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TYNYSBEK SHARIPOVICH KAL'MENOV

(to the 75th birthday)

Tynysbek Sharipovich Kal'menov was born in the village of Koksaek
of the Tolebi district of the Turkestan region (earlier it was the Lenger
district of the South-Kazakhstan region of the Kazakh SSR). Although
�according to the passport� his birthday was recorded on May 5, his real
date of birth is April 6, 1946.

Tynysbek Kal'menov is a graduate of the Novosibirsk State University
(1969), and a representative of the school of A.V. Bitsadze, an outstand-
ing scientist, corresponding member of the Academy of Sciences of the
USSR. In 1972, he completed his postgraduate studies at the Institute of
Mathematics of the Siberian Branch of the Academy of Sciences of the
USSR. In 1983, he defended his doctoral thesis at the M.V. Lomonosov
Moscow State University. Since1989, he is a corresponding member of the
Academy of Sciences of the Kazakh SSR, and since 2003, he is an academi-
cian of the National Academy of Sciences of the Republic of Kazakhstan.

Tynysbek Kal'menov worked at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR (1972-1985). From 1986 to 1991, he was the dean of the Faculty of
Mathematics of Al-Farabi Kazakh State University. From 1991 to 1997, he was the rector of the
Kazakh Chemical-Technological University (Shymkent).

From 2004 to 2019, Tynysbek Kal'menov was the General Director of the Institute of Mathematics
and Mathematical Modeling. He made it one of the leading scienti�c centers in the country and the
best research institute in Kazakhstan. It su�ces to say, that in terms of the number of scienti�c
publications (2015-2018) in international rating journals indexed in the Web of Science, the Institute
of Mathematics and Mathematical Modeling was ranked fourth among all Kazakhstani organizations,
behind only three large universities: the Nazarbaev University, Al-Farabi National University and
L.N. Gumilyov Eurasian National University.

Since 2019, Tynysbek Kal'menov has been working as the head of the Department of Di�erential
Equations of the Institute of Mathematics and Mathematical Modeling. He is a member of the
National Scienti�c Council �Scienti�c Research in the Field of Natural Sciences�, which is the main
Kazakhstan council that determines the development of science in the country.

T.Sh. Kal'menov was repeatedly elected to maslikhats of various levels, was a member of the
Presidium of the Committee for Supervision and Attestation in Education and Science of the Ministry
of Education and Science of the Republic of Kazakhstan. He is a Laureate of Lenin Komsomol Prize
of the Kazakh SSR (1978), an Honored Worker of Science and Technology of Kazakhstan (1996),
awarded with the order �Kurmet� (2008 Ði.) and jubilee medals.

In 2013, he was awarded the State Prize of the Republic of Kazakhstan in the �eld of science and
technology for the series of works �To the theory of initial- boundary value problems for di�erential
equations�.

The main areas of scienti�c interests of academician Tynysbek Kal'menov are di�erential equa-
tions, mathematical physics and operator theory. He has obtained fundamental scienti�c results,
many of which led to the creation of new scienti�c directions in mathematics.

Tynysbek Kal'menov, using a new maximum principle for an equation of mixed type (Kal'menov's
maximum principle), was the �rst to prove that the Tricomi problem has an eigenfunction, thus he
solved the famous problem of the Italian mathematician Francesco Tricomi, set in 1923 This marked
the beginning of a new promising direction, that is, the spectral theory of equations of mixed type.

He established necessary and su�cient conditions for the well-posed solvability of the classical
Darboux and Goursat problems for strongly degenerate hyperbolic equations.
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Tynysbek Kal'menov solved the problem of completeness of the system of root functions of the
nonlocal Bitsadze-Samarskii problem for a wide class of multidimensional elliptic equations. This
result is �nal and has been widely recognized by the entire mathematical community.

He developed a new e�ective method for studying ill-posed problems using spectral expansion of
di�erential operators with deviating argument. On the basis of this method, he found necessary and
su�cient conditions for the solvability of the mixed Cauchy problem for the Laplace equation.

Tynysbek Kal'menov was the �rst to construct boundary conditions of the classical Newton
potential. That is a fundamental result at the level of a classical one. Prior to the research of
Kal'menov T.Sh., it was believed that the Newton potential gives only a particular solution of an
inhomogeneous equation and does not satisfy any boundary conditions. Thanks for these results, for
the �rst time, it was possible to construct the spectral theory of the classical Newton potential.

He developed a new e�ective method for constructing Green's function for a wide class of boundary
value problems. Using this method, Green's function of the Dirichlet problem was �rst constructed
explicitly for a multidimensional polyharmonic equation.

From 1989 to 1993, Tynysbek Kal'menov was the chairman of the Inter- Republican (Kazakhstan,
Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan) Dissertation Council. He is a member of the
International Mathematical Society and he repeatedly has been a member of organizing committee
of many international conferences. He carries out a lot of organizational work in training of highly
quali�ed personnel for the Republic of Kazakhstan and preparing international conferences. Under
his direct guidance, the First Congress of Mathematicians of Kazakhstan was held. He presented
his reports in Germany, Poland, Great Britain, Sweden, France, Spain, Japan, Turkey, China, Iran,
India, Malaysia, Australia, Portugal and countries of CIS.

In terms of the number of articles in scienti�c journals with the impact- factor Web of Science, in
the research direction of �Mathematics�, the Institute of Mathematics and Mathematical Modeling
is on one row with leading mathematical institutes of the Russian Federation, and is ahead of all
mathematical institutes in other CIS countries in this indicator.

Tynysbek Kal'menov is one of the few scientists who managed to leave an imprint of their indi-
viduality almost in all branches of mathematics in which he has been engaged.

Tynysbek Kal'menov has trained 11 doctors and more than 60 candidate of sciences and PhD,
has founded a large scienti�c school on equations of mixed type and di�erential operators recognized
all over the world. Many of his disciples are now independent scientists recognized in the world of
mathematics.

He has published over 150 scienti�c articles, most of which are published in international math-
ematical journals, including 14 articles published in �Doklady AN SSSR/ Doklady Mathematics�.
In the last 5 years alone (2016-2020), he has published more than 30 articles in scienti�c journals
indexed in the Web of Science database. To date, academician Tynysbek Kal'menov has a Hirsch
index of 18 in the Web of Science and Scopus databases, which is the highest indicator among all
Kazakhstan mathematicians.

Outstanding personal qualities of academician Tynysbek Kalmenov, his high professional level,
adherence to principles of purity of science, high exactingness towards himself and his colleagues, all
these are the foundations of the enormous authority that he has among Kazakhstan scientists and
mathematicians of many countries.

Academician Tynysbek Sharipovich Kalmenov meets his 75th birthday in the prime of his life,
and the mathematical community, many of his friends and colleagues and the Editorial Board of the
Eurasian Mathematical Journal heartily congratulate him on his jubilee and wish him good health,
happiness and new successes in mathematics and mathematical education, family well-being and long
years of fruitful life.
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Abstract. The purpose of this paper is to discuss, via the exterior penalty functions method,
a class of nonlinear optimal control problems with additional equality and inequality state and
control constraints. Two di�erent kinds of penalties are given, in the �rst the state and control
constrained optimal control problem is replaced by a sequence of unconstrained control problems,
while the second type transforms the constrained optimal control problem into a sequence of truly
unconstrained optimization problems. Two convergence theorems are given to obtain approximate
and, in the limit, exact solution of the given constrained optimal control problem. In particular, we
show how the necessary conditions of optimality of these two methods yield the familiar Lagrange
multipliers of the original constrained optimal control problem in the limit.
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1 Introduction

In the past few years, and more recently, considerable attention has been given to the study of the
optimal control problems with mixed vector-valued state-control constraints [7], [10], [20], [23], [39],
[40], [45]. Such interest is explained by their importance in the modeling of real-life phenomena in
various physical, chemical and biological processes, in economics and mechanics and various other
�elds, see [4], [5], [24] and the references therein.

