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TYNYSBEK SHARIPOVICH KAL'MENOV

(to the 75th birthday)

Tynysbek Sharipovich Kal'menov was born in the village of Koksaek
of the Tolebi district of the Turkestan region (earlier it was the Lenger
district of the South-Kazakhstan region of the Kazakh SSR). Although
�according to the passport� his birthday was recorded on May 5, his real
date of birth is April 6, 1946.

Tynysbek Kal'menov is a graduate of the Novosibirsk State University
(1969), and a representative of the school of A.V. Bitsadze, an outstand-
ing scientist, corresponding member of the Academy of Sciences of the
USSR. In 1972, he completed his postgraduate studies at the Institute of
Mathematics of the Siberian Branch of the Academy of Sciences of the
USSR. In 1983, he defended his doctoral thesis at the M.V. Lomonosov
Moscow State University. Since1989, he is a corresponding member of the
Academy of Sciences of the Kazakh SSR, and since 2003, he is an academi-
cian of the National Academy of Sciences of the Republic of Kazakhstan.

Tynysbek Kal'menov worked at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR (1972-1985). From 1986 to 1991, he was the dean of the Faculty of
Mathematics of Al-Farabi Kazakh State University. From 1991 to 1997, he was the rector of the
Kazakh Chemical-Technological University (Shymkent).

From 2004 to 2019, Tynysbek Kal'menov was the General Director of the Institute of Mathematics
and Mathematical Modeling. He made it one of the leading scienti�c centers in the country and the
best research institute in Kazakhstan. It su�ces to say, that in terms of the number of scienti�c
publications (2015-2018) in international rating journals indexed in the Web of Science, the Institute
of Mathematics and Mathematical Modeling was ranked fourth among all Kazakhstani organizations,
behind only three large universities: the Nazarbaev University, Al-Farabi National University and
L.N. Gumilyov Eurasian National University.

Since 2019, Tynysbek Kal'menov has been working as the head of the Department of Di�erential
Equations of the Institute of Mathematics and Mathematical Modeling. He is a member of the
National Scienti�c Council �Scienti�c Research in the Field of Natural Sciences�, which is the main
Kazakhstan council that determines the development of science in the country.

T.Sh. Kal'menov was repeatedly elected to maslikhats of various levels, was a member of the
Presidium of the Committee for Supervision and Attestation in Education and Science of the Ministry
of Education and Science of the Republic of Kazakhstan. He is a Laureate of Lenin Komsomol Prize
of the Kazakh SSR (1978), an Honored Worker of Science and Technology of Kazakhstan (1996),
awarded with the order �Kurmet� (2008 Ði.) and jubilee medals.

In 2013, he was awarded the State Prize of the Republic of Kazakhstan in the �eld of science and
technology for the series of works �To the theory of initial- boundary value problems for di�erential
equations�.

The main areas of scienti�c interests of academician Tynysbek Kal'menov are di�erential equa-
tions, mathematical physics and operator theory. He has obtained fundamental scienti�c results,
many of which led to the creation of new scienti�c directions in mathematics.

Tynysbek Kal'menov, using a new maximum principle for an equation of mixed type (Kal'menov's
maximum principle), was the �rst to prove that the Tricomi problem has an eigenfunction, thus he
solved the famous problem of the Italian mathematician Francesco Tricomi, set in 1923 This marked
the beginning of a new promising direction, that is, the spectral theory of equations of mixed type.

He established necessary and su�cient conditions for the well-posed solvability of the classical
Darboux and Goursat problems for strongly degenerate hyperbolic equations.
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Tynysbek Kal'menov solved the problem of completeness of the system of root functions of the
nonlocal Bitsadze-Samarskii problem for a wide class of multidimensional elliptic equations. This
result is �nal and has been widely recognized by the entire mathematical community.

He developed a new e�ective method for studying ill-posed problems using spectral expansion of
di�erential operators with deviating argument. On the basis of this method, he found necessary and
su�cient conditions for the solvability of the mixed Cauchy problem for the Laplace equation.

Tynysbek Kal'menov was the �rst to construct boundary conditions of the classical Newton
potential. That is a fundamental result at the level of a classical one. Prior to the research of
Kal'menov T.Sh., it was believed that the Newton potential gives only a particular solution of an
inhomogeneous equation and does not satisfy any boundary conditions. Thanks for these results, for
the �rst time, it was possible to construct the spectral theory of the classical Newton potential.

He developed a new e�ective method for constructing Green's function for a wide class of boundary
value problems. Using this method, Green's function of the Dirichlet problem was �rst constructed
explicitly for a multidimensional polyharmonic equation.

From 1989 to 1993, Tynysbek Kal'menov was the chairman of the Inter- Republican (Kazakhstan,
Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan) Dissertation Council. He is a member of the
International Mathematical Society and he repeatedly has been a member of organizing committee
of many international conferences. He carries out a lot of organizational work in training of highly
quali�ed personnel for the Republic of Kazakhstan and preparing international conferences. Under
his direct guidance, the First Congress of Mathematicians of Kazakhstan was held. He presented
his reports in Germany, Poland, Great Britain, Sweden, France, Spain, Japan, Turkey, China, Iran,
India, Malaysia, Australia, Portugal and countries of CIS.

In terms of the number of articles in scienti�c journals with the impact- factor Web of Science, in
the research direction of �Mathematics�, the Institute of Mathematics and Mathematical Modeling
is on one row with leading mathematical institutes of the Russian Federation, and is ahead of all
mathematical institutes in other CIS countries in this indicator.

Tynysbek Kal'menov is one of the few scientists who managed to leave an imprint of their indi-
viduality almost in all branches of mathematics in which he has been engaged.

Tynysbek Kal'menov has trained 11 doctors and more than 60 candidate of sciences and PhD,
has founded a large scienti�c school on equations of mixed type and di�erential operators recognized
all over the world. Many of his disciples are now independent scientists recognized in the world of
mathematics.

He has published over 150 scienti�c articles, most of which are published in international math-
ematical journals, including 14 articles published in �Doklady AN SSSR/ Doklady Mathematics�.
In the last 5 years alone (2016-2020), he has published more than 30 articles in scienti�c journals
indexed in the Web of Science database. To date, academician Tynysbek Kal'menov has a Hirsch
index of 18 in the Web of Science and Scopus databases, which is the highest indicator among all
Kazakhstan mathematicians.

Outstanding personal qualities of academician Tynysbek Kalmenov, his high professional level,
adherence to principles of purity of science, high exactingness towards himself and his colleagues, all
these are the foundations of the enormous authority that he has among Kazakhstan scientists and
mathematicians of many countries.

Academician Tynysbek Sharipovich Kalmenov meets his 75th birthday in the prime of his life,
and the mathematical community, many of his friends and colleagues and the Editorial Board of the
Eurasian Mathematical Journal heartily congratulate him on his jubilee and wish him good health,
happiness and new successes in mathematics and mathematical education, family well-being and long
years of fruitful life.
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the balayage of measures and their potentials.
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1 Introduction

1.1 On the classical Poisson-Jensen formula

Let D be a bounded domain in the d-dimensional Euclidean space Rd with the closure closD in Rd

and the boundary ∂D in Rd. Then, for any x ∈ D there are the extended harmonic measure ωD(x, ·)
for D at x ∈ D, which is a Borel probability measure on Rd with support on ∂D, and the generalized
Green's function gD(·, x) for D with pole at x extended by zero values on the complement Rd \ closD
and by the upper semicontinuous regularization on ∂D from D [22], [2], [50], [23], [14], [46] (see also
(2.7) and (2.9) in Subsection 2.3 below).

Let u 6≡ −∞ be a subharmonic function on closD, i.e., on an open set containing closD, with
its Riesz measure ∆u on this open set (see for details Subsections 1.2 and formula (1.6)).

