally Connes-amenable.

Proof. The result follows from Theorem 2.3 and [16, Proposition 2.9].

Example. Let (Z,+) be the group of integers. De�ne ωα : Z × Z −→ R+ by ωα(k,m) = (1+ | k |
)α(1+ | k + m |)α, where 0 < α < 1/2. By ([16, Example 2.18], l1(Z× Z, ωα) is 2-ideally amenable.
For 0 < α, β < 1/2, set A := l1(Z×Z, ωα) and B := l1(Z×Z, ωβ). It now follows from Theorem 2.3
that A×θ B is ideally Connes-amenable.

Note that for two Banach algebras A and B, we have

A?? ×θ B?? ∼= (A×θ B)??.

As a result of [16, Corollary 2.16], ideal Connes-amenability of A?? ×θ B??, implies that of A×θ B.
Let S be a non-empty set. The set of all mappings from S to the complex numbers set C is

denoted by CS. Consider

l1(S) =

{
f ∈ CS :

∑
s∈S

|f(s)| <∞

}
,



79

with the norm ‖ · ‖1 given by ‖f‖1 =
∑

s∈S |f(s)| for f ∈ l1(S). Now suppose that S is a semigroup.
For f, g ∈ l1(S), we set

(f ? g)(t) =
{∑

f(r)g(s) : r, s ∈ S, rs = t
}

(t ∈ S)

so that f ? g ∈ l1(S). It is standard that (l1(S), ?) is a Banach algebra, called the semigroup algebra
on S. Clearly, l1(S) is commutative if and only if S is abelian.

Let G be a group, and let m,n ∈ N, the zero adjoined to G is 0. That is x0 = 0x = 0 for x ∈ G.
A Rees semigroup has the form S = M(G,P,m, n), where P = (aij) ∈ Mn,m(G), the collection of
n ×m matrices with components in G. For x ∈ G, i ∈ Nm, and j ∈ Nn, let (x)ij be the element of
Mm,n(G0) with x in the (i, j)th. place and 0 elsewhere. As a set, S consists of the collection of all
these matrices (x)ij. Multiplication in S is given by the formula

(x)ij(y)k` = (xajky)i` (x, y ∈ G, i, k ∈ Nm, j, ` ∈ Nn).

It is shown in [7, Lemma 3.2.2] that S is a semigroup. Similarly, we have the semigroup
M0(G,P,m, n), where the elements of this semigroup are those of M(G,P,m, n), together with
the element 0, identi�ed with the matrix that has 0 in each place and the components of P are
now allowed to belong to G0. The matrix P is called the sandwich matrix in each case. The semi-
group M0(G,P,m, n) is a Rees matrix semigroup with a zero over G. We write M0(G,P, n) for
M0(G,P, n, n) in the case where m = n. For details on Rees semigroups, see [7, Section 3.2] and [2,
Chapter 3].

We also recall that a Brandt semigroup S over a group G with index set J is the semigroup
consisting of elementary J × J matrices over G∪ {0} and a zero matrix 0. We write S = {(g)ij : g ∈
G, i, j ∈ J} ∪ {0}, with multiplication given by

(g)ij(h)kl =

{
(gh)il if j = k

0 if j 6= k.

Theorem 2.4. Let S =M0(G,P, n) be a Rees matrix semigroup with a zero over the locally compact
group G and Sandwich matrix P. If l1(S) is commutative, then l1(S) ×θ l1(S) is ideally Connes-
amenable.

Proof. By [6, Theorem 3.1], l1(S) is 2-weakly amenable. Since l1(S) is commutative, it is 2-ideally
amenable. Thus, Theorem 2.11 from [16] implies that l1(S) is ideally Connes-amenable and hence it
is unital. Now, Theorem 2.3 shows that l1(S)×θ l1(S) is ideally Connes-amenable.

Corollary 2.2. Let S be a Brandt semigroup over a group G with index set J. If l1(S) is commutative,
then l1(S)×θ l1(S) is ideally Connes-amenable.

Proof. This follows by Theorem 2.4 and this fact that S ∼= M0(G,P, n), for some group G; see
[7].
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