In general, it is di�cult to solve a constrained optimal control problem by the standard techniques
such as the Pontryagin maximum principle and the Hamilton-Jacobi-Bellman approach, results of this
direction was be obtained more than half a century ago, see for instance [30], [11], [29] and more recent
[9], [15], [32]; for a good survey of the maximum principles for optimal control problems with state
constraints, see [12]. To attempt to overcome these di�culties, several strategies have been proposed.
The most common method used to handle constraints is the penalty functions method. This method
is based on developing an auxiliary function such that, by appropriate choice of parameters, the
original constrained problem might be solved by unconstrained problems. The main problem is to
justify the convergence of the sequence of the optimal solutions of the unconstrained problems to the
optimal solution of the constrained one.

The application of penalty methods to optimal control problems has received much attention since
Courant's work [8]. In the literature, we can distinguish two ways of formulating the unconstrained
optimal control problems via the penalty methods. The �rst common formulation is as follows:

• Removing troublesome intermediate control and/or state constraints via a penalty function
and then utilizing the associated necessary conditions for optimality to solve the transformed
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problem, still an optimal control problem. Investigations in this direction may be found in [16],
[18], [27], [31], [34], [37], [25], [26], [46], [47], [48], [38] and [2].

The second alternative, which in general is stronger, is as follows:

• A system di�erential equations viewed as equality constraints is also penalized together with
control-state constraints to obtain an abstract in�nite-dimensional optimization problem. This
approach was proposed for the �rst time by A.V. Balakrishnan [1], for unconstrained optimal
control problems and generalized later for the constrained optimal control problems by many
authors [3], [21], [35], [43], [50].

In this article we use the two di�erent kinds of penalties cited above for solving the constrained
control problems aiming to generalize some previous results. Note that this treatment yields certain
useful properties to ensure the strong compactness in the Lebesgue spaces and new techniques for
studies of many problems in the literature. We treat here a �xed endpoint optimal control problem
with speci�ed intermediate state and control constraints. We assume these constraints are given by
�nite systems of inequality and equality constraints.

The paper consists of two parts. In the �rst part, we discuss two di�erent kinds of penalties. In the
�rst case, equality and inequality state-control constraints are penalized in a way that guarantees the
exteriority of the approaching solutions. This property allows one to produce a sequence of optimal
control problems (without constraints) and, under reasonable assumptions, we generate a sequence
of minimizing points which converge to the solution of the original control problem.

In the second, we develop a theoretical framework for constrained optimal control problems with
not well-posed di�erential equation. We use the penalty method in which the control and the state
function are at the same level and the state equation becomes a general equality type constraint. The
penalty function used, in this case, gives a sequence of truly unconstrained optimization problems.
It turns out that the obtained sequence of minimizing points o�er a minimizing point as well as a
solution of the system di�erential equations (as equality constraints) for the original problem. As
such, this approach is a generalization of previous works on penalty methods in optimal control
theory given in [1], [3], [21], [35], [43] and [50] by taking hypotheses ensure the lower semi-continuity.

In the second part of the paper, we give the necessary conditions of optimality of the solutions of
the sequence of penalized problems in a Hilbert case. Under smoothness assumptions, we show that
the sequence given by the Pontryagin maximum principle approximate the Lagrange multipliers of
the initial problem.

The paper is organized as follows. In Section 2, we present the problem, notations, basic def-
initions and assumptions. In Section 3 we investigate the two di�erent approaches to the exterior
penalty method for solving the constrained optimal control problem considered. First, we give conver-
gence results of the penalty method in the case whence also the equality and inequality state-control
constraints are handled. Secondly, a system di�erential equations viewed as equality constraints is
also penalized together with the control-state constraints to give a convergence theorem which guar-
antees that any accumulation point of the sequence of minimizing points for the penalized problems
is also an optimal solution of the constrained optimal control problem. In Section 4, we discuss a
relationship between the necessary conditions of optimality of the original problem and those of its
penalized problems in a Hilbert spaces case. We show that if the optimal control for the non-dynamic
unconstrained problem converges pointwise to an admissible control, the latter is actually an opti-
mal control, and the sequence of the maximum principle associated to the sequence of the dynamic
unconstrained problem yields the familiar Lagrange multipliers of the original constrained optimal
control problem in the limit.
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2 Statement of the problem and preliminary results

We consider the following constrained optimal control problem:

(P ) min

∫ T

0

l (t, x (t) , u (t)) dt (2.1)

subject to

ẋ (t) = f (t, x (t) , u (t)) for almost all t ∈ [0, T ] (2.2)

x (0) = x0 (2.3)

and satisfying

gi (t, x (t) , u (t)) ≤ 0 i = 1 . . . s for almost all t ∈ [0, T ] (2.4)

gi (t, x (t) , u (t)) = 0 i = s+ 1 . . . r for almost all t ∈ [0, T ] (2.5)

x (T ) = 0 (2.6)

x(.) ∈ AC ([0, T ] ,Rn) and u ∈ U .

The data of the problem are the distributed cost l : R×Rn×Rm → R, dynamics f : R×Rn×Rm →
Rn, mixed control-state constraints gi : R × Rn × Rm → R for i = 1 . . . r, a subset U , (�xed) �nal
time T > 0, and (�xed) �nal initial condition x0 ∈ Rn.

AC ([0, T ] ,Rn) stands for the space of absolutely continuous maps from [0, T ] to Rn. For 1 ≤
p <∞ ( p =∞, respectively), Lp ([0, T ] ,Rm) denotes the Lebesgue space of all measurable functions

u such that ‖u‖Lp =
(∫ T

0
‖u (t)‖p dt

) 1
p
< ∞ ( ‖u‖L∞ = sup ess ‖u (t)‖ < ∞, respectively). The

Banach space of all vector-valued continuous functions x is denoted by C ([0, T ] ,Rn) with standard
norm ‖x‖∞ = supt∈[0,T ] ‖x (t)‖.

We refer to a measurable function u : [0, T ] −→ Rm as a control function or simply control. In
the sequel, U will be the set of all control functions u such that u(t) ∈ U for almost all t, where U is
a given nonempty bounded and closed subset of Rm.

A trajectory or control process

T = {(x(t), u(t)) : t ∈ [0, T ]}

is said to be admissible if x(.) is absolutely continuous, u(.) ∈ U and the pair of functions (x(t), u(t))
satis�es (2.2), (2.3) and (2.6) on the interval I = [0, T ]. The component x(.) will be called the state
trajectory. In the sequel, we assume that there exists a control from a given set for which relations
(2.2) - (2.6) are satis�ed.

We make the following assumptions on the data:

(A-1) (i) The mapping l is a Carath�eodory mapping, i.e., l is continuous in (x, u) for almost all
t ∈ [0, T ], and is measurable in t for every (x, u) ∈ Rn × Rm;

(ii) there exist θ ∈ L1([0, T ],R) and ρ ∈ L∞([0, T ],R+) such that for almost all t ∈ [0, T ],

l(t, x, u) ≥ θ(t)− ρ(t)(‖x‖+ ‖u‖).

(A-2) (i) The mappings f is a Carath�eodory mapping and there exist θ1 ∈ L∞ ([0, T ] ,R+) and
ρ1 ∈ L∞ ([0, T ] ,R+) such that for almost all t ∈ [0, T ],

‖f (t, x, u)‖ ≤ θ1 (t) + ρ1 (t) (‖x‖+ ‖u‖) ;
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(ii) there exist K > 0 such that for almost all t ∈ [0, T ],

‖f (t, x1, u)− f (t, x2, u)‖ ≤ K ‖x1 − x2‖ ,

for all x1, x2 in some bounded set of Rn and for all u.