Classical Poisson � Jensen formula ([22, Theorem 5.27], [50, Section 4.5]).

u(x) =

∫
∂D

u dωD(x, ·)−
∫

closD

gD(·, x) d∆u for each x ∈ D. (1.1)

For s ∈ R, we set

ks(t) :=

{
ln t if s = 0,

− s
|s|t
−s if s ∈ R \ 0,

t ∈ R+ \ 0, (1.2k)

Kd−2(y, x) :=


kd−2

(
|y − x|

)
if y 6= x,

−∞ if y = x and d ≥ 2,

0 if y = x and d = 1,

(y, x) ∈ Rd × Rd. (1.2K)

The following functions

p : y 7−→
y ∈ Rd

gD(y, x) +Kd−2(y, x), q : y 7−→
y ∈ Rd

Kd−2(y, x) (1.3)
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are subharmonic with the Riesz probability measures ∆p = ωD(x, ·) and ∆q = δx, where δx is
the Dirac measure at x ∈ D: δx

(
{x}
)

= 1. The following symmetric equivalent form of classical
Poisson � Jensen formula (1.1) immediately follows from the suitable de�nitions of harmonic measures
and Green's functions and is brie�y discussed in Subsection 2.3.

Symmetrization of the classical Poisson � Jensen formula . If we choose p, q as in (1.3) and
put S = closD, then (1.1) can be rewritten in the symmetric form∫

S

u d∆q +

∫
S

p d∆u =

∫
S

u d∆p +

∫
S

q d∆u. (1.4)

Equality (1.4) re�ects the fact that the Laplace operator 4 is self-adjoint for some formal bilinear
integral form (u,4w) :=

∫
u 4w =

∫
4uw = (4u,w) , where w := q − p. The following result

is a special case of our Main Theorem from Subsection 2.2, but already signi�cantly develops the
classical Poisson � Jensen formula (1.3)�(1.4).

Theorem 1.1. Let S ⊂ Rd be a non-empty compact set, and p 6≡ −∞, and q 6≡ −∞ be a pair
of subharmonic functions on S with the Riesz measures ∆p and ∆q, respectively. If p and q are
harmonic outside S and p = q outside S, then the symmetric Poisson � Jensen formula (1.4) holds
for each subharmonic function u 6≡ −∞ on S with the Riesz measure ∆u.

In the case in which p, q, and u are smooth, Theorem 1.1 is an easy corollary of Green's identity,
but its proof for arbitrary subharmonic functions p, q and u requires careful justi�cation. The Main
Lemma and Main Theorem of our work establish exact relations between Poisson � Jensen formulas
and the concept of balayage of measures and subharmonic functions.

Our Main Lemma is formulated in Subsection 2.1 and gives a symmetric Poisson � Jensen formula
for measures and their potentials. The Main Lemma is proved in Section 3. The proof of the Main
Lemma use Theorem 3.1 from Subsection 3.1 on representations for pairs of subharmonic functions.
This result of Liouville type is also of independent interest.

The Main Theorem is formulated in Subsection 2.2 and gives a full symmetric Poisson � Jensen
formula for subharmonic integrands. The proof of the Main Theorem in Section 4 essentially uses
the Main Lemma. Theorem 1.1 is deduced from the Main Theorem in Subsection 2.2. The next
Subsection 2.3 contains a discussion of classical symmetric Poisson � Jensen formula (1.3)�(1.4) as a
corollary of Theorem 1.1.

Our Duality Theorems 1�3 in Section 5 give a complete description of potentials of measures
obtained as a certain process of balayage of measures with compact supports. In order to prove
Duality Theorems 1�3, we use both the Main Lemma and the Main Theorem. A signi�cant number
of references to the author's work in the bibliography are connected, in particular, with the fact that
we indicate a list of works in which previous versions of duality theorems were applied to various
problems of function theory.

We proceed to precise and detailed de�nitions and formulations.

1.2 Basic notation, de�nitions, and conventions

The reader can skip this Subsection 1.2 and return to it only if necessary.

Sets, topology, order

We denote by N := {1, 2, . . . }, R, and R+ := {x ∈ R : x ≥ 0} the sets of natural, of real, and
of positive numbers, each endowed with its natural order (≤, sup / inf), algebraic, geometric and
topological structure. We denote singleton sets by a symbol without curly brackets. So, N0 :=
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{0}∪N =: 0∪N, and R+ \0 := R+ \{0} is the set of strictly positive numbers, etc. The extended real
line R := −∞tRt+∞ is the order completion of R by the disjoint union t with +∞ := supR and

−∞ := inf R equipped with the order topology with two ends ±∞, R+
:= R+ t+∞; inf ∅ := +∞,

sup∅ := −∞ for the empty set ∅ etc. The same symbol 0 is also used, depending on the context,
to denote zero vector, zero function, zero measure, etc.

We denote by Rd the Euclidean space of d ∈ N dimensions with the Euclidean norm |x| :=√
x2

1 + · · ·+ x2
d of x = (x1, . . . , xd) ∈ Rd, and we denote by Rd

∞ := Rdt∞ the Alexandro� (Aleksan-
drov) one-point compacti�cation of Rd obtained by adding one extra point ∞. For a subset S ⊂ Rd

∞
or a subset S ⊂ Rd we let {S := Rd

∞ \ S, closS, intS := {(clos {S), and ∂S := closS \ intS
denote its complement, closure, interior, and boundary always in Rd

∞, and S is equipped with the
topology induced from Rd

∞. If S ′ is a relatively compact subset in S, i.e., closS ′ ⊂ S, then we
write S ′ b S. We denote by B(x, t) := {y ∈ Rd : |y − x| < t}, B(x, t) := {y ∈ Rd : |y − x| ≤ t},
∂B(x, t) := B(x, t) \B(x, t) an open ball, a closed ball, a sphere of radius t ∈ R+ centered at x ∈ Rd,
respectively.

Let T be a topological space, and S be a subset in T . We denote by ConnT S or ConnT (S) the
set of all connected components of S ⊂ T in T .

Throughout this paper O 6= ∅ will denote an open subset in Rd, and D 6= ∅ is a domain in Rd,
i.e., an open connected subset in Rd.

Measures and charges

The convex cone over R+ of all Borel, or Radon, positive measures µ ≥ 0 on the σ-algebra Bor(S) of all
Borel subsets of S is denoted by Meas+(S); Meas+

cmp(S) ⊂ Meas+(S) is the subcone of µ ∈ Meas+(S)
with compact support suppµ in S, Meas(S) := Meas+(S) − Meas+(S) is the vector lattice over
R of charges, or signed measures, on S, Meas+1(S) is the convex set of probability measures on S,
Meas1+

cmp(S) := Meas1+(S)∩Meascmp(S), and Meascmp(S) := Meas+
cmp(S)−Meas+

cmp(S). For a charge
µ ∈ Meas(S), we let µ+ := sup{0, µ}, µ− := (−µ)+ and µ := µ+ + µ− respectively denote its upper,
lower, and total variations, and µ(x, t) := µ

(
B(x, t)

)
.

For an extended numerical function f : S → R we allow values ±∞ for Lebesgue integrals [22,
Chapter 3, De�niftion 3.3.2] (see also [9])∫

S

f dµ ∈ R, µ ∈ Meas+(S), (1.5)

and we say that f is µ-integrable on S if the integral in (1.5) is �nite.

Subharmonic functions

We denote by sbh(O) the convex cone over R+ of all subharmonic (locally convex if d = 1) functions
on O, including functions that are identically equal to −∞ on some components C ∈ ConnRd∞(O).

