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Abstract. The harmonic Green and Neumann functions are constructed for a
particular triangle in the complex plane, which by reflections across its sides provides
a triangulation of the plane.

1 Construction of harmonic Green functions

A fundamental solution to the Laplace operator A = 40,0 for regular plane domains
D adjusted to vanishing boundary values is called harmonic Green function. It
exists for any domain for which the Dirichlet problem for harmonic functions with
continuous boundary data is solvable. Thus in principle the existence of the harmonic
Green function is guaranteed for a wide class of domains (in the complex plane). As
the Green function provides the solution to the Dirichlet problem for the Poisson
equation, it is important to know it explicitly. The conformal invariance of the Green
function for the Laplace operator is a nice and useful tool to find the Green functions
for a variety of domains. Because the Green function for the unit disc is known the
Riemann mapping theorem serves to get the Green functions for a large class of
simply connected domains. But this does not always give the Green function in
explicit form. One example is the conformal map of a polygonal domain given by
the Schwarz-Christoffel formula.

Another principle for constructing Green functions (not only for simply
connected domains) is by reflection. To explain this principle let D be the unit
disc in the complex plane. In order to alter the fundamental solution log|( — z| for
z,C € Dlet ¢ be fixed and z vary. Reflecting the point ¢ at the boundary 0D provides
the point 1/¢. The function 1 — 2 is analytic in z € C with a zero at z = 1/. The
difference log |1 — 2C| — log|¢ — 2| is a harmonic function in z € D for any fixed (,
¢ € D, with the exceptional point z = (. Moreover, it vanishes on the boundary

2| = 1. Thus log ) oo

Similarly, for the upper half plane 0 < Im z the reflection of the fixed point (,
0 < Im(, at the real axis gives (. The difference log |( — z| — log |¢ — z| is the Green

is the harmonic Green function for D.
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function for the upper half plane.

Continued reflections serve to determine the Green function for a circular
concentric ring domain, see [4], [6].

In all these examples the original domain is mapped via these reflection processes
onto the entire plane or even the Riemann sphere, occasionally with the exception
of certain isolated points. The reflection method does work also for regular convex
polygons providing a parqueting of the complex plane. A simple such parqueting is
a triangulation of the plane. This case will be elaborated here.

For further examples of explicit formulas for harmonic Green functions for
domains with corners see e.g. [1], [2], [3], [5].

2 Green function for a certain equilateral triangle

For getting the harmonic Green function G(z,() for the open triangle 7" with the
corner points —1, 1, i1/3 the triangle is reflected at its three sides. The three resulting
triangles are reflected at their sides, etc. This leads to a triangulation of the complex

Reflecting z € T" at the line from 1 to iv3 gives

2 Z—%(1+i\/§)§+ g(\/ngz) (1)

i -3_

[E]

The triangle T itself is mapped onto the triangle T} with the corners 1, 2 + iv/3,
iv/3. Reflecting T at the line from 1 to 2 4 iv/3 maps 2z; onto

zzz—%(1+i\/§)z+§(\/§+i), (2)

and T} onto the triangle T, with the corners 3, 2 + iy/3, 1. Continuing reflecting in
the same direction leads to

23 =Z+V3(V3+1) (3)

and to Ty with the corners at 3, 4 + iv/3, 2 + iv/3.
Then to
V3

=1 - vzt LEvE+) (4)
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within T with the corners at 3, 5, 4 4+ i1/3, and finally to

z5:—%(1—i\/§)5+§(3\/§+i) (5)

and the triangle 75 with the corners at 5, 6 +iv/3, 4+ iv/3. The next reflection gives
26 = 2+ 6 and Tg = T + 6. Reflecting now at the sides on the real axis leads to the

Further reflections on all sides of the twelve triangles attained so far result in
the same periodic pattern with the basic periods 6 and 2iv/3. The entire complex
plane is covered by a periodic pattern of translations of these twelve basic triangles
performing a parqueting of the plane by triangles.