(A-3) For all i = 1, · · · , r, the function gi ia a Carath�eodory mapping and there exists θi2 ∈
L1 ([0, T ] ,R) and ρi2 ∈ L∞ ([0, T ] ,R+) such that for almost all t ∈ [0, T ],

gi (t, x, u) ≥ θi2 (t)− ρi2 (t) (‖x‖+ ‖u‖) .

Let us give some examples to illustrate the above hypotheses (A-1)-(A-3).

Example 1. Consider the optimal control problem

min

∫ 1

0

(3t− 1

2
|x| − |u|)dt

subject to

ẋ (t) = t sinx+
√
|u| for almost all t ∈ [0, 1]

x (0) = x0

and satisfying

1 + t2 − |x| sin t− |u| cosx ≤ 0 for almost all t ∈ [0, 1]

x (1) = 0

|u| ≤ 1.

We have

l(t, x, u) = 3t− 1

2
|x| − |u| ≥ θ(t)− ρ(t)(|x|+ |u|),

where θ(t) = 3t and ρ(t) = 1, so (A-1) holds. On the other hand,

|f (t, x, u)| =
∣∣∣t sinx+

√
|u|
∣∣∣ ≤ |x|+√|u|,

and
|f (t, x1, u)− f (t, x2, u)| ≤ t |sinx1 − sinx2| ≤ |x1 − x2| ,

for all x1, x2 in some bounded set of R and for all u such that |u| ≤ 1. Thus, (A-2) holds. Also,

g (t, x, u) = 1 + t2 − |x| sin t− |u| cosx ≥ (1 + t2)− (|x|+ |u|) .

Hence, (A-3) holds.

Example 2. Consider the optimal control problem

min

∫ 1

0

(t2 |u|+ x2 + y2)dt

subject to

ẋ (t) = (x+ y)u

ẏ (t) = u for almost all t ∈ [0, 1]

(x (0) , y (0)) = (x0, y0)
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and satisfying

3t+ 2− u−
√
|xy| ≤ 0 for almost all t ∈ [0, 1]

(x (1) , y (1)) = (0, 0)

|u| ≤ 1.

We have
l(t, x, y, u) = t2 |u|+ x2 + y2 ≥ θ(t)− ρ(t)(‖(x, y)‖+ |u|).

with θ(t) = 0 and ρ(t) = max{1, t2} = 1, so (A-1) holds.

‖f (t, x, y, u)‖ =
√

(x+ y)2u2 + u2 ≤
√

2(‖(x, y)‖+ |u|),

and

‖f (t, x1, y1, u)− f (t, x2, y2, u)‖ = ‖((x1 + y1 − x2 − y2)u, 0)‖ ≤ ‖((x1, y1)− (x2, y2))‖ ,

for all u such that |u| ≤ 1. Hence, (A-2) holds. Also,

g (t, x, y, u) = 3t+ 2− u−
√
|xy| ≥ 3t+ 2− 1√

2
‖(x, y)‖ − |u| ≥ 3t+ 2− (‖(x, y)‖+ |u|) .

Thus, (A-3) holds.

Now, let
Ω = T ∩ Ωin ∩ Ωeq,

where
Ωin = {(x, u) satisfying inequality constraints (2.4)} ,

and
Ωeq = {(x, u) satisfying equality constraints (2.5)} .

Then the constrained optimal control problem is to �nd (x, u) ∈ Ω such that

F (x, u) = min
(x,u)∈Ω

F (x, u) (2.7)

where

F (x, u) =

∫ T

0

l (t, x (t) , u (t)) dt. (2.8)

By [22, Theorem 4.1], we have

Proposition 2.1. Suppose (A-1) holds and the functional F (., .) is not identical to +∞, then F (., .)
is lower-semicontinuous in L1(I;Rn)× L1(I;Rm) and

F (x, u) > −∞ for all (x, u) ∈ L1(I;Rn)× L1(I;Rm).

Note that assumptions (A-2) guarantees local existence and uniqueness of the solution of di�eren-
tial equations (2.2- 2.3) for a given control u(.) de�ned in the whole interval [0, T ]. In fact, since u(.)
is only assumed to be measurable and bounded, the right-hand side of equation (2.2) is continuous
in x but only measurable and bounded in t for each x. Therefore, solutions are understood to be
absolutely continuous functions,

x(t) = x0 +

∫ t

0

f (τ, x (τ) , u (τ)) dτ for all t ∈ [0, T ′]
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for T ′ small enough. Now by growth condition (A-2)-(i), we have

‖x (t)‖ ≤ ‖x0‖+

∫ t

0

‖f (τ, x (τ) , u (τ))‖ dτ

≤ ‖x0‖+ ‖θ1 (.)‖L1 +

t∫
0

ρ1 (τ) ‖x (τ)‖ dτ + ‖ρ1 (.)‖L∞ ‖u (.)‖ .

Applying Gronwall's lemma we obtain

‖x(t)‖ ≤M, for all t ∈ [0, T ′],

where M = (‖x0‖+ ‖θ1 (.)‖L1 + ‖ρ1 (.)‖L∞ ‖u (.)‖) exp

(
T ′∫
0

ρ1 (τ) dτ

)
.

We see that the solution remains in a bounded �x set, independently of T ′ and u. It is known
that in this case the solution has a maximum extension in the interval [0, T ]. Further, this extension
is unique by Lipschitz condition (A-2)-(ii). In the sequel, the unique solution of (2.2) such that (2.3)
for a given u(.) will be called the response to u(.); and we denote it by

xu(t) = x(t;x0, u(.)) = x0 +

∫ t

0

f (τ, xu (τ) , u (τ)) dτ t ∈ [0, T ] .

We have

1. ‖xu(t)‖ ≤M, for all t ∈ [0, T ] and u ∈ U,

2. ‖ẋu(t)‖ ≤ max{‖f(t, x, u)‖ : 0 ≤ t ≤ T ;u ∈ U, and ‖x‖ ≤M}.

Furthermore,

Proposition 2.2. Under condition (A-2), the mapping u −→ xu is a continuous function from
U ⊂ L1(I;Rm) to C([0, T ],Rn).

Proof. Let u (.) , v (.) be two controls in U and xu (.) , xv (.) be the corresponding responses. We show
that for all ε > 0 there exists δ > 0 such that if ‖u (.)− v (.)‖L1 < δ then ‖xu (.)− xv (.)‖∞ < ε. Let
ε0 > 0, de�ne

Bε0 = {x ∈ Rn : inf
0≤t≤T

‖x− xu(t))‖ ≤ ε0}.

Also, f is continuous on the compact set Bε0×U for almost all t ∈ [0, T ], then there exists a constant
M ′ > 0 and a Lebesgue measurable set I0 such that

‖f(t, x, u)‖ ≤M ′ for all (t, x, u) ∈ B = (I − I0)×Bε0 × U,

with meas(I0) = 0, where meas(E) denote the Lebesgue measure of a Lebesgue measurable set
E. Let ε′ = min{ε, ε0}, and σ > 0 be a number such that σ(T + 2M ′) exp(κT ) < ε′. Be-
cause of the uniform continuity of f on the compact set B, there exist some η > 0 such that
‖f(t, x, u)− f(t, x, v)‖ < σ for all (t, x, u), (t, x, v) ∈ B with ‖u− v‖ < η. Let δ = ση, if u ∈ U and∫ T

0

‖u(t)− v(t)‖ dt < δ = ση,
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let I1 be the set of all t ∈ [0, T ] where ‖u(t)− v(t)‖ > η. Then

η(meas(I1)) ≤
∫
I1

‖u(t)− v(t)‖ dt ≤
∫ T

0

‖u(t)− v(t)‖ dt < δ = ση,

and hence meas(I1) < σ. If I2 = I − I1, then ‖u(t)− v(t)‖ < η for all t ∈ I2. For every t ∈ [0, T ] let
Et = [0, t] ∩ I2 and E

′
t = [0, t] ∩ I1. Thus, for all t ≥ 0 of at least a right neighborhood of 0 we have

‖xu(t)− xv(t)‖ ≤
∫ t

0

‖f(τ, xu(τ), u(τ))− f(τ, xv(τ), v(τ))‖dτ

≤
∫ t

0

‖f(τ, xu(τ), u(τ))− f(τ, xv(τ), u(τ))‖dτ

+

∫
Et

‖f(τ, xv(τ), u(τ))− f(τ, xv(τ), v(τ))‖dτ

+

∫
E′t

‖f(τ, xv(τ), v(τ))‖dτ +

∫
E′t

‖f(τ, xv(τ), u(τ))‖dτ

≤ κ

∫ t

0

‖xu(τ)− xv(τ)‖dτ + σ(meas(Et)) + 2M ′(meas(E ′t)).