Thus, har(O) := sbh(O) ∩
(
− sbh(O)

)
is the vector space over R of all harmonic (locally a�ne if

d = 1) functions on O. Each function

u ∈ sbh∗(O) :=
{
u ∈ sbh(O) : u 6≡ −∞ on each C ∈ ConnRd∞(O)

}
is associated with its Riesz measure

∆u := cd4u ∈ Meas+(O), cd :=
Γ(d/2)

2πd/2 max{1, d− 2
} , (1.6)
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where 4 is the Laplace operator acting in the sense of the theory of distributions (or generalized
functions), and Γ is the gamma function. If u ≡ −∞ on C ∈ ConnRd∞(O), then we set∆−∞(S) := +∞
for each S ⊂ C. Given S ⊂ Rd, we set

Sbh(S) :=
⋃{

sbh(O′) : S ⊂ O′
open

= intO′ ⊂ Rd
}
,

Sbh∗(S) :=
⋃{

sbh∗(O
′) : S ⊂ O′

open

= intO′ ⊂ Rd
}
,

Har∗(S) :=
⋃{

har(O′) : S ⊂ O′
open

= intO′ ⊂ Rd
}
.

Consider a binary relation ∼=⊂ Sbh(S) × Sbh(S) on Sbh(S) de�ned by the rule: U ∼= V if there
is an open set O′ ⊃ S in Rd such that U ∈ sbh(O′), V ∈ sbh(O′), and U(x) = V (x) for each
x ∈ O′. This relation ∼= is an equivalence relation on Sbh(S), on Sbh∗(S), and on Har(S). The
quotient sets of Sbh(S), of Sbh∗(S), and of Har(S) by ∼= are denoted below by sbh(S) := Sbh(S)/ ∼=,
sbh∗(S) := Sbh∗(S)/ ∼=, and har(S) := Har(S)/ ∼=, respectively. The equivalence class [u] of u is
denoted without square brackets as simply u, and we do not distinguish between the equivalence
class [u] and the function u when possible. So, for u, v ∈ sbh(S), we write �u = v on S� if [u] = [v] in
sbh(S) := Sbh(S)/ ∼=, or, equivalently, u ∼= v on Sbh(S), and we write u 6≡ −∞ if u ∈ sbh∗(S). The
concept of the Riesz measure ∆u of u ∈ sbh(S) is correctly and uniquely de�ned by the restriction
∆u

∣∣
S
of the Riesz measure ∆u to S. For u ∈ sbh(S) and v ∈ sbh(S), the concepts �u ≤ v on S�, and

�u = v outside S�, �u ≤ v outside S�, �u is harmonic outside S�, etc. de�ned naturally: u(x) ≤ v(x)
for each x ∈ S, and there exits an open set O′ ⊃ S such that u(x) = v(x) for each x ∈ O′ \ S,
u(x) ≤ v(x) for each x ∈ O′ \ S, the restriction u

∣∣
O′\S is harmonic on O′ \ S, respectively. So,

Theorem 1.1 in Introduction is formulated precisely in this interpretation.

Balayage

Let S ∈ Bor(Rd) and H be a set of upper semicontinuous functions f : S → R \ +∞. A measure
ω ∈ Meas+

cmp(S) is called the balayage of a measure ∆ ∈ Meas+
cmp(S) for S with respect to H [49],

[8], [41, De�nition 5.2], or, brie�y, ω is a H-balayage of ∆, and we write ∆ �H ω or ω �H ∆ if∫
S

h d∆ ≤
∫
S

h dω for each h ∈ H in accordance with (1.5). (1.7)

If ∆ �H ω and ω �H ∆, then we write ∆ 'H ω. The following properties are obvious.

1. The binary relation �H (respectively 'H) on Meas+
cmp(S) is a preorder, i.e., a re�exive and tran-

sitive relation, (respectively, an equivalence) on Meas+
cmp(S).

2. If H contains a strictly positive (respectively, negative) constant, then ∆(S) ≤ ω(S) (∆(S) ≥
ω(S), respectively).

3. If H = −H, then the order �H is the equivalence 'H . So, if H = har(S), then ω is a har(S)-
balayage of ∆ if and only if ∆ 'har(S) ω, i.e.,∫

S

h d∆ =

∫
S

h dω for each h ∈ har(S) and ∆(S) = ω(S). (1.8)

4. If ∆ �sbh(S) ω, then ∆ �har(S) ω. The converse is not true [43, Example XIB2], [48, Example].

5. If ω ∈ Meas+
cmp(O) is a

(
sbh(O)∩C∞(O)

)
-balayage of ∆ ∈ Meas+

cmp(O), where C∞(O) is the class
of all in�nitely di�erentiable functions on O, then ∆ �sbh(O) ω, since for each function u ∈ sbh(O)
there exists a sequence of functions uj ∈

j ∈ N
sbh(O)∩C∞(O) decreasing to it [14, Chapter 4, Section

10, Approximation Theorem].
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Remark 1. Balayage of charges and measures with a non-compact support also occur frequently
and are used in Analysis. So, a bounded domain D ⊂ Rd is called a quadrature domain (for harmonic
functions) if there is a charge ∆ ∈ Meascmp(D) such that the restriction of the Lebesgue measure
λ to D is a balayage of ∆ with respect to the class of all harmonic λ-integrable functions on D.
In connection with the quadrature domains, see very informative overview [19, Chapter 3] and the
bibliography therein.

Potentials

For a charge µ ∈ Meascmp(O) its potential

ptµ : Rd
∞ → R, ptµ(y)

(1.2)
:=

∫
O

Kd−2(x, y) dµ(x), (1.9)

is uniquely determined on [3], [40, 3.1]

Dom ptµ :=

{
y ∈ Rd : inf

{∫ 1

0

µ−(y, t)

td−1
dt,

∫ 1

0

µ+(y, t)

td−1
dt

}
< +∞

}
(1.10)

by values in R, and the set E := ({Dom ptµ) \∞ is polar with zero outer capacity

Cap∗(E) := inf
E⊂O′open= intO′

sup

C
closed

= closC
compact

b O

ν∈Meas1+(C)

k−1
d−2

(∫∫
Kd−2(x, y) dν(x) dν(y)

)
.

Evidently ptµ ∈ har
(
Rd \ supp |µ|

)
, and if µ ∈ Meas+

cmp(Rd), then ptµ ∈ sbh∗(Rd).

Inward �lling of sets with respect to an open set

Let O be an open set in Rd. The union of S ⊂ O with all components C ∈ ConnO(O \ S) such that
C b O will be called the inward �lling of S with respect to O, and we denote this union by in-fillO S
or in-fillO(S), although in [16, Section 1.7], [6], [17, Section 12], [35, Section 1] another notation
Ŝ was used. Denote by O∞ the Alexandro� one-point compacti�cation of O with underlying set
O t ∞, where the extra point ∞ 6∈ O can be identi�ed with the boundary ∂O or the complement
{O, considered as a single point. The following elementary properties of the inward �lling will often
be used without mentioning them.

Proposition 1.1 ([16, Section 6.3], [17], [6], [18]). Let S be a compact set in an open set O ⊂ Rd.
Then

(i) in-fillO S is a compact subset in O, and in-fillO
(
in-fillO S

)
= in-fillO S;

(ii) the set O∞ \ in-fillO S is connected and locally connected subset in O∞;

(iii) the inward �lling of S with respect to O coincides with the complement in O∞ of connected
component of O∞ \ S containing the point ∞, i. e., in-fillO S = O∞ \ C∞, where ∞ ∈ C∞ ∈
ConnO∞(O∞ \ S);

(iv) if O′ ⊂ Rd
∞ is an open subset and O ⊂ O′, then in-fillO S ⊂ in-fillO′ S;

(v) if S ′ ⊂ S is a compact subset in O, then in-fillO S
′ ⊂ in-fillO S;

(vi) Rd \ in-fillO S has only �nitely many components: # ConnRd∞(Rd \ in-fillO S) < +∞.
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2 Poisson � Jensen formulas

2.1 Main result for measures and their potentials

Main Lemma . Let ∆ ∈ Meas+
cmp(O), ω ∈ Meas+

cmp(O), and

SO := in-fillO(supp∆ ∪ suppω). (2.1)

The following seven statements are equivalent.