Endowing 2z with the label p, its direct reflections z; and Z with the label n,
any direct reflection of a point labeled p (or n) with the label n (or p, respectively)
decomposes all these points into two classes. They are used to form an analytic
function with simple zeroes at the n—points and simple poles at the p—points just
by an infinite product. This product turns out to be convergent and obviously forms
an elliptic function. The log of its absolute value appears to be the harmonic Green
function for the triangle T
Notation. Let for entire m and n, m, n € Z, denote

Qo = 6m + 2ivV/3n

and
g_E_Qm,nC_Zl_Qm,nC_Z_Z_Qm,n
g_z_Qm,nC_Z_l_Qm,nC_ZZ_Qm,n

XC_ZB_Qm,nC_Z_Qm,nC_Z5_Qm,n ?
C_Z_B_Qm,n<_24_Qm,n<_Z_5_an

)

The periods €2,,, obviously satisfy

Q—m,—n = _Qm,na Q—m,n = _Qm,na Qm,—n = Qm n.

)

Theorem 1. The function G1(z,() is the Green function for the triangle T,
satisfying

o Gi(-,C) is harmonic in T \ {C},
o Gi(2,¢) +1log|¢ — z|? is harmonic in T,

o lim Gi(2,()=0

z—0T

forany C € T.
The third property holds even in the three corner points of the triangle T.

The proof of Theorem 1 is given in the following two lemmas.
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Lemma 1. The double infinite products

H C_z_k_Qm,n

— 2z, —Q
mne” C k m,n

converge for 0 < k <5, where zo =z € T.

2

Proof. Let a,,, denote the factor of the above product

2
— 2k an

'C_zk_ mn

then

H amn_QOOHa—moa’mOHao naOnHHa’—m naf—mnam na'mn

m,neL m=1n=1
At first
= T 6me— —6m|)P T | (C— ) — 36m? |
H A—_m,00m,0 = H C k C K = H <C k)2 5
m—1 S [C— 2+ 6m( =z — 6m S (€= 2k)? — 36m
converges as
2= L36m? — (€ — z)? —~ 36m2 — )2
is convergent,.
Similarly
2
ﬁ ¢ — %0+ 2V3in ¢ — 7, — 2/3in ﬁ (¢ —7)% + 1202
a, _na n — =
T R = s 2VBin G — 2 — 23| L |(C = z)? o+ 1202
converges.
Finally

co 00
| | | | A _m,—nA—m nGm,—nAm.n

m=1n=1

C_%+Qm,nc_z+9m,—ng_%_Qm,—ng_%_gm,n
C_Zn+Qm,nC_Zn+Qm,—nC_Zn_Qm,—nC_Zn_Qm,n

—zn 2 (- -2 |
—HIE
—HH

Qz n(C—2,)2 = Q2
—Zn)t — 24(3m2 —n?) (¢ —7Z,)% + 144(3m? + n?)?
m=1n=1

— 2p)4 = 24(3m? — n?)(¢ — z,)? + 144(3m? 4 n?)?
is convergent as

2

2

—zn — (¢ — 2z,)* — 24(3m? — n? —Z)? = (C—2,)?
ZZ )* ( )[(¢ )* = (¢ )]

144(3m? + n?)? —24(3m? —n?)(¢ — 2,)* + (¢ — z)*

m=1 n=1

converges.
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Lemma 2. The function G1(-,() has vanishing boundary values on OT, i.e. for
(eT

li —
 m Gi(z,¢) =0.
zeT

Proof. The three parts 0,7, 0,1, 05T of T have to be investigated separately
i. On the segment 0,7 from 1 to i3 where

r=z = —%(1+z’\/§)z+ \f(ﬁﬂ')