Since meas(Et) ≤ T and meas(E ′t) ≤ meas(I1) < σ, we have

‖xu (t)− xv (t)‖ ≤ κ

∫ t

0

‖xu (τ)− xv (τ)‖ dτ + σ(T + 2M ′).

Applying Gronwall's lemma we obtain

‖xu (t)− xv (t)‖ ≤ σ(T + 2M ′) exp(κT ) < ε′ = min{ε, ε0},

for all t ∈ I.

Remark 1. Without of the boudedness of the set of controls, we can �nd two controls u (.) and
v (.) in L1(I;Rm) very close in norm but f(t, x, u) and f(t, x, v) may be quite di�erent. For instance,
for f(t, x, u) = u2, t ∈ [0, 1], if we take u(t) = 0 and v(t) = εt−1/2, we have ‖u (.)− v (.)‖L1 = 2ε,
f(t, x, 0) = 0 and f(t, x, v) = ε2t−1 is not in L1−integrable in any neighborhood of t = 0. This
example shows also there are no AC solutions passing through the point (t, x0) = (0, 0) with v(t) =
εt−1/2 (see [14], p. 506).

3 Approximate constrained optimal control problem via the exterior
penalty method

3.1 Approximate constrained problem via a sequence of unconstrained
optimal control problems

Using the penalty function method we consider the following sequence of unconstrained optimal
control corresponding to the problem (P ),

(Pn) min
(x,u)∈T

Fn(x, u) = F (x, u) + cnG(x, u),

where (cn) is an increasing sequence of positive real numbers, and

G(x, u) =
s∑
i=1

∫ T

0

max(0, gi (t, x (t) , u (t)))dt+
r∑

i=s+1

∫ T

0

|gi (t, x (t) , u (t))| dt.
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Under the above assumptions it is clear by Proposition 2.1 that the functional F is lower semicon-
tinous from L1(I;Rn)× L1(I;Rm) to R+, and G is lower semicontinous from L1(I;Rn)× L1(I;Rm)
to R+, so Fn(x, u) is also lower semicontinuous. Further, we have

G(x, u) ≥ 0 for all (x, u) ∈ L1(I;Rn)× L1(I;Rm),

and
Ωin ∩ Ωeq =

{
(x, u) ∈ AC(I;Rn)× L1(I;Rm) : G(x, u) = 0

}
.

It is well known that the penalty function methods are very e�ective techniques to prove the
existence of optimal solution for constrained optimization problems via unconstrained problems.
The main question is the convergence of the sequence of the solutions of the unconstrained optimal
control problems to the solution of the constrained one, and the nonlinearity of the state equation
causes more di�culties. To overcome this, we consider the following set of admissible controls.

De�nition 1. A subset Γ ⊂ Lp((a, b) ;Rm), p ∈ [1,+∞), is said to be Lp-equicontinuous, if

lim
h→0

∫ b−h

a

‖u(t+ h)− u(t)‖p dt = 0, uniformly for u ∈ Γ.

Let
0 = t0 < t1 < · · · < tN−1 < tN = T,

be an arbitrary partition of the interval [0, T ], which divides the interval into N subintervals (subdi-
visions) (ti, ti+1). Let Γi a subset of L

p([ti, ti+1];Rm), i = 0, . . . , N − 1.
The set of admissible controls is given by

Uad = {u : u(t) = vi(t), t ∈ [ti, ti+1), vi ∈ Γi and Γi is L
p − equicontinuous for all i} .

Proposition 3.1. If for all i, Γi is bounded in Lp([ti, ti+1];Rm), then Uad is a totally bounded set of
Lp(I,Rm), 1 ≤ p < +∞.

Proof. By the celebrated Theorem of Riesz-Fr�echet-Kolmogorov (see e.g. [6, Theorem IV.26] Γi is
totally bounded, for all i. Now, Uad is totally bounded as a �nite sum of totally bounded sets.

The following are examples of classes of controls which are in Uad:

1. If there exists a �nite number of constants ki (independent of vi(.)) such that vi(.) is ki-Lipschitz
in the subinterval (ti, ti+1) for all vi(.) ∈ Γi (see [2, Proposition 3]).

2. Recall that an integrable function v on [0, T ] is of bounded variation if it has �nite essential or
total variation, that is, if

V ar(v) = sup
N−1∑
i=0

‖v(ti+1)− v(ti)‖ <∞,

where the supremum is taken over all �nite partitions 0 = t0 < t1 < · · · < tN−1 < tN =
T, such that each ti is a point of approximate continuity of v (that is, meas{t : |t− ti| <
δ, ‖v(t)− v(ti)‖ ≥ ε} → 0 as δ → 0 ). Let

F = {u : V ar(u) ≤ C}.

If F is bounded in L1(I,Rm); then is a relatively compact set in L1(I,Rm).
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3. For a given integer N , the set of controls which are piecewise constant at most N points of
discontinuity t0, . . . tN−1, on [0, T ]. In this case, the control is approximated by a piecewise
constant function as follows:

uN(t) =
N−1∑
i=0

σiχ[ti,ti−1)(t),

where σi ∈ Rm are �xed, i = 0, . . . , N − 1 and χE is the indicator function of a subset E of R,
that is, χE(t) = 1 if t ∈ E and χE(t) = 0 otherwise.

Now, if assume that Uad = Uad ∩ U , that is all controls u such that u(t) ∈ U for almost all
t ∈ [0, T ] and u(t) = vi(t), t ∈ [ti, ti+1), vi ∈ Γi with Γi is L

1 − equicontinuous on L1((ti, ti+1);Rm)
for , i = 0, . . . , N − 1. Then by Proposition 3.1, Uad is a compact subset of L1(I,Rm).

The following result gives an existence theorem of an optimal solution for problem (P ).

Theorem 3.1. Suppose that hypotheses (A-1), (A-2) and (A-3) hold and the functional F (., .) is
not identical to +∞. If the controls lie in Uad, then there exists an optimal solution for problem (P ).

Proof. Denote by V(P ) the value of (P ). By Proposition 2.1, we can assert that problem (P )
has a �nite value V(P ). Consequently, there exists a minimizing sequence (xk (.) , uk (.)) ∈ T and
uk (.) ∈ Uad such that

F (xk (.) , uk (.)) ≤ V(P ) +
1

k
.

Since uk (.) ∈ Uad, by Proposition 3.1 we then conclude that (uk (.))k contains a subsequence noted
again by (uk (.))k which converges strongly to v in L1(I,Rm). By [6, Th�eor�eme IV.9], the sequence
(uk(.))k contains a subsequence, noted again (uk(.))k, such that

• ūk(t) −→ v (t) for almost all t ∈ I, and

• there exists h(.) ∈ L1(I,Rm) such that ‖uk (t) ‖ ≤ h(t) for all k and almost all t ∈ I.