I. ∆ �har(O) ω.

II. ∆ 'har(SO) ω.

III. pt∆ = ptω on Rd \ SO.

IV. There are a compact subset S in O, a function q ∈ sbh∗(S) with the Riesz measure ∆q = ∆,
and a function p ∈ sbh∗(S) with the Riesz measure ∆p = ω such that q and p are harmonic
outside S, and q = p outside S.

V. The symmetric Poisson � Jensen formula for potentials is valid:∫
u d∆+

∫
B

ptω d∆u =

∫
u dω +

∫
B

pt∆ d∆u (2.2f)

for each B ∈ Bor(Rd) such that SO ⊂ B b O (2.2B)

and for each u ∈ sbh∗(closB). (2.2u)

VI. For each q ∈ sbh∗(SO) with ∆q = ∆ there is p ∈ sbh∗(SO) with ∆p = ω such that∫
u d∆+

∫
SO

p d∆u =

∫
u dω +

∫
SO

q d∆u for each u ∈ sbh∗(O). (2.3)

VII. There are a compact subset S ⊃ SO in O and a pair of functions q ∈ sbh∗(SO) and p ∈ sbh∗(SO)
with the Riesz measures ∆q = ∆ and ∆p = ω, respectively, such that the equality in (2.3) is
ful�lled for each special subharmonic function

ux : y 7−→
y ∈ Rd

Kd−2(y, x), x ∈ O \ S,

instead of all functions u ∈ sbh∗(O) in (2.3).

The proof of the Main Lemma will be given only after some preparation in Section 3.

2.2 Full version of the Poisson � Jensen formula for subharmonic inte-
grands

The starting point of the Main Lemma is a pair of measures ∆,ω ∈ Meas+
cmp(O). Our Main Theorem

is a functional counterpart of the Main Lemma. The starting point in it is now a pair of subharmonic
functions from (2.4s).
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Main Theorem . Let

∅ 6= S
closed
= closS

compact

b O
open

= intO ⊂ Rd, SO := in-fillO S, (2.4S)

q ∈ sbh∗(O) ∩ har(O \ S), p ∈ sbh∗(O) ∩ har(O \ S), (2.4s)

S 6= :=
{
x ∈ O : q(x) 6= p(x)

}
. (2.4 6=)

The following four statements are equivalent.

[I] S6= ⊂ SO, i.e., q = p on O \ SO.

[II] There is a function h ∈ har(O) such that{
q = pt∆q + h

p = pt∆p + h
on O and pt∆q = pt∆pon Rd \ SO, (2.5)

where ∆q ∈ Meas+(S) and ∆p ∈ Meas+(S) are the Riesz measures of q and p.

[III] The full symmetric Poisson � Jensen formula is valid:∫
S

u d∆q +

∫
B

p d∆u =

∫
S

u d∆p +

∫
B

q d∆u for each B ∈ Bor(Rd) (2.6f)

if SO ∩ S 6= ⊂ B b O and for each u ∈ sbh∗(SO ∪ closB). (2.6B)

[IV] (2.6) holds for a sequence of sets Bj ∈
j ∈ N0

Bor(O) such that B0 := SO ⊂
j ∈ N

Bj b
j ∈ N

O and⋃
j∈NBj = O instead of all B ∈ Bor(Rd) with SO ∩ S6= ⊂ B b O in (2.6) and for each special

subharmonic function ux : y 7−→
y ∈ Rd

Kd−2(y, x) with x ∈ O \ B0 = O \ SO instead of all functions

u ∈ sbh∗(SO ∪ closB) in (2.6B).

We can now prove Theorem 1.1 of the Introduction.

Proof of Theorem 1.1. There is an open set O ⊂ Rd such that u ∈ sbh∗(O), q ∈ sbh∗(O) and
p ∈ sbh∗(O) are harmonic on O \ S, and also q = p on O \ S. Evidently, in notation (2.4), we have
SO ∩S6= ⊂ S ⊂ SO b O and u ∈ sbh∗(SO). Theorem 1.1 with (1.4) follows from implication [I]⇒[III]
of the Main Theorem, since we can choose B := S in (2.6).

2.3 In detail on the classical Poisson � Jensen formula

If x ∈ D b O, then the extended harmonic measure ωD(x, ·) ∈ Meas1+(∂D) ⊂ Meas1+
cmp(Rd) (for D

at x) de�ned on sets B ∈ Bor(Rd) by

ωD(x,B) := sup

{
u(x) : u ∈ sbh(D), lim sup

D3y′→y∈∂D
u(y′) ≤

{
1 for y ∈ B ∩ ∂D
0 for y /∈ B ∩ ∂D

}
(2.7)

is a har(O)-balayage of δx with obvious equalities

in-fill
(
supp δx ∪ suppωD(x, ·)

)
= in-fill(x ∪ ∂D) = closD,

the potential (see [46, Chapter 4, Section 1, paragraph 2])

ptωD(x,·)−δx(y) = ptωD(x,·)(y)− ptδx(y)

=

∫
∂D

Kd−2(y, x′) dx′ωD(x, x′)−Kd−2(y, x) = gD(y, x), y ∈ Rd
∞, x ∈ D, (2.8)
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is equal to the generalized Green's function gD(·, x) : Rd
∞ → R+

(for D with pole at x and gD(x, x) :=
+∞) de�ned on Rd

∞ \ x by upper semicontinuous regularization

gD(y, x) := ǧ∗(y, x) := lim sup
Rd3y′→y

ǧ(y′, x) ∈ R+
for each y ∈ Rd

∞ \ x, where

ǧ(y, x) := sup

u(y) : u ∈ sbh(Rd \ x),

u(y′) ≤ 0 for each y /∈ closD,

lim sup
x 6=y→x

u(y)

−Kd−2(x, y)
≤ 1

 .
(2.9)

Equalities (2.8) give (1.3) with ∆p = ωD(x, ·) and ∆q = δx. Thus, Theorem 1.1 implies symmetric
Poisson � Jensen formula (1.4) which can be written in detail as∫

closD

u dδx +

∫
closD

(
gD(·, x) +Kd−2(·, x)

)
d∆u

=

∫
closD

u dωD(x, ·) +

∫
closD

Kd−2(·, x) d∆u. (2.10)

The latter coincides with classical Poisson � Jensen formula (1.1).

2.4 The Poisson � Jensen formula for the Arens � Singer, and Jensen mea-
sures and potentials

Our results presented in this Subsection 2.4 are intermediate between classical Poisson � Jensen
formula (1.1) and symmetric Poisson � Jensen formula (1.4) of Theorem 1.1. If x ∈ O and
δx �har(O) ω ∈ Meas+

cmp(O), thenω is called anArens � Singer measure on O at x [15, Chapter 3], [52],

[30], [35, De�nition 1], [34], [36], [45], or representing measure. We denote by ASx(O) ⊂ Meas1+
cmp(O)

the class of all Arens � Singer measures on O at x. Ifω ∈ ASx(O), then the potential [50, Section 3.1],
[35, De�nition 2], [40, Sections 3.1, 3.2], [11]

ptω−δx(y))
(1.9)
= ptω − ptδx(y)

(1.2)
= ptω(y)−Kd−2(y, x), y ∈ Rd

∞ \ x,

satis�es conditions [35, Section 1] (see also Duality Theorem 3 in Section 5 below)

ptω−δx ∈ sbh(Rd
∞ \ x), ptω−δx(∞) := 0,

ptω−δx ≡ 0 on Rd
∞ \ in-fillO(x ∪ suppω),

ptω−δx(y) ≤ −Kd−2(x, y) +O(1) as x 6= y → x.

(2.11)

If x ∈ O and δx �sbh(O) ω, then this measure ω is called a Jensen measure on O at x [15, Chapter 3],
[43], [44], [12], [13], [51], [10], [20], [21], [24], [42], [7], [38]. The class of these measures is denoted
by Jx(O), and properties (2.11) are supplemented by the positivity property ptω−δx ≥ 0 on Rd

∞ \ x
for all measures ω ∈ Jx(O) ⊂ ASx(O). These measures can be considered as generalizations of the
extended harmonic measures (2.7).