also
=75, Z=2, 2=2+3+iV3 FH=2—2iV3
hold. Then
C_g_Qm,ng_Zl_Qm,n_l
C_Z_Qm,nC_Z_I_Qm,n_ 7
C_Z3_Qm,nc_z_4_9m,n_1
C_Z_3_Qm,nc_z4_9m,n_ ’
C_Z_2_Qm,n_1 C_Z5_Qm,n_ C_Z5_Qm,n
g_ZQ_Qm,n ’ C_Z_EJ_Qm,n g_ZS_Qm,n—l.
Because )
H g_ZS_Qm,n
m,nez g_Z_S_Qm,n
is convergent,
- _an ? al - an ?
HCZB , —hmH‘CzE’
neZ C_ZES_Qm,nfl N_’OOni C_ZES_an 1
. (=2 —Qun | . ¢ — 25 — 6m — 2iv/3N
= lim ’ = lim : =
N—oo | — 25 — Sl —N-1 N—oo |( — 25 — 6m 4 2ivV/3(N + 1)

Therefore G1(z,() =0 for z =z, ( € T.
ii. On the segment 0,7 from iv/3 to —1 where

1 3
e=—5(1- iV/3)Z — f(\/ﬁ — i),
also the equalities

=2 —20V3, =z, Z=24, 25=2+6

are true. Then
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(=22 — Qnn(— 23— Qi
C—2—QunC—23— L
(=24 — Qn
§—24—Qm,n
(=2 —=Omn _ (—2—Ompin
(—Z—Qnn (—Z—Qniim

=1,

=1,

Similarly as in case i
Gi1(z,¢) =0 for z=25+6, (€T,

is seen.
iii. On the segment 037" on the real axis z = Z, then

2 = 29, Z3 = 23—2i\/§, 24 = Zs.

Arguing as before G1(z,() = 0 is seen for 2 =%, ( € T. O

Lemma 2 shows G1(z,() to be the harmonic Green function for 7. In fact, it
satisfies all properties of a Green function formulated in Theorem 1. The uniqueness
of the Green function in general follows easily form the maximum principle for
harmonic functions, as is well known. Its symmetry G;(z, () = G1((, z) follows from
the basic properties of G(z, () in general. But for a particular case the symmetry
should be seen directly.

Lemma 3. For z, ( € T the symmetry relation

Gl('zv C) = G1<C7 Z)
holds.

Proof. Introducing the relations
23 =7+ 34 iV3,

z =7+ 34 V3,
25 =7+ 3+ V3,
the Green function can be expressed as

2

, (6)

_E_wm,ng_zl_wm,ng_Z_Q_wm,n

_Z_wm,ng_z_l_wm,ng_ZQ_wm,n

G1(z,¢) =log H

m+ne2Z

¢
¢
where now

Winn = 3M +iV3n for m +n € 27Z.
The single factors are

z— Z — W_omn

Z = g — Wom,—n

)

‘C—E—wm,n
¢

—Z = Wmn
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’g_zl_wm,n
g_z_l_wm,n

30+ i3z - P(VB i) — v
CH LA +iv3)Z — L(VB+1) — W n

_ |%<1 —iV3)(+7 - P(VB— i) — §(3(m +n) —m<3m—n>>|
L1 —iV3)C+72 — (V3 —1i) — 1(3(m — n) — iv/3(3m +n))

Z_Cl_Wm_-HLSm—n
2 2

)

Z — CQ — Wm—n 3m+n
2 72

’g_Z_Z_wm,n
g_ZZ_wm,n

_ |Z+ L1 4+iv3)z — B(V3+1) — W

C+ 11 +iv3)2 — B (V3+1i) — wmn
(1—iv3)+2— LB(V3—i)— LB3(m—n) - i\/§(3m+n))|
(1= iV3)C +2 = F(V8 =) = 3(3(m +n) = iv/3(3m — )

Z — §2 — Wm—n __3m+4n
2 2

N (N[

Y

z — Cl — Wm+4n _ 3m—n
2 2

so that

— - 2
z — C i w_m7n z — Cl - Wm;n,3m2fn z — CQ - CL)mQ—n773m2+n

G1(z,¢) = log H

m+ne2Z

Z_C_w—m7—nz_§_Wm_+n_3m—n Z_CZ — Wm=n 3m+n
2 2 2 2

The system
m+n =2k 3m—n=2[

is uniquely solvable in Z for given k, [ satisfying k + [ € 2Z by

2m=k+1, 2n=k — L.

