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professor of the Cardi� School of Mathematics (UK,2014), honorary professor of the Aktobe Regional
State University (Kazakhstan, 2015).

V.I. Burenkov graduated from the Moscow Institute of Physics and Technology (1963) and com-
pleted his postgraduate studies there in 1966 under supervision of the famous Russian mathematician
academician S.M. Nikol'skii.He worked at several universities, in particular for more than 10 years
at the Moscow Institute of Electronics, Radio-engineering, and Automation, the RUDN University,
and the Cardi� University. He also worked at the Moscow Institute of Physics and Technology, the
University of Padua, and the L.N. Gumilyov Eurasian National University. Through 2015-2017 he
was head of the Department of Mathematical Analysis and Theory of Functions (RUDN University).
He was one of the organisers and the �rst director of the S.M. Nikol'skii Institute of Mathematics at
the RUDN University (2016-2017).

He obtained seminal scienti�c results in several areas of functional analysis and the theory of
partial di�erential and integral equations. Some of his results and methods are named after him:
Burenkov's theorem on composition of absolutely continuous functions, Burenkov's theorem on con-
ditional hypoellipticity, Burenkov's method of molli�ers with variable step, Burenkov's method of
extending functions, the Burenkov-Lamberti method of transition operators in the problem of spec-
tral stability of di�erential operators, the Burenkov-Guliyevs conditions for boundedness of operators
in Morrey-type spaces. On the whole, the results obtained by V.I. Burenkov have laid the ground-
work for new perspective scienti�c directions in the theory of functions spaces and its applications
to partial di�erential equations, the spectral theory in particular.

More than 30 postgraduate students from more than 10 countries gained candidate of sciences or
PhD degrees under his supervision. He has published more than 190 scienti�c papers. His monograph
�Sobolev spaces on domains� became a popular text for both experts in the theory of function spaces
and a wide range of mathematicians interested in applying the theory of Sobolev spaces. In 2011 the
conference �Operators in Morrey-type Spaces and Applications�, dedicated to his 70th birthday was
held at the Ahi Evran University (Kirsehir, Turkey). Proceedings of that conference were published
in the EMJ 3-3 and EMJ 4-1.

V.I. Burenkov is still very active in research. Through 2016-2021 he published 20 papers in leading
mathematical journals.

The Editorial Board of the Eurasian Mathematical Journal congratulates Victor Ivanovich Bu-
renkov on the occasion of his 80th birthday and wishes him good health and new achievements in
science and teaching!
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Abstract. We de�ne η-invariants for periodic pseudodi�erential operators on the real line and
establish their main properties. In particular, it is proved that the η-invariant satis�es logarithmic
property and a formula for the derivative of the η-invariant of an operator family with respect to
the parameter is obtained. Furthermore, we establish an index formula for elliptic pseudodi�erential
operators on the real line periodic at in�nity. The contribution of in�nity to the index formula is
given by the constructed η-invariant. Finally, we compute η-invariants of di�erential operators in
terms of the spectrum of their monodromy matrices.
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1 Introduction

The present paper is devoted to the index problem for elliptic pseudodi�erential operators on the
real line with coe�cients periodic at in�nity (for details, see Section 2).

Elliptic equations with periodic coe�cients on noncompact manifolds arise in many problems.
In particular, they play an important role in quantum mechanics and solid state physics (see, for
example, the survey [13] and the references cited therein), as well as in geometry and topology (see,
for example, [3, 19, 23]). In those problems, as a rule, the kernel (and/or cokernel) of the operator
is either trivial or in�nite-dimensional. Therefore, the Fredholm index for such operators is not
interesting and its modi�cations are studied (e.g., L2-index in the von Neumann sense or the index
with values in the K-theory of C∗-algebras, etc.).

At the same time, a number of geometrical problems (for example, the problem on smooth
structures in R4 [25], the problem of studying the moduli spaces of Yamabe metrics [16], etc.)
and analysis (see [5, 9, 11]) lead to the study of operators with coe�cients, which are periodic at
in�nity (in contrast to the situation considered above, where the periodicity condition is satis�ed
everywhere). In the literature, this theory is referred to as elliptic theory on manifolds with periodic
ends. Fredholm solvability of such operators is investigated and the index formulas are established.