By the implication I⇒V of the Main Lemma with ∆ := δx, we obtain the following our version
[35, Proposition 1.2, formula (1.3)] of the Poisson-Jensen formula for Arens � Singer measures ω ∈
ASx(O), generalizing classical Poisson-Jensen formula (1.1).

Poisson � Jensen formula for Arens � Singer and Jensen measures. If ω ∈ ASx(O), then

u(x) =

∫
u dω−

∫
ptω−δx d∆u for each u ∈ sbh∗(O) with u(x) 6= −∞. (2.12)

If ω ∈ Jx(O) and ω 6= δx, then the restriction u(x) 6= −∞ in (2.12) can be removed.
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For x ∈ Rd, a function V ∈ sbh∗
(
Rd
∞ \ x

)
is called an Arens � Singer potential on O with pole at

x ∈ O [15, Chapter 3], [52], [34], [35], [36, De�nition 6], [45, Section 4] if there is SV b O such that

V ≡ 0 on {SV and lim sup
x 6=y→x

V (y)

−Kd−2(x, y)
≤ 1. (2.13)

We denote by ASPx(O) the class of all Arens � Singer potentials on O with pole at x ∈ O. A positive
Arens � Singer potential is called a Jensen potential on O with pole at x ∈ O [15, Chapter 3], [1],
[35], [47], [36, De�nition 8], [44, Section IIIC], [37], [42], [7]. We denote by JPx(O) the class of all
Jensen potentials on O with pole at x ∈ O. These potentials can be considered as generalizations of
Green's functions (2.9). For V ∈ ASPx(O), we choose (cf. (1.3))

p : y 7−→ V (y) +Kd−2(y, x), q : y 7−→ Kd−2(y, x) for y ∈ Rd. (2.14)

Then these subharmonic functions on Rd are harmonic and coincide outside closSV by (2.13), and
the implication [I]⇒[III] of the Main Theorem give the equality (cf. (2.10))∫

O

u dδx +

∫
SO

(
V (y) +Kd−2(·, x)

)
d∆u =

∫
O

u d∆V +

∫
SO

Kd−2(·, x) d∆u,

where SO = in-fill

(
x ∪

(⋃{
y ∈ O : V /∈ har(y)

}))
. Hence we obtain

Poisson � Jensen formula for Arens � Singer and Jensen potentials. If V ∈ ASPx(O), then

u(x) =

∫
u d∆V −

∫
V d∆u for each u ∈ sbh∗(O) with u(x) 6= −∞. (2.15)

If V ∈ JPx(O) and V 6≡ 0 on {x, then the restriction u(x) 6= −∞ in (2.15) can be removed.

3 Proof of the Main Lemma

3.1 Representations for pairs of subharmonic functions

Proposition 3.1. If µ ∈ Meascmp(Rd), then

ptµ ∈ sbh(Rd)
⋂

har(Rd \ suppµ), (3.1h)

ptµ(x)
(1.2k)
= µ(Rd)kd−2

(
|x|
)

+O
(
1/|x|d−1

)
, x→∞. (3.1∞)

Proof. For d = 1, we have∣∣ptµ(x)− µ(R)|x|
∣∣ ≤ ∫ ∣∣|x− y| − |x|∣∣ d|µ|(y) ≤

∫
|y| d|µ|(y) = O(1), |x| → +∞.

See [50, Theorem 3.1.2] for d = 2.
For d > 2 and |x| ≥ 2 sup

{
|y| : y ∈ suppµ

}
, we have∣∣ptµ(x)− µ(Rd)kd−2

(
|x|
)∣∣ =

∣∣∣∣∫ ( 1

|x|d−2
− 1

|x− y|d−2

)
dµ(y)

∣∣∣∣
≤
∫ ∣∣∣∣ 1

|x|d−2
− 1

|x− y|d−2

∣∣∣∣ d|µ|(y) ≤ 2d−2

|x|2d−4

∫ ∣∣|x− y|d−2 − |x|d−2
∣∣ d|µ|(y)

≤ 2d−2

|x|2d−4

∫
|y||x|d−3

d−3∑
k=0

(3

2

)k
d|µ|(y) ≤ 2

3d−2

|x|d−1

∫
|y| d|µ|(y) = O

( 1

|x|d−1

)
,

and we get (3.1∞).
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Theorem 3.1. Let O ⊂ Rd be an open set, and let p ∈ sbh∗(O) and q ∈ sbh∗(O) be a pair of functions
such that p and q are harmonic outside a compact subset in O. If there is a compact set S b O such
that p = q on O \ S, then, for the Riesz measures ∆p ∈ Meas+

cmp(O) of p and ∆q ∈ Meas+
cmp(O) of q,

we have

∆p(O) = ∆q(O), pt∆p = pt∆q on Rd \ S, (3.2)

and there is a harmonic function H on O such that{
p = pt∆p +H

q = pt∆q +H
on O, H ∈ har(O). (3.3)

Proof. By Weyl's lemma for the Laplace equation, we have4(p− pt∆p)
(1.6)
= 1

cd
(∆p −∆p) = 0

4(q − pt∆q)
(1.6)
= 1

cd
(∆q −∆q) = 0

=⇒

{
hp := p− pt∆p ∈ har(O)

hq := q − pt∆q ∈ har(O)

and obtain the representations{
p = pt∆p + hp

q = pt∆Q + hq
on O with hp ∈ har(O) and hq ∈ har(O). (3.4)

Let us �rst consider separately several cases.

The case O := Rd with the notation P := p and Q := q. Put

h
(3.4)
:= hP − hQ ∈ har(Rd). (3.5)

By the conditions of Theorem 3.1 and Proposition 3.1, we have

h(x)
(3.5)
= hP (x)− hQ(x)

(3.4)
= −pt∆P (x) + pt∆Q(x) +

(
P (x)−Q(x)

)
(3.1∞)

= bkd−2

(
|x|
)

+O
(
|x|1−d

)
, |x| → +∞, where b := ∆Q(Rd)−∆P (Rd). (3.6)

The case d > 2. If d ≥ 3, then, in view of (3.6), this harmonic function h is bounded on Rd.

By Liouville's Theorem [5, Chapter 3], h is constant, and hP − hQ = h
(3.6)
≡ 0 on Rd. In particular,

|b| =
∣∣b + |x|d−2h(x)

∣∣ (3.6)
= O

(
1/|x|

)
as x → ∞, i.e., b = 0. Thus, for H := hP = hQ, by (3.4), we

obtain representations (3.3) together with equality pt∆P = pt∆Q on Rd \ S, as required.

The case d = 2. Using (3.6) we obtain
∣∣h(x) − b log |x|

∣∣ (3.6)
= O

(
1/|x|

)
as x → ∞. Hence, this

harmonic function h is bounded from below if b ≥ 0 or bounded from above if b < 0. Therefore, by

Liouville's Theorem, h is constant, b = 0, i.e., ∆P (R2)
(3.6)
= ∆Q(R2), and h

(3.6)
≡ 0 on R2. Thus, we

obtain (3.3) together with equality (3.2).
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The case d = 1. Using (3.6) we obtain
∣∣h(x)−b|x|

∣∣ (3.6)= O(1) as x→∞. Hence, this a�ne function
h on R is bounded from below if b ≥ 0 or bounded from above if b < 0. Therefore, h is constant,

b = 0, i.e., ∆P (R)
(3.6)
= ∆Q(R), and h

(3.6)
≡ C on R for a constant C ∈ R. Thus,{

P (x) = pt∆P (x) + ax+ b+ C

Q(x) = pt∆Q(x) + ax+ b
for x ∈ R with hQ(x) ≡

x ∈ R
ax+ b, (3.7)

De�nition (1.9) of potentials in the case d = 1 immediately implies

Lemma 3.1. Let ∆ ∈ Meas+
cmp(R), and sl := inf supp∆, sr := sup supp∆. Then

pt∆(x) =

{
∆(R)x−

∫
y d∆(y) if x ≥ sr,

−∆(R)x+
∫
y d∆(y) if x ≤ sl.