Multiplying
H Z = Z — Wm,—n ?
m+ne227Z S C - wm,n
by ~ ,
H z — _C —Wmn | ]
m+ne22Z < g — Wm,—n
finally

2

= Gl(ga Z)

z_z_wm,nz_gl_wm,nz_g_wm,n

z_c_wm,nz—a—wm,nz_c2_Wm,n

is obtained.

From (6) the boundary behavior of the Green function G4 (z, () is easily seen. As
well

i. for z = z; and the fact zZ; = 2, as
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ii. for z = Z and the fact z; = 23 the formula (6) immediately shows that the
boundary values vanish.
iii. For the last side of 7" where

z= —%(1 —iV/3)7 — ?(\/3 — )

implies
n=Z+2V3, m=2+3+iV3
the form (6) shows

_ 2
C_Z_wm,n C_ 21 _Wm,n C_ Z_Werl,nfl

— = 0.
C —Z— wm,n C 2 wm,n72 C —Z— Wm+1,n+1

O

In the Green representation formula besides the Green function itself also the

Poisson kernel is needed. It is given by the outward normal derivative of the Green
function on the boundary

P(z,() = —0,.G1(2,(), z€dT, Ce€T.
For 0,T, where z = 21, the outward normal derivative is
By, = %(\/5 +1)0. + %(ﬁ — )0
For 0,T, where z = z5 — 6, it is
. = %(\/5 — )0, + %(ﬁ + )0
For 05T, where z = Z, this is
0y, = —1i0, + 105.

Theorem 2. The Poisson kernel for T is given as

2(V/3 + 1) Z_C_lw%n — szflwm,n + zf?liwm,n on 0T,

P(z,)=Re Y {231 |zdo — =+ =oy| on &
m+ne227Z . 1 1 1

21 [Z_C_Wm’n + e z—@—wm,n] on k7.

Proof. i. On 0,7 the relations z = z; and Z3 = 2z hold. 9,.G1(2,¢) = Re(V/3 +
1)0,G1(z, (). Moreover, for the Poisson integral formula

1
ds, = —2dz, dz=(1—iV3)dz, dz= Z<1 +iv3)dz,

1
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are mentioned. From (6)

1 1
0,.G1(z.Q) = Y_ [g_z_w — -

m+ne2Z C — &~ Wnmn

1 1—iv3 1 1-—4iV3 1 1+14v3 +1 1443
20 —Z —Wmn  2C— 21 — Wmn  2C— 2 —Wmn 20— 20— Woin ||

i.e.

auzGl(Za g) = Re Z

m+ne227Z

V3 —i V3 —i 2 2 ]

[ V3 i V3+i
: _

T2 T Wmn g_z_wm,n

B TR & At + =
C—Z1—wm7n g_zl_wm,n g—ZQ—Wm,n g_ZQ_Wm,n

3+1 344 %
=Re Y 2[ V3+i V3 HiE ? ]
m+n€2Z g_z_wmv" C_Z_wm,n C_ZZ_wmm

follows. The last term in the sum can be rewritten as

2 V3+i

Y

C_z2_wm,n z_Cl_me-Fn73m2—n

where

G = —%(1 +ivV3)C + ?(x@ﬂ').

Hence, on 077

ayzGl<z,<>=ReZ2<¢§+i)[ - v

m+ne€2Z = C — Wmn z = Z — Wmn z— a — Wm,n
Remark 1. For any complex number a the sum
Z 1
minezz @ T Wmn
s convergent. This is seen from

e Dl Pt et rae D D=

2 2
a—w a+w a? —w
m+ne2Z ; m+ne2Z m,n T Winn m+ne2Z m,n

ii. On 0,7 besides Z7 = z; — 2iV/3, 22 = Z + 3 + i/3 holds
al/zGl<z7 C) = Re(\/g - i>82G1(Z7 C)
Also