Now, if we denote by xk (.) the response of uk (.), then by Proposition 2.2, the continuity of the
input-output maps u (.) −→ xu (.) assert that there exists y (.) ∈ C (I,Rn) such that xk (.) −→ y (.) ∈
C (I,Rn) strongly with y (.) is the response of v (.), this means (y (.) , v (.)) ∈ T . Under assumption
(A-3) the mappings gi are Carath�eodory mapping, thus

gi (t, xk (t) , uk (t)) −→ gi (t, y (t) , v (t))

for almost all t ∈ [0, T ] and for every i = 1 . . . r, with

gi (t, y (t) , v (t)) ≤ 0 i = 1 . . . s for almost all t ∈ [0, T ]

gi (t, y (t) , v (t)) = 0 i = s+ 1 . . . r for almost all t ∈ [0, T ] .

Consequently (y, v) ∈ Ω. Now, by Proposition 2.1 F is lower semicontinous, then

F (y (.) , v (.)) ≤ lim inf
k−→+∞

F (xk (.) , uk (.)) ≤ V(P ).

Hence F (y (.) , v (.)) = V(P ), this implies that (y (.) , v (.)) is an optimal solution of (P ).

Now the �rst convergence theorem of the partially penalty method reads as follows.

Theorem 3.2. Suppose that hypotheses (A-1), (A-2) and (A-3) hold, the functional F (., .) is not
identical to +∞ and the controls lie in Uad. Then
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1. The problem (Pn) is solvable for every cn > 0.

2. The sequence (x̄n (.) , ūn (.))n of optimal solutions of the problem (Pn) contains a convergent
subsequence (x̄k (.) , ūk (.))k; such that

• x̄k −→ x̄ (.) strongly in C(I,Rn),

• ˙̄xk(.) −→ ˙̄x (.) weakly in L1(I,Rn),

• ūk (.) −→ ū (.) strongly in L1(I,Rm),

3. The limit (x̄ (.) , ū (.)) is an optimal solution of original problem (P ).

Proof. (1) We put
V(Pn) = inf {Fn(x, u), (x, u) ∈ T , u ∈ Uad}

V(Pn) is �nite; in fact, let (x (.) , u (.)) ∈ T and u (.) ∈ Uad, we have

F (x (.) , u (.)) ≤ Fn (x (.) , u (.)) .

By Proposition 2.1, F is bounded below, it follows that Fn is also bounded below. Consequently,
there exists a minimizing sequence (xk (.) , uk (.)) ∈ T and uk (.) ∈ Uad such that

Fn (xk (.) , uk (.)) ≤ V(Pn) +
1

k
.

Since uk (.) ∈ Uad, by Proposition 3.1 we then conclude that (uk (.))k contains a subsequence noted
again by (uk (.))k which converges strongly to v in L

1(I,Rm). Now, if we denote by xk (.) the response
of uk (.), then by Proposition 2.2, the continuity of the input-output maps u (.) −→ xu (.) ensures
that there exists y (.) ∈ C (I,Rn) such that xk (.) −→ y (.) ∈ C (I,Rn) strongly, where y (.) is the
response of v (.), this means (y (.) , v (.)) ∈ T . Now, Fn is lower semicontinous, then

Fn (y (.) , v (.)) ≤ lim inf
k−→+∞

Fn (xk (.) , uk (.)) ≤ V(Pn).

Hence Fn (y (.) , v (.)) = V(Pn), this implies that (y (.) , v (.)) is an optimal solution of (Pn) , noted in
the sequel by (x̄n (.) , ūn (.)).

(2) We have Ω ⊂ T , then V(Pn) ≤ V(P ) since G (x (.) , u (.)) = 0 in Ωin ∩ Ωeq.
On other hand, we have that G (., .) is nonnegative and hence

F (x̄n (.) , ūn (.)) ≤ Fn(x̄n (.) , ūn (.)) ≤ V(P ).

Again since (ūn (.))n ⊂ Uad , by Proposition 3.1, the sequence (ūn (.))n contains a converging subse-
quence (ūk (.))k to ū (.) strongly on L1(I,Rm). The map u −→ xu is continuous (Proposition 2.2),
which implies that x̄k (.) −→ x̄ (.) in C (I,Rn) strongly and x̄k(T ) −→ x̄ (T ) = 0. This implies
(x̄ (.) , ū (.)) ∈ T .

(3) To complete the proof we prove that (x̄ (.) , ū (.)) is the optimal solution of (P ). First, we
have that G (., .) is lower semicontinous, then

0 ≤ G(x̄ (.) , ū (.)) ≤ lim inf
k−→+∞

G(x̄k (.) , ūk (.)). (3.1)

On other hand, lim
k−→+∞

G(x̄k (.) , ūk (.))) = 0, in fact

0 ≤ G(x̄k (.) , ūk (.)) ≤ 1

ck
(V(P )− F (x̄k (.) , ūk (.))) . (3.2)
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From this point, we can distinguish two cases:
Case 1: There exist k0 such that F (x̄k0 (.) , ūk0 (.)) = V(P ). In this case we have V(Pk) = V(P )

and G(x̄k (.) , ūk (.)) = 0 for all k ≥ k0, so G(x̄k0 (.) , ūk0 (.)) = 0, this implies that (x̄ (.) , ū (.)) =
(x̄k0 (.) , ūk0 (.)) ∈ Ωin ∩ Ωeq.

Case 2: F (x̄k (.) , ūk (.)) 6= V(P ) for all k. In this case by virtue (3.1) and (3.2) by letting k to
+∞ , we deduce that G(x̄ (.) , ū (.)) = 0.

We conclude that (x̄ (.) , ū (.)) is an admissible point, and V(P ) ≤ F (x̄ (.) , ū (.)) in the two cases.
Now, since F (., .) is lower semicontinous, we obtain

F (x̄ (.) , ū (.)) ≤ lim inf
k−→+∞

F (x̄k (.) , ūk (.)) ≤ V(P ),

that is F (x̄ (.) , ū (.)) = V(P ), this implies that the pair (x̄ (.) , ū (.)) is an optimal solution of the
problem (P ).

Remark 2. Without the boudedness of the set of controls, i.e. u ∈ Uad, we can derive a similar
convergence theorem to Theorem 3.2, by assuming further that the mapping f is Lipschitz in u and
l is coercive on u, i.e. there exists Kx > 0 and Ku > 0 such that

‖f (t, x1, u1)− f (t, x2, u2)‖ ≤ Kx ‖x1 − x2‖+Ku ‖u1 − u2‖ ,

for almost all t ∈ [0, T ], and
(A-4) there exists β > 0 such that

l (t, x, u) ≥ β ‖u‖ ,

for almost all t ∈ [0, T ] and for all x ∈ Rn. See Theorem 1 of [2].

3.2 Approximate constrained control problem via an unconstrained opti-
mization problems

Using the exterior penalty function method we consider the following sequence of in�nite-dimensional
unconstrained optimization problems corresponding to problem (P ),

(Pn) min
(x,u)∈AC0×Uad

Φn(x, u) = F (x, u) + cnH(x, u) + cnG(x, u),

where,

• AC0 is the space of absolutely continuous maps from [0, T ] to Rn such that x(0) = x0 and
x(T ) = 0,

• (cn) is an increasing sequence of positive real numbers,

•
H(x, u) =

∫ T

0

‖ẋ(t)− f (t, x (t) , u (t))‖ dt,

and

•

G(x, u) =
s∑
i=1

∫ T

0

max(0, gi (t, x (t) , u (t)))dt+
r∑

i=s+1

∫ T

0

|gi (t, x (t) , u (t))| dt.
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Under assumption (A-2)-(i) and the continuity of the norm, we can assert that H(., .) is lower
semicontinuous form AC([0, T ],Rn) × L1([0, T ],Rm) to R+. So then Φn(x, u) is also bonded below
and lower semicontinuous from AC([0, T ],Rn)× L1([0, T ],Rm) to R+. The next result is the second
convergence theorem for the totally penalty method.