We set 
t := ∆P (R) = ∆Q(R) ∈ R+,

Sl := inf(S ∪ supp∆P ∪ supp∆Q) ∈ R,
Sr := sup(S ∪ supp∆P ∪ supp∆Q) ≥ Sl.

In view of P (x) ≡ Q(x) for x ∈ R \ S, by Lemma 3.1, we have{
tx−

∫
y d∆P (y) + ax+ b+ C = tx−

∫
y d∆Q(y) + ax+ b if x ≥ Sr,

−tx+
∫
y d∆P (y) + ax+ b+ C = −tx+

∫
y d∆Q(y) + ax+ b if x ≤ Sl,

whence {
−
∫
y d∆P (y) + C = −

∫
y d∆Q(y),∫

y d∆P (y) + C =
∫
y d∆Q(y).

Adding these equalities, we obtain C = 0. Thus, we get (3.3) together with (3.2).

The general case of an open set O ⊂ Rd. Let us start again with the representations (3.4). We
set

S
closed

:= S
⋃

supp∆q

⋃
supp∆p

compact

b O, (3.8S)

w := p− q, ∆w

(1.6)
:= cd4w = ∆p −∆q ∈ Meas(S) ⊂ Meascmp(O). (3.8w)

This di�erence w ∈ sbh∗(O)− sbh∗(O) of subharmonic functions, i.e., a δ-subharmonic function [3],
[4], [40, 3.1], is uniquely de�ned on O outside a polar set (cf. (1.10))

Domw :=

{
x ∈ O : inf

{∫
0

∆−w(x, t)

td−1
dt,

∫
0

∆+
w(x, t)

td−1
dt

}
< +∞

}
(3.8S)
⊂ S, (3.9)

and w ≡ 0 on O \ S since p = q outside S ⊂ S in (3.8w), and p, q ∈ har(O \ S). The Riesz charge

∆w

(3.8)
∈ Meascmp(O) of this δ-subharmonic function w on O is also uniquely determined on O with

supp |∆w| ⊂ S [3, Theorem 2]. The function w : O \ Domw → R can be extended from O to the
whole of Rd \Domw by zero values:

w ≡ 0 on Rd \ S
(3.8S)
⊃ Rd \O, ∆w = ∆p −∆q

(3.8w)
∈ Meas(S). (3.10)
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This function w on Rd \ Domw is still a δ-subharmonic function, but already on Rd, since δ-
subharmonic functions are de�ned locally [3, Theorem 3]. The Riesz charge of this δ-subharmonic

function w : Rd \ Dom d → R on Rd is the same charge ∆d

(3.8w)
∈ Meas(S). There is a canonical

representation [3, De�nition 5] of w such that [3, Theorem 5]

w = P −Q on Rd \Domw, where P,Q ∈ sbh∗(Rd) ∩ har(Rd \ S) (3.11d)

are functions with the Riesz measures∆P

(1.6)
:= cd4P = ∆+

w

(3.11d)
∈ Meas+(S),

∆Q

(1.6)
:= cd4Q = ∆−w

(3.11d)
∈ Meas+(S),

(3.11∆)

P
(3.10),(3.11d)
≡ Q on Rd \ S, (3.11≡)

and there is a function s ∈ sbh∗(O) with the Riesz measure

∆s = ∆p −∆+
w

(3.10),(3.11∆)
= ∆q −∆−w ∈ Meas+(S) (3.11s)

such that

{
p = P + s,

q = Q+ s
on O. (3.11r)

By (3.11d) and (3.11≡), all conditions of Theorem 3.1 are ful�lled for the functions P,Q from (3.11)
instead of p, q, but in the case Rd instead of O and S instead of S. Thus, we have (3.2) in the form

∆+
w(O)

(3.11∆)
= ∆P (Rd)

(3.2)
= ∆Q(Rd)

(3.11∆)
= ∆−w(O), (3.12∆)

pt∆+
w

(3.11∆)
= pt∆P = pt∆Q

(3.11∆)
= pt∆−w on Rd \ S, (3.12p)

and representations (3.3) in the formP
(3.3)
= pt∆P + h

(3.12p)
= pt∆+

w
+ h

Q
(3.3)
= pt∆Q + h

(3.12p)
= pt∆−w + h

on Rd, h ∈ har(Rd). (3.13)

Hence, by representation (3.11r), we obtain the following representationsp
(3.11r),(3.13)

= pt∆+
w

+ h+ s,

q
(3.11r),(3.13)

= pt∆−w + h+ s
on O,

h ∈ har(Rd), pt∆+
w

(3.12p)
= pt∆−w on Rd \ S, ∆+

w(O)
(3.12∆)

= ∆−w(O).

(3.14)

Besides, the function l
(3.11s)
:= s − pt∆s is harmonic on O by Weyl's lemma for the Laplace equation

4 (s− pt∆s)
(3.11s)

= ∆s −∆s = 0. Hencep
(3.14)
= pt∆+

w
+ pt∆s + h+ l,

q
(3.14)
= pt∆−w + pt∆s + h+ l

on O, where h ∈ har(Rd) and l ∈ har(O),

pt∆+
w

+ pt∆s
(3.14)
= pt∆−w + pt∆s on Rd \ S, ∆+

w(O)
(3.14)
= ∆−w(O).

(3.15)
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By construction, we havept∆+
w

+ pt∆s = pt∆+
w+∆s

(3.11s)
= pt∆p ,

pt∆−w + pt∆s = pt∆−w+∆s

(3.11s)
= pt∆q ,

∆p(O) = (∆+
w +∆s)(O)

(3.11s)
= (∆−w +∆s)(O) = ∆p(O).

Hence, if we set H := h + l ∈ har(O), then, by (3.15), we obtain exactly (3.3), as well as (3.2),

with the only di�erence being that in (3.2) we have S
(3.8S)
⊃ S instead of S. Moreover, it immediately

follows from representation (3.3) and the condition p = q on S \ S
(3.8S)
⊂ O \ S that pt∆p = pt∆q on

Rd \ S = (Rd \ S)
⋃

(S \ S).

3.2 Duality between balayage of measures and their potentials

In this subsection, the equivalence of the �rst four statements of the Main Lemma according to the
scheme

I −→ II
↖ ↓

IV ←→ III
(3.16)

will be established. We write A
proof

=⇒B if the implication A⇒B is proved or discussed below.

I
proof

=⇒II. By Proposition 1.1(i-ii) and [16, Theorem 1.7], if h ∈ har(SO) is harmonic on the inward

�lling SO
(2.1)
= in-fill(supp∆ ∪ suppω) = in-fillSO b O of S, then there are functions hk ∈

k ∈ N
har(O)

such that the sequence (hk)k∈N converges to h in the space C(SO) of all continuous functions on the
compact set SO b O with sup-norm. Hence,∫

SO

h d∆ =

∫
SO

lim
k→∞

hk d∆ = lim
k→∞

∫
SO

hk d∆ = lim
k→∞

∫
O

hk d∆

I,(1.8)
= lim

k→∞

∫
O

hk dω = lim
k→∞

∫
SO

hk dω =

∫
SO

lim
k→∞

hk dω =

∫
SO

h d∆.

Statement II of the Main Lemma is established.
II

proof

=⇒III. If x /∈ SO, then the subharmonic function

ux : y 7−→
y ∈ Rd

Kd−2(y, x) (3.17)

is harmonic on SO. Hence, for x /∈ SO,

pt∆(x) =

∫
supp∆

Kd−2(·, x) d∆ =

∫
SO

Kd−2(·, x) d∆
(3.17)
=

∫
SO

ux d∆

II,(1.8)
=

∫
SO

ux dω
(3.17)
=

∫
SO

Kd−2(·, x) dω =

∫
suppω

Kd−2(·, x) d∆ = ptω(x).