1 1
ds, = —2dz, dz= (1+1iV3)dz, dv= il iV3)dz, dz = —5(1- iv/3)dz.
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As before in step i

auzGl(Zv g) = Re Z

m+ne227Z

N 2i 2i V3+i N V3+i
C_Z_l_wmﬂ C_Zl_wm,n C—Zg—wmm E_ZQ_Wm,n

=Re Y. 2L V3 i — = V3 i + 2 ]

—z—wmm C—Z—m C_Z_l_wm,n

—z—wmm C_Z_wm,n

V3 —i V3 —i
¢

m+ne227Z

is seen. Here the last term is

2 V3 —i

C—7 — Wmm 2= (o~ Wnon smin
where
42:—%(1+¢\/§)§+§(\/§+¢).
Thus on 0,T
8,,ZG1(2,C):ReZQ(\/§—i){ - ' 1
Z2=C—Wmn 2—C—Wnn 22— Wnn

m+ne2Z
iii. On 03T holds Z = z so that z; = 2z, and
0,.G1(z,() = 2Rei 0.G4(z,().
Here ds, = dx = dz = dz. Moreover,
i i

0,.G1(2,¢) =Re ) _ { —

m+ne2Z (= 2= Wnn C—2—Wnn

1 V341 +1 NEES) V3 —i V3 —i

1 1
_2<_z_1_wm,n QC—zl—wmm QC_Z2_wm,n_2C—ZQ—u)m7n

Because
V3—i 2
C_zl_wm,n Z_E_WmT-HL7n—23m7
V3—i 2
E—zl — Wmn z—g—w%ﬁgm;n’
then

0,,G1(2,¢) = Re Z 22’[ —1 _ 1 1

m4ne27Z Z—C—wmm Z_a_wm,n Z_g_wm,n
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3 Neumann function for the triangle T

To our knowledge there is no theoretical method to get a harmonic Neumann
function from the Green function. By experience it can be achieved by the following
procedure. When the Green function is given by a certain quotient, the Neumann
function turns out to be just given by multiplying all the factors of the quotient, see
e.g. [3], [6]. However, sometimes a modification is needed in order to get convergence
of the product in case when this is an infinite one.

Theorem 3. A harmonic Neumann function for T is

sl T () (25

k=0 mneZ, k=0 ’

0<m?+n?

for z, C €T, z # (, where zy = .

Proof. At first
2
C— 2
11 - 1’
m,ne”Z, m,n
0<m?4n?

will be shown to converge. Let the factor be denoted by a,,,. Then

H Ha mOamOHaO naOn H a_ m, —nQ— mnam namn

m,neZ, m,n=1
0<m?2+4n?
Obviously,
- 1| (¢ — 2 ¢ — 2 2= )? ’
H A—m,00m,0 = H ( 6m +1 6m -1 = H 367 —
m=1 m=1 m=1
and
! 1| ) G )| =TS ]
ag.—nQo.pn = +1
71_[1 070, ; (22\/§n 22\/_71 H 12712

are convergent. Moreover,

= = ¢ — 2 ) ( ¢ — 2 ) ’
A—m,—nmn = —+1 — 1
ml;lzl ’ ’ m1;[=1 <6m + 2iv/3n 6m + 2iv/3n

— )2 2

6m + 22\/_n)

- 11

m,n=1
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and
. - C— 2 ) < C— 2 ) ?
A—mnQm,—n = — +1 — = 1
mlll e mlll <6m —2iv/3n 6m — 2iv/3n
I — %)’ ;
=1 6m 22\/_71)
converge as
m,n=1 <6m + 22\/377’)2

converges.
Next the normal derivative on 97" has to be calculated.
On 0,T the outward normal derivative is

= %(\/§+ 0)0. + %(\/5 — 1)o-.