Theorem 3.3. Suppose that hypotheses (A-1), (A-2)-(i), and (A-3) hold, the functional F (., .) is
not identical to +∞ and the controls lie in Uad, then we have:

1. Problem (Pn) is solvable for every cn > 0.

2. The sequence (x̄n (.) , ūn (.))n of optimal solutions of problem (Pn) contains a convergent sub-
sequence (x̄k (.) , ūk (.))k; such that

• x̄k −→ x̄ (.) strongly in C(I,Rn),

• ˙̄xk(.) −→ ˙̄x (.) weakly in L1(I,Rn),

• ūk (.) −→ ū (.) strongly in L1(I,Rm).

3. The limit (x̄ (.) , ū (.)) is an optimal solution of original problem (P ).

Proof. Denote by V(Pn) the value of (Pn). Since the sequence (cn) is non-decreasing then (V(Pn))n
is a decreasing sequence bounded from above by V(P ) the value of problem (P ) which is �nite.
Φn(x, u) is bounded below, so there exists a minimizing sequence (xk (.) , uk (.)) ∈ AC0 × Uad such
that

Φn (xk (.) , uk (.)) ≤ V(Pn) +
1

k
. (3.3)

Since (uk (.))k ⊂ Uad, by Proposition 3.1 we conclude that (uk (.))k contains a subsequence, noted
again, by (uk (.))k which converges strongly to w ∈ Uad in L1 and there is a constant µ > 0 such that
‖uk (.)‖ ≤ µ. On the other hand, the functions xk(.) are uniformly bounded, in fact, if we observe
that

〈ẋk(t), xk(t)〉 = 〈zk(t), xk(t)〉+ 〈f(t, xk(t), uk(t)), xk(t)〉,
where zk(t) = ẋk(t)− f(t, xk(t), uk(t)), then we have

〈ẋk(t), xk(t)〉 ≤ |〈zk(t), xk(t)〉|+ |〈f(t, xk(t), uk(t)), xk(t)〉||
≤ ‖zk(t)‖‖xk(t)‖+ θ1 (t) ‖xk(t)‖+ ρ1(t) ‖uk(t)‖ ‖xk(t)‖+ ρ1 (t) ‖xk(t)‖2

≤ (‖zk(t)‖+ θ1 (t) + ρ1(t) ‖uk(t)‖)‖xk(t)‖+ ρ1 (t) ‖xk(t)‖2 .

On the other hand, we have

〈ẋk(t), xk(t)〉 =
1

2

d

dt
‖xk(t)‖2 = ‖xk(t)‖

d

dt
‖xk(t)‖.

Therefore,

‖xk(t)‖ ≤ ‖xk(0)‖+

∫ t

0

(‖zk(t)‖+ θ1 (τ) + ρ1 (τ) ‖uk(τ)‖)dτ +

∫ t

0

ρ1 (τ) ‖xk(τ)‖dτ,

and

‖xk(t)‖ ≤ ‖x0‖+ (M1 + ‖θ1 (.)‖L∞ + ‖ρ1 (.)‖L∞ ‖uk(.)‖L1) +

∫ t

0

ρ1 (τ) ‖xk(τ)‖dτ.

Here ‖zk(.)‖L1 ≤M1 for some M1 > 0 which follows by (3.3). So, we have

‖xk(t)‖ ≤ ‖x0‖+ (M1 + ‖θ1 (.)‖L∞ + ‖ρ1 (.)‖L∞ ‖uk(.)‖L1) +

∫ t

0

ρ1 (τ) ‖xk(τ)‖dτ.
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Applying Gronwall's lemma we obtain

‖xk(t)‖ ≤ K, for all t ∈ [0, T ],

for k su�ciently large, with K = (‖x0‖ + M1 + ‖θ1 (.)‖L∞ + ‖ρ1 (.)‖L∞ µ) exp(‖ρ1 (.)‖L∞). This
proves the boundedness of (xk(.))k independently of k and t. We shall now show that (xk(.))k is also
equicontinuous. To this end we must �rst show that (ẋk(.))k is equi-integrable in L

1(I,Rn). If I0 is
any Lebesgue measurable subset of I, we have∫

I0

‖ẋk(τ)‖ dτ ≤
∫
I0

‖zk(τ)‖ dτ +

∫
I0

‖f(τ, xk(τ), uk(τ))‖ dτ

≤
∫
I0

‖zk(τ)‖ dτ +

∫
I0

θ1 (τ) dτ +

∫
I0

ρ1 (τ) (‖xk(τ)‖+ ‖uk(τ)‖)dτ

≤
∫
I0

‖zk(τ)‖ dτ +

∫
I0

θ1 (τ) dτ +M2

∫
I0

ρ1 (τ) dτ.

The right-hand side approaches zero as meas(I0) −→ 0, so (ẋk (.))k is equi-integrable in L
1(I,Rn).

By the Dunfords-Pettis theorem, we can extract a further subsequence from (ẋk (.))k such that ẋk(.)
converges weakly to, say, σ(.) in L1. On the other hand, since (ẋk (.))k is equi-integrable, the sequence
(xk(.))k is equicontinous, indeed, for all t1, t2 ∈ [0, T ] such that |t2 − t1| ≤ δ we have

‖xk(t1)− xk(t2)‖ =

∥∥∥∥∫ t2

t1

ẋk(τ)dτ

∥∥∥∥ ≤ ∫ t2

t1

‖ẋk(τ)‖ dτ ≤ ε, for all k.

Now, since the sequence (xk(.))k is equibounded and equicontinous, by Arzela's theorem there exists
a subsequence, again denoted by (xk(.))k which converges uniformly on [0, T ] to a continuous function
v(.). The equality

xk (t) = x0 +

∫ t

0

ẋk (τ) dτ ; for all t ∈ I,

implies that

v (t) = x0 +

∫ t

0

σ(τ)dτ ; for all t ∈ I,

and hence v̇(t) = σ(t) for almost all t ∈ I. Now, because the uniform convergence of (xk(.))k to v(.),
the weak convergence of ẋk(.) to v̇(.) in L1 and the strong convergence of (uk (.))k to w in L1, we
have zk(.) converge weakly to z(.) in L1(I,Rn) where z(t) = v̇(t)− f(t, v(t), w(t)). Then,

H(v, w) =

∫ T

0

‖v̇(τ)− f (τ, v (τ) , w (τ))‖ dτ

≤ lim inf
k→∞

∫ T

0

‖ẋk(τ)− f (τ, xk (τ) , uk (τ))‖ dτ. (3.4)

Furthermore,
F (v, w) ≤ lim inf

k→∞
F (xk, uk) and G(v, w) ≤ lim inf

k→∞
G(xk, uk). (3.5)

Since F (., .) and G(., .) are lower semicontinuous, by virtue of (3.4), (3.5) and (3.3), it follows that

Φn(v, w) ≤ lim inf
k→∞

Φn(xk, uk) ≤ V(Pn).

Hence, Φn (v (.) , w (.)) = V(Pn) which implies that (v (.) , w (.)) is an optimal solution of (Pn) , noted
in the sequel by (x̄n (.) , ūn (.)).We shall show that the sequence (x̄n (.) , ūn (.))n contains a convergent
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subsequence to the solution of the original problem (P ). Let V(P ) be the value of problem (P ). Since
G (., .) +H(., .) is nonnegative, then

F (x̄n (.) , ūn (.)) ≤ Φn(x̄n (.) , ūn (.)) ≤ V(P ).