The statement III of the Main Lemma is established.
III

proof

=⇒IV. This implication is obvious if we choose p := ptω and q := pt∆.

IV
proof

=⇒III. This implication is a special case of Theorem 3.1 with the conclusion (3.2).

III
proof

=⇒I. We use the following
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Lemma 3.2 ([16, Lemma 1.8]). Let F be a compact subset in Rd, h ∈ har(F ), and b ∈ R+ \0. Then
there are points y1, y2, . . . , ym in Rd \ F and constants a1, a2, . . . , am ∈ R such that∣∣∣h(x)−

m∑
j=1

ajkd−2

(
|x− yj|

)∣∣∣ < b for all x ∈ F . (3.18)

Applying Lemma 3.2 to the compact set F := SO b O and a function h ∈ har(O), we obtain

∣∣∣∫
O

h d(ω−∆)
∣∣∣= ∣∣∣∫

SO

h d(ω−∆)
∣∣∣III=

∣∣∣∣∫
SO

h d(ω−∆)−
m∑
j=1

aj

( 0︷ ︸︸ ︷
ptω(yj)− pt∆(yj)

)∣∣∣∣
(1.9)
=

∣∣∣∣∫
SO

h d(ω−∆)−
m∑
j=1

aj

(∫
SO

Kd−2(y, yj) dω(y)−
∫
SO

Kd−2(y, yj) d∆(y)
)∣∣∣∣

(1.2K)
=

∣∣∣∣∫
SO

h(y) d(ω−∆)(y)−
∫
SO

m∑
j=1

ajkd−2

(
|y − yj|

)
d(ω−∆)(y)

∣∣∣∣
(3.18)

≤ sup
y∈SO

∣∣∣h(y)−
m∑
j=1

ajkd−2

(
|y − yj|

)∣∣∣(ω(O) +∆(O)
) (3.18)

≤ b
(
ω(O) +∆(O)

)
for each b ∈ R+ \ 0. Hence ∆ �har(O) ω. Thus, we obtain Statement I and complete the proof of
implications (3.16).

3.3 The symmetric Poisson � Jensen formula for measures and their po-
tentials

In this subsection, we complete the proof of the Main Lemma by establishing the implications(
II ∩ III

)
−→ V −→ VI −→ VII −→ IV, (3.19)

where II ∩ III means that Statements II and III are simultaneously satis�ed, and the equivalence
(II ∩ III)⇔IV of the extreme statements (II ∩ III) and IV of (3.19) has already been proved in the
previous Subsection 3.2; see (3.16).

(II ∩ III) proof

=⇒V. Let u
(2.2u)
∈ sbh∗(closB), where SO

(2.2B)
⊂ B b O. We can choose an open set O′

such that B b O′ b O and u ∈ sbh∗(closO′). Consider �rst the case

−∞ <

∫
u d∆, where supp∆

(2.1)
⊂ SO b O′. (3.20)

Let
µ′ := ∆u

∣∣
closO′

(3.21)

be the restriction of Riesz measure of u ∈ sbh∗(closO′) to closO′ b O. By the Riesz Decomposition
Theorem [50, Theorem 3.7.1], [22, Theorem 3.9], [2, Theorem 4.4.1], [23, Theorem 6.18] we obtain
the representation

u = ptµ′ + h on O′, where h ∈ har(O′) is continuous and bounded on SO. (3.22)

Integrating this representation with respect to dω and d∆, we obtain∫
u dω

(3.22)
=

∫
ptµ′ dω +

∫
h dω, suppω

(2.1)
⊂ SO, (3.23ω)∫

u d∆
(3.22)
=

∫
ptµ′ d∆+

∫
h d∆, supp∆

(2.1)
⊂ SO, (3.23∆)
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where the three integrals in (3.23∆) are �nite, although in equality (3.23ω) the �rst two integrals
can take simultaneously the value of −∞, but the last integral in (3.23ω) is �nite. Therefore, the
di�erence (3.23ω)−(3.23∆) of these two equalities is well de�ned:∫

u dω−
∫
u d∆

(3.23)
=

∫
ptµ′ dω−

∫
ptµ′ d∆+

∫
SO

h d(ω−∆), (3.24)

where the �rst and third integrals can simultaneously take the value of −∞, and the remaining
integrals are �nite. By Statement II we have ∆ 'har(SO) ω. Hence the last integral in (3.24) vanishes
according to (1.8). Using Fubini's Theorem on repeated integrals, in view of the symmetry property
of the kernel Kd−2 in (1.2K), we have∫

ptµ′ d∆ =

∫ ∫
Kd−2(y, x) dµ′(y) d∆(x)

=

∫ ∫
Kd−2(x, y) d∆(x) dµ′(y)

(3.21)
=

∫
closO′

pt∆ d∆u, (3.25)

and in the same way∫
ptµ′ dω =

∫ ∫
Kd−2(y, x) dµ′(y) dω(x)

=

∫ ∫
Kd−2(x, y) dω(x) dµ′(y)

(3.21)
=

∫
closO′

ptω d∆u (3.26)

even if the integral on the left side of equalities (3.26) takes the value −∞ because the integrand
Kd−2(·, ·) is bounded from above on the compact set closO′ × closO′ [22, Theorem 3.5]. Hence
equality (3.24) can be rewritten as∫

u dω−
∫
u d∆ =

∫
closO′

ptω d∆u −
∫

closO′
pt∆ d∆u

or in the form ∫
u dω +

∫
closO′

pt∆ d∆u =

∫
u d∆+

∫
closO′

ptω d∆u. (3.27)

But Statement III, we have

ptω
III
= pt∆ on Rd \ SO ⊃closO′ \B.

Hence, by equality (3.27), we obtain equality (2.2f) in the case (3.20).
If condition (3.20) is not ful�lled, then from representation (3.23∆) it follows that the integral

on the left-hand side of (3.25) also takes the value −∞. Equalities (3.25) is still true [22, Theorem
3.5]. Hence, the second integral on the right side of the formula (2.2f) also takes the value −∞ and
this formula (2.2f) remains true.

V
proof

=⇒VI. Let q ∈ sbh∗(SO) be a function with the Riesz measure ∆q = ∆. Then there is a
function h ∈ har(O) such that q = pt∆ + h on O. By Statement V, we have (2.2f) for B = SO. If we
set p := ptω + h, then ∆p = ω, and (2.3) follows from (2.2f) with B = SO.

VI
proof

=⇒VII. We set q := pt∆ ∈ sbh∗(Rd) with ∆q = ∆. By Statement VI, there is a function
p ∈ sbh∗(Rd) with ∆p = ω such that we have (2.3). In particular, the equality in (2.3) is true for
each special subharmonic function ux : y 7−→

y ∈ Rd
Kd−2(y, x), x ∈ Rd, and we obtain Statement VII.
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VII
proof

=⇒IV. Each special function ux in Statement VII is subharmonic on Rd with Riesz measure
δx. If x ∈ O \ S, where SO ⊂ S b O, then SO ∩ supp δx = ∅. Thus,∫

SO

p dδx =

∫
SO

q dδx = 0 for each x ∈ O \ S. (3.28)

Hence, by (2.3) with ux instead of u, we obtain

pt∆(x) =

∫
SO

K(y, x) d∆(y) =

∫
SO

ux d∆
(2.3),(3.28)

=

∫
SO

ux dω =

∫
SO

K(y, x) dω(y) = ptω(x)

for each x ∈ O \ S. Thus, we obtain Statement IV for q := pt∆ and p := ptω.
The Main Lemma is proved.

4 Proof of the main theorem

[I]
proof

=⇒[II]. Without loss of generality, we can assume that S = SO in (2.4S). Then Statement [II]
with (2.5) follows from Theorem 3.1 with (3.2)�(3.3).