Thus differentiating Ny(z, () termwise and taking into account the expressions for
21, ..., z5 (formulas (1)—(5))

5
aVzN1(27C) = - Z Zauz [log |C — Rk — Qm,n|2 + lOg|C _Z_k_ Qm,n|2}

m,n€Z k=0

1 1 1
=1 g _ Y |} — —_— — 7
[ —25 mn C—Z5—Qm7n C—Z5—Qm’n C_Z_5—Qm7n:| ( )

m,ne”

is seen. This series is absolutely convergent as the two twice double sums

SR
C—Z5—Qm7n C_Z_t')_Qm,n) 7

m,ne’l

Z 1 B 1
Z — 25— Qm,n Q — 25 — Qm,n)

m,ne’

are absolutely convergent.
As on O, T hold z = 2y, 29 = %3, 23 = 24, Z5 = 25 — 2v/3i this in turn gives that
(7) equals to

; Z 1 B 1 . 1 B 1
g — 25 — Qm,n C — &5 — Qm,n—l Z — k5 — Qm7_n Z — 25 — Qm,,(nJrl) '

m,nez

From

i 1 - 1 . 1 B 1
C — k5 — Qm,n C — 25 — Qm,nfl Z — X5 — Qm7,n Z— 25 — Qm7,(n+1)

n=—N
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al 1 1 1 1

B n:z:N [C — 25— Qo C— 25— Qnn1 | C— 25— Qm (=25 — Quna

B 1 1 1 1

(=25 — Qmn  C— 25— Qn—(ve1)y (=25 — Qun o Qun,—(N+1)

2iV3(2N +1)

(¢ — 25 — 6m — 2iv/3N)(C — 25 — 6m + 2iv/3(N + 1))
2iv/3(2N +1)

(C— 25 — 6m — 2iv/3N)({ — 25 — 6m + 2iv/3(N + 1))

+

finally
0,.N1(2,() =0

is seen for z on 01T, ( € T.
On 0,T the outward normal derivative is

. = %(\/5 — )0, + %(ﬁ + )0

On this line Z7 = 2, — 2iV/3, 20 = 23, Z1 = 24, 25 = 2 + 6.
Direct calculations show
8,/ZN1 (Z, C) =

1(@4)2& L b

2 e == (—2=Quiin (—2-0pn C—2-0piin

1
_ + _
|:C_z_Qm,n C_z_Qerl,n g_z_Qm,n g_z_Qm-i-l,n
1 1 1 1
—1 - + = — — = — .
Z |:< — 1~ Qm,n C 2 T Qm,nfl C — 21 — Qm,n C — 21— Qm7n1:|

mne”

+%(\/§+z’) >

m,ne’

All these sums are of the above type as in step i and hence equal zero. Thus also on
0T
0y.N1(2,() =0 forany ¢ €T.

On 03T the outward normal derivative is
0y, = —10y = —10, + 10;.
On this line as part of the real axis

P=T, n=2, B=23—20V3, 2=z

ayle(z,Q)
1 1 1 1
= 1 — +_ _ ,
ZZ |:C_Z3_Qm,n g_Zg—Qmm §_23_Qm,n C_z_3_Qm,n
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from where as before
0,.N1(2,() =0

is seen for z on 3T and ( € T. O

Remark 2. The function

R0 = —log|(c — (¢ — =) —=) ] f[(“z’f—l) (21

w
m,n€Z, k=0 m,m
0<m?2+4n?

where zp = z and wy,,, = 3m + iv3n, differs from Ni(z,C) just by an additive
constant. It therefore can serve as Neumann function also having the same boundary
behauvior.

As the normal derivative of the Neumann functions vanishes on 9T outside the
corner points, the Neumann problem for the Poisson equation in 7" is unconditionally
solvable.

That Ni(z, () differs only by an additive constant from N;(z, ¢) follows from the
facts

2 =73 +3+iV3 for 3< k<5

For those k
(- _ { (-3 _1} 1+3+N§ |
Qm,n W2m+1,2n+1 Qm,n
C_Z_k_lz {ﬂ—l} 1+3_i\/§
Qm,n Woam+1,2n—1 Qm,n
and

3403

1
o

[I

2 2 2
B ﬁ L (3+iv3 N EEE
m,ne” ) )

m,n=1

This product is convergent and the mentioned constant is just the sixth power of
this value.
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