Again, since (x̄n (.) , ūn (.))n ⊂ AC0 × Uad, by the same argument as before we show that the se-
quence (ūn (.))n contains a convergent subsequence (ūk (.))k to ū (.) strongly on L1(I,Rm) and the
sequence (x̄n (.))n contains a convergent subsequence (x̄k (.))k to x̄ (.) uniformly on C(I,Rn), which
has a derivative ˙̄x (.) belonging to L1(I,Rn), where x̄ (0) = x0 and x̄ (T ) = 0. This implies that
(x̄ (.) , ū (.)) ∈ AC0 × Uad. We have G (., .) +H(., .) is lower semicontinous, then

0 ≤ G(x̄ (.) , ū (.)) +H(x̄ (.) , ū (.)) ≤ lim inf
k−→+∞

(G(x̄k (.) , ūk (.)) +H(x̄k (.) , ūk (.))). (3.6)

On other hand, lim inf
k−→+∞

(G(x̄k (.) , ūk (.)) +H(x̄k (.) , ūk (.))) = 0, in fact

0 ≤ G(x̄k (.) , ūk (.) +H(x̄k (.) , ūk (.))) ≤ 1

ck
(V(P )− F (x̄k (.) , ūk (.))) . (3.7)

Now we proceed as in the proof of Theorem 3.2 to prove that the pair (x̄ (.) , ū (.)) is an optimal
solution of problem (P ).

Remark 3. Note that Lipschitz condition (A-2)-(ii) is not assumed in the preceding theorem, so
the uniqueness of the solution for equation (2.2) is not required.

4 First order necessary conditions for optimality

We shall next turn to �rst order necessary conditions for optimality. To see this, let us consider
the control process in the Hilbert space H1(I,Rn) × L2(I,Rm), where H1 is the Sobolev space of
all functions in L2(I,Rn) such that its weak derivatives lies in L2(I,Rn). We shall �rst obtain
necessary conditions for optimality for the non-dynamic problem (Pn) and then show how under
suitable limiting conditions they lead to the Pontryagin maximum principle for the sequence of the
dynamic optimal control problem (Pn).

Suppose, for each cn > 0, we can solve the following di�erentiable unconstrained optimization
problem

(Pn) min
(x,u)∈H1

0×U2
ad

Φn(x, u) = F (x, u) + cnH(x, u) + cnG(x, u),

where,

• H1
0 is the space of all absolutely continuous function x from [0, T ] to Rn such that its derivatives

lies in L2(I,Rn) with x(0) = x0 and x(T ) = 0,

• U2
ad

= Uad ∩ L2(I,Rm),

• (cn) is an increasing sequence of positive real numbers,

•

H(x, u) =
1

2

∫ T

0

‖ẋ(t)− f (t, x (t) , u (t))‖2 dt,

and
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•

G(x, u) =
1

2

s∑
i=1

∫ T

0

max(0, gi (t, x (t) , u (t)))2dt+
1

2

r∑
i=s+1

∫ T

0

|gi (t, x (t) , u (t))|2 dt.

To derive necessary conditions of optimality satis�ed by an optimal control, we need to make the
following assumptions on the data of the problem:

(H1) (i) The mapping l is a C1-Carath�eodory mapping, i.e., l is C1 in (x, u) for almost all t ∈ [0, T ]
and is measurable in t for every (x, u) ∈ Rn × Rm;

(ii) there exist θ ∈ L2([0, T ],R+), ρ ∈ L2([0, T ],R+) and β1 (·) ∈ L2 (I,R+) such that for almost
all t ∈ [0, T ],

|l(t, x, u)| ≤ θ(t) + ρ(t)(‖x‖+ ‖u‖)

and
‖∇xl(t, x, u)‖+ ‖∇ul (t, x, u)‖ ≤ β1 (t) ,

where ∇jl is the partial derivative of l with respect to its jth argument, j ∈ {x, u}.

(H2) (i) The mapping f is a C1-Carath�eodory mapping and there exist θ1 ∈ L∞ ([0, T ] ,R+) and
ρ1 ∈ L∞ ([0, T ] ,R+) such that for almost all t ∈ [0, T ],

‖f (t, x, u)‖ ≤ θ1 (t) + ρ1 (t) (‖x‖+ ‖u‖) ,

(ii) there exists α (.) ∈ L2
(
I,R+

)
and γ′ (.) ∈ L2

(
I,R+

)
such that

‖∇xf (t, x, u)‖ ≤ α (t)

and
‖∇uf (t, x, u)‖ ≤ γ′ (t) ,

for almost all t ∈ [0, T ].

(H3) (i) For all i; the mapping gi is a C
1-Carath�eodory mapping and there exist θ2 ∈ L2 ([0, T ] ,R+)

and ρ2 ∈ L2 ([0, T ] ,R+) such that for almost all t ∈ [0, T ],

|gi (t, x, u)| ≤ θ2 (t) + ρ2 (t) (‖x‖+ ‖u‖) ,

(ii) there exist ρ3 ∈ L2 ([0, T ] ,R+) such that for almost all t ∈ [0, T ],

‖∇xgi(t, x, u)‖+ ‖∇ugi (t, x, u)‖ ≤ ρ3 (t) ,

for all i.

Let
g(t, x, u) = (g1(t, x, u), . . . , gr(t, x, u)),

∇xg(t, x, u) = (
∂

∂xi
gj(t, x, u))ij, 1 ≤ i ≤ n, 1 ≤ j ≤ r,

∇ug(t, x, u) = (
∂

∂ui
gj(t, x, u))ij, 1 ≤ i ≤ m, 1 ≤ j ≤ r,

and ρ(g) = ρ(g(t, x, u)) the vector in Rr de�ned as follows,

• ρi(g) = gi (t, x, u) if gi (t, x, u) ≥ 0 and ρi(g) = 0 if gi (t, x, u) ≤ 0, for i = 1 . . . s.
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• ρi(g) = gi (t, x, u), for i = s+ 1 . . . r.

We see that for every �xed n and �xed control u, the problem (Pn) becomes a problem of the
calculus of variations. We have the following necessary optimality conditions of Euler�Lagrange type.

Theorem 4.1. If for every n (x̄n (·) , ūn (·)) ∈ H1
0 × Uad is an optimal solution to (Pn), then

d

dt
zn (t) = −∇xf(t, x̄n (t) , ūn (t))>zn (t) +

1

cn
∇xl (t, x̄n (t) , ūn (t)) (4.1)

+∇xg(t, x̄n (t) , ūn (t))ρ(gn)

∇uf(t,x̄n (t) , ūn (t))>zn (t) =
1

cn
∇ul(t, x̄n (t) , ūn (t)) +∇ug(t, x̄n (t) , ūn (t))ρ(gn) (4.2)

zn (T ) = 0, (4.3)

for almost all t ∈ [0, T ], where

zn (t) = ˙̄xn (t)− f(t, x̄n (t) , ūn (t))

and
ρ(gn) = ρ(g(t, x̄n (t) , ūn (t))).

Proof. Let (x̄n (·) , ūn (·)) ∈ H1
0 × Uad be an optimal solution to (Pn) for every n. Let v(t) and w(t)

be any n× 1 and m× 1 functions, respectively, in the Schwartz space of in�nitely smooth functions
vanishing outside compact subsets of (0, T ). By our assumptions on l(.), f(.), and gi(.) it follows
that the Fr�echet derivative of Φn(x, u) with respect to x and u, respectively, equals∫ T

0

〈∇xl (t, x̄n (t) , ūn (t)) , v(t)〉 dt+ cn

∫ T

0

〈zn (t) , v̇(t)−∇xf(t, x̄n (t) , ūn (t))(v(t))〉 dt

+cn

∫ T

0

〈∇xg(t, x̄n (t) , ūn (t))ρ(gn), v(t)〉 dt

and ∫ T

0

〈∇ul (t, x̄n (t) , ūn (t)) , w(t)〉 dt+ cn

∫ T

0

〈∇uf(t, x̄n (t) , ūn (t)), w(t)〉 dt

+cn

∫ T

0

〈∇ug(t, x̄n (t) , ūn (t))ρ(gn), w(t)〉 dt.