[II]
proof

=⇒[III]. By the equality pt∆q
(2.5)
= pt∆p on Rd \SO, we have Statement III of the Main Lemma

for ∆ := ∆q ∈ Meas+(S) and ω := ∆p ∈ Meas+(S). By implication III⇒V of the Main Lemma, we
obtain ∫

supp∆q

u d∆q +

∫
B

pt∆p d∆u
(2.2)
=

∫
supp∆p

u d∆p +

∫
B

pt∆q d∆u (4.1)

for each B ∈ Bor(Rd) under SO ⊂ B b O and for each u ∈ sbh∗(closB), where we returned to the
separate notation S ⊂ SO := in-fillS. Obviously,∫

B

h d∆u =

∫
B

h d∆u for each u ∈ sbh∗(closB) and h ∈ har(O). (4.2)

Adding (4.1) and (4.2), according to representations (2.5) of q and p, we obtain∫
S

u d∆q +

∫
B

p d∆u
(2.2)
=

∫
S

u d∆p +

∫
B

q d∆u, (4.3)

where B can be replaced with B ∩S6=. This proves (2.6f) already for a set B and functions u of form
(2.6B). Thus, we obtain Statement [III].

[III]
proof

=⇒[IV]. All functions ux in Statement [IV] are subharmonic on Rd ⊃ O.

[IV]
proof

=⇒[I]. The Riesz measure of ux is the Dirac measure δx, and, by Statement [IV],∫
S

ux d∆q +

∫
Bj

p dδx
(2.6f)
=

∫
S

ux d∆p +

∫
Bj

q dδx for each j ∈ N and x ∈ O. (4.4)

If j = 0 and x /∈ SO = B0, then supp δx = x /∈ SO and∫
SO

p dδx
(4.4)
=

∫
SO

q dδx = 0

These equalities do not depend on j ∈ N0 for points x /∈ SO. Hence∫
S

ux d∆q
(4.4)
=

∫
S

ux d∆p for each j ∈ N0 and x /∈ SO ⊃ S.

Therefore, it is follows from (4.4) that∫
Bj

p dδx
(4.4)
=

∫
Bj

q dδx for each j ∈ N0 and x /∈ SO,

i.e., p(x) = q(x) for each j ∈ N0 and for every x ∈ Bj \ SO. Thus, p(x) = q(x) for each point
x ∈

⋃
j∈N0

Bj \ SO = O \ SO, and Statement [I] is established.
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5 Duality theorems for balayage

Part of some equivalences of the Main Lemma and the Main Theorem allows us to give an internal dual
description for the potentials of measures obtained through the balayage processes. Such descriptions
in particular cases of Arens � Singer and Jensen measures and their potentials have already found
important applications in the study of various problems of function theory [15, Chapter 3 etc.], [1],
[24], [25], [26], [27], [28], [29], [44], [30], [31], [33], [34], [51], [32], [35], [36], [37], [7], [41], [42], [39].

Duality Theorem 1 (for har(O)-balayage). Let ∆ ∈ Meas+
cmp(O).

If a measure ω ∈ Meas+
cmp(O) is a har(O)-balayage of ∆, then (cf. (2.11))

ptω ∈ sbh∗(Rd) ∩ har(Rd \ suppω), (5.1p)

ptω = pt∆ on Rd \ in-fillO(supp∆ ∪ suppω). (5.1=)

Conversely, suppose that there are a compact subset S b O and a function p such that

p
cf.(5.1p)
∈ sbh(O) ∩ har(O \ S), (5.2p)

p
cf.(5.1=)

= pt∆ on O \ S. (5.2=)

Then the Riesz measure

ω
(1.6)
:= cd4p

(5.2p)
∈ Meas+(S) ⊂ Meas+

cmp(O) (5.3)

of this function p is a har(O)-balayage of the measure ∆.

Proof. Properties (5.1) for ω �har(O) ∆ directly follow from the implication I⇒III of the Main
Lemma. In the opposite direction, we can use the implication IV⇒I of the Main Lemma with p from
(5.2) and q := pt∆.

Duality Theorem 2 (for sbh(O)-balayage). Let ∆ ∈ Meas+
cmp(O). If ω �sbh(O) ∆, then we have

(5.1) and ptω ≥ pt∆ on Rd. Conversely, suppose that there are a compact subset S in O containing
supp∆, and a function p satisfying (5.2) such that

p ≥ pt∆ on SO := in-fill(S). (5.4)

Then the Riesz measure (5.3) of this function p is a sbh(O)-balayage of ∆.

Proof. If ∆ �sbh(O) ω, then ∆ �har(O) ω, which was noted earlier in Subsection 1.2 (Property 4),
and, by Duality Theorem 1, we obtain (5.1). Besides, functions y 7−→

y ∈ Rd
Kd−2(y, x) are subharmonic

on Rd for each x ∈ Rd, and

pt∆(x) =

∫
Kd−2(y, x) d∆(y)

(1.7)

≤
∫
Kd−2(y, x) dω(y) = ptω(x) for each x ∈ Rd.

In the opposite direction, we set q := pt∆ ∈ sbh∗(Rd) ∩ har(O \ S). By Duality Theorem 1, the

Riesz measure ∆p
(5.3)
= ω ∈ Meas+

cmp(O) of the function p is a har(O)-balayage of ∆. By condition
(5.2=) in notation (5.4), we have the equality p = q on O \SO ⊂ O \S, and, by condition (5.2p), the
functions p and q are harmonic on O \ S. Thus, Statement [I] of the Main Theorem is ful�lled. By
the implication [I]⇒[III] of the Main Theorem, using full symmetric Poisson � Jensen formula (2.6f)

with B
(2.6B)
:= SO, we get∫

S

u d∆q +

∫
SO

p d∆u
(2.6f)
=

∫
S

u d∆p +

∫
SO

q d∆u for each u
(2.6B)
∈ sbh∗(O). (5.5)
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Hence, by the condition p
(5.4)

≥ pt∆ = q on SO, we obtain∫
O

u d∆+

∫
SO

q d∆u =

∫
S

u d∆q +

∫
SO

q d∆u ≤
∫
S

u d∆q +

∫
SO

p d∆u

(5.5)
=

∫
S

u d∆p +

∫
SO

q d∆u =

∫
O

u dω +

∫
SO

q d∆u for each u ∈ sbh∗(O). (5.6)

In particular, if u ∈ sbh∗(O) ∩ C∞(O), then the function q is ∆u-integrable on SO, and it is follows
from (5.6) that ∫

O

u d∆
(5.6)

≤
∫
O

u dω for each u ∈ sbh∗(O) ∩ C∞(O).

Hence, by Subsection 1.2 (Property 5), we obtain ∆ �sbh(O) ω.

The following long-known result for Arens � Singer and Jensen measures and their potentials
on domains in Rd with d ≥ 2 has found numerous applications in the theory of functions of one
and several complex variables, which is partially re�ected in the bibliographic sources listed at the
beginning of Section 5. The proof of this result immediately follows from Duality Theorems 1�2, but
already for open sets O ⊂ Rd.

Duality Theorem 3 ([35, Proposition 1.4, Duality Theorem]). Let x ∈ O ⊂ Rd, d ∈ N. The map

Px : ω
(1.9)7−→ ptω−δx (5.7)

de�nes an a�ne bijection from ASx(O) onto ASPx(O), as well as from Jx(O) onto JPx(O) (see also,
in addition, (2.11)) with the inverse map

P−1
x : V

(1.6)7−→ cd4V
∣∣
Rd\x +

(
1− lim sup

x 6=y→x

V (y)

−Kd−2(x, y)

)
· δx. (5.8)

Remark 2. Theorems 1 and 2 can also be formulated in a form close to Theorem 3, using some a�ne
bijection of type (5.7)�(5.8) and de�nitions of the generalized Arens � Singer and Jensen potentials.
But such formulations require some development of the theory of δ-subharmonic functions [3], [4],
[40, Section 3.1] and a delicate approach to upper/lower integrals (1.5) with values in R. We will not
discuss similar interpretations of Theorems 1 and 2 here.
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