Since (x̄n (·) , ūn (·)) minimize Φn(x, u), we get the desired system. Next, specializing v(.) to any
smooth function with v(0) = 0, v(T ) arbitrary and nonzero, it follows that zn (T ) = 0.

The Lagrangian L from H1
0 ([0, T ],Rn) × L2([0, T ],Rm) × H1([0, T ],Rn) × L2([0, T ],Rs) ×

L2([0, T ],Rr−s) to R, for the initial problem (P ) is given by

L(x, u, ψ, λ, µ) =

∫ T

0

l(t, x(t), u(t)dt+

∫ T

0

〈ψ(t), ẋ(t)− f(t, x(t), u(t))〉 dt

+
s∑
i=1

∫ T

0

〈λi(t), gi (t, x (t) , u (t))〉 dt+
r∑

i=s+1

∫ T

0

〈µi(t), gi (t, x (t) , u (t))〉 dt

If (x̄(.), ū(.)) is a local minimum of problem (P ) and under suitable constraint quali�cation conditions,
as Robinson's condition [33], there exist nontrivial multipliers (ψ∗, λ∗, µ∗) such that the following
conditions are satis�ed:
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• (x̄(.), ū(.)) is an optimal solution of minL(x, u, ψ∗, λ∗, µ∗).

• λ∗i (t)gi (t, x̄ (t) , ū (t)) = 0 and λ∗i (t) ≥ 0, for almost all t ∈ [0, T ] and for every i = 1 . . . s.

In the following statement we give a relation between the multipliers of problem (P ) and the
necessary optimality conditions given by Theorem 4.1.

Theorem 4.2. Let (x̄n (·) , ūn (·)) be an optimal solution of problem (Pn). If we put

ψn(t) = cnzn(t) and (λn, µn) = cnρ(gn).

Then (ψn, λn, µn)n contains a subsequence (ψk, λk, µk)k such that

• ψk −→ ψ∗ strongly in C(I,Rn),

• λk −→ λ∗ weakly in L2(I,Rs),

• µk −→ µ∗ weakly in L2(I,Rr−s),

and (ψ∗, λ∗, µ∗) is a non-trivial Lagrange multiplier associated to the solution optimal of problem (P ).

Proof. By Theorem 3.3, we know that the sequence (x̄n (.) , ūn (.))n of optimal solutions of problem
(Pn) contains a convergent subsequence (x̄k (.) , ūk (.))k to the optimal solution (x̄ (.) , ū (.)) of (P )
with the properties:

• x̄k(.) −→ x̄ (.) strongly in C(I,Rn),

• ūk (.) −→ ū (.) strongly in L2(I,Rm),

By [6, Th�eor�eme IV.9], the sequence (ūk(.))k contains a subsequence, denoted again by (ūk(.))k, such
that

• ūk(t) −→ ū (t) for almost all t ∈ I, and

• there exists h(.) ∈ L2(I,Rm) such that ‖ūk (t) ‖ ≤ h(t) for all k and almost all t ∈ I.

We also have x̄k(t) −→ x̄ (t), for all t ∈ I. This implies, by (H3)-(i), that

gi (t, x̄k(t), ūk(t)) −→ gi (t, x̄(t), ū(t)) , for almost all t ∈ I, for every i = 1 . . . r.

and

|gi (t, x̄k(t), ūk(t)) | ≤ θ2 (t) + ρ2 (t) (‖x̄k(t)‖+ ‖ūk(t)‖)
≤ θ2 (t) + ρ2 (t) (K + h(t)) = h1(t),

for all i and almost all t ∈ I, where h1(.) ∈ L2(I,R). Now, Lebesgue's theorem assert that
gi (., x̄k(.), ūk(.)) −→ gi (., x̄(.), ū(.)) in the strong topology of L2(I,R), for every i = 1 . . . r. By
de�nition, we have

ck max(0, gi (t, x̄k(t), ūk(t)))
2 = λi,k(t)gi (t, x̄k(t), ūk(t)) , for every i = 1 . . . s,

and

ck |gi (t, x̄k(t), ūk(t))|2 = µi,k(t)gi (t, x̄k(t), ūk(t)) , for every i = s+ 1 . . . r.
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The fact that

ck

∫ T

0

max(0, gi (t, x̄k(t), ūk(t)))
2dt −→ 0, for every i = 1 . . . s,

and

ck

∫ T

0

|gi (t, x̄k(t), ūk(t))|2 dt −→ 0, for every i = s+ 1 . . . r,

ensures that ∫ T

0

λi,k(t)gi (t, x̄k(t), ūk(t)) dt −→ 0, for every i = 1 . . . s, (4.4)

and ∫ T

0

µi,k(t)gi (t, x̄k(t), ūk(t)) dt −→ 0, for every i = s+ 1 . . . r.

Since gi (., x̄k(.), ūk(.)) −→ gi (., x̄(.), ū(.)) strongly in L2(I,R), for every i = 1 . . . r, then the se-
quences (λi,k(.))k and (µi,k(.))k are bounded in L2(I,R). This implies, by the Theorem of Banach-
Alaoglu-Bourbaki, that there exist subsequences, denoted again by (λi,k(.))k and (µi,k(.))k such
that λi,k(.) −→ λi(.) and µi,k(.) −→ µi(.) weakly in L2(I,R), for every i = 1 . . . r. Also, since
λi,k(t)gi (t, x̄k(t), ūk(t)) ≥ 0, for every i = 1 . . . s. By (4.4)

λi,k(t)gi (t, x̄k(t), ūk(t)) −→ 0,

for almost all t ∈ I and every i = 1 . . . s. On the other hand,

λi,k(t)gi (t, x̄k(t), ūk(t)) −→ λi(t)gi (t, x̄(t), ū(t)) ,

for almost all t ∈ I and every i = 1 . . . s. Consequently, λi(t) ≥ 0 and λi(t)gi (t, x̄ (t) , ū (t)) = 0 for
almost all t ∈ [0, T ] and for every i = 1 . . . s. Now, from (4.1), which is a linear equation for zk(.) it
follows that the limk→+∞ ckzk(t) exists, and if we denote this limit by ψ(t), it follows (by multiplying
by ck system (4.1)-(4.3) and taking limits) that

ψ̇(t) = −∇xf(t, x̄ (t) , ū (t))>ψ(t) +∇xl (t, x̄ (t) , ū (t))

+ (λ(t), µ(t))∇xg(t, x̄ (t) , ū (t))

∇uf(t,x̄ (t) , ū (t))>ψ(t) = ∇ul(t, x̄ (t) , ū (t)) + (λ(t), µ(t))∇ug(t, x̄ (t) , ū (t))

ψ(T ) = 0,

which, of course, means that (x̄(.), ū(.)) is an optimal solution of minL(x, u, ψ∗, λ∗, µ∗). We conclude
that (ψ∗, λ∗, µ∗) is a non-trivial Lagrange multiplier associated to the optimal solution of problem
(P ).

Concluding remarks.

In this paper, we have constructively developed a theoretical framework how to solve an optimal
control problem with state and control constraints. Under strong compact assumptions on the set
of controls, the state and control constraints (the di�erential equation, respectively) are handled
by de�ning an equivalent unconstrained control problem (in�nite-dimensional optimization prob-
lem, respectively). This is done by de�ning a penalty function involving a non-decreasing sequence
(cn)n∈N. The two problems are equivalent if cn is su�ciently large. A correspondence has been
shown between this penalty functions and the duality for this class of constrained optimal control
problems. Results bearing on computational aspects will be reported in a future work. It is to
be noted that the functional obtained is non-smooth, but has interesting di�erential properties and
modern non-di�erentiable optimization methods can be applied to solve these problems.
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