It should be noted that manifolds with cylindrical ends are an important special case of manifolds
with periodic ends. In this case, a noncompact manifold is obtained from a compact manifold
with boundary by gluing an in�nite cylinder Ω × [0,∞), where the base Ω of the cylinder is the
boundary of the original manifold. Studying the Fredholm property in this particular case goes back
to Kondrat'ev [12]. In the cited paper, the ellipticity condition that ensures the Fredholm property
of the problem in Sobolev spaces was stated in terms of invertibility of the following two objects: the
symbol as a function on the cotangent bundle of the manifold and a certain family of operators on Ω.
The index theorem for Dirac-type operators on manifolds with cylindrical ends was established by
Atiyah, Patodi and Singer in [2]. The formula they found contains a contribution of in�nity described
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by the so-called η-invariant of Atiyah�Patodi�Singer. The latter is a ζ-type regularized signature
of a quadratic form associated with a certain self-adjoint operator on the base of the cylinder. For
general elliptic operators on manifolds with cylindrical ends, some index formulas were obtained
in [22, 10].

In elliptic theory on manifolds with periodic ends, the Fredholmness criteria for operators in
Sobolev spaces were obtained (see [21, 25]). In this case, the operator is Fredholm if its interior
symbol is invertible and a certain family of operators on the product of the base of the cylinder by
the circle is invertible. The index problem was also studied. Namely, the index formula for Dirac-
type operators on manifolds with periodic ends was recently obtained in [20]. The authors found a
generalization of the Atiyah�Patodi�Singer η-invariant, in which terms the index formula was given.

It should be noted that the index problem for elliptic operators of general form on manifolds
with periodic ends remains open even in the one-dimensional case. The problem was studied in
the one-dimensional case, i.e. for pseudodi�erential operators on the real line. In particular, the
K-group of the C∗-algebra of symbols of pseudodi�erential operators was calculated in [17], the
index formulas for some examples were given in [9, 7, 8, 11]. However, an index formula for general
operators was not presented. The purpose of this work is to �ll in this gap and present an index
formula for operators on the real line. Our approach uses the η-invariants in the considered situation.
We express the index in terms of the η-invariants and contributions of Atiyah�Singer type. To
de�ne the η-invariant, we use Melrose's approach [18]. According to this approach, the η-invariant
is de�ned as a special regularization of the winding number for families of parameter-dependent
pseudodi�erential operators. Equivalently (after the Fourier transform), Melrose's approach gives the
η-invariant for invertible pseudodi�erential operators on a cylinder that are invariant with respect to
shifts of the cylinder along its generatrix. Melrose investigated the basic properties of the η-invariant,
in particular, he established the logarithmic property η(D1D2) = η(D1)+η(D2) and showed that the
Atiyah�Patodi�Singer η-invariant coincides with the η-invariant of a certain parameter-dependent
family (see the cited paper and also [15, 14]).

The work has the following structure. In Section 2, we recall the de�nition of periodic pseudod-
i�erential operators. Then in Section 3 we de�ne the regularized traces in t- and p-spaces and study
their properties. Next, we de�ne the η-invariant and establish its main properties in Section 4. As an
example, we calculate the η-invariant of the �rst-order scalar di�erential operators in Section 5. The
main result of the work is given in Section 6. Namely, the index formula is established. Our index
formula includes three terms: η-invariants of the limit operators at plus and minus in�nity and a
regularization of the standard Atiyah�Singer integral of the interior symbol of the operator. Finally,
in Section 7, the invertibility of di�erential operators with periodic coe�cients is expressed in terms
of the spectrum of their monodromy matrices and an index formula is obtained. Moreover, as a
corollary of the previous results, a formula for the η-invariant of di�erential operators with periodic
coe�cients is given in terms of the spectrum of the corresponding monodromy matrix.

Note that Melrose's de�nition of the η-invariant easily extends to the case of operators with
periodic coe�cients on manifolds of arbitrary dimensions. However, this approach gives η-invariant,
which does not have the logarithmic property if the dimension of the manifold is ≥ 2. This is due
to the fact that the regularized integral included in Melrose's de�nition is not translation invariant.
For this reason, in this paper we have limited ourselves to the one-dimensional case.

2 Periodic pseudodi�erential operators

Throughout what follows, most structures are de�ned on the real line R, so we will mostly omit the
symbol R in their notations.

Recall that the space Smcl of classical symbols of order ≤ m, m ∈ Z, on R is the set of smooth
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functions A(p) ∈ C∞(R) satisfying the estimates

|∂αpA(p)| ≤ Cα(1 + |p|)(m−α) ∀p ∈ R, α ≥ 0,

where ∂p = ∂/∂p and Cα is some constant. In addition, it is assumed that there is an asymptotic
expansion

A(p) ∼
∑
j≤m

Aj(p), where Aj(p) ∈ C∞(R) and Aj(λp) = λjAj(p) ∀λ ≥ 1, |p| ≥ 1.

The linear space Scl =
⋃
m S

m
cl is called the space of classical symbols on the real line. The space Scl

is an algebra with respect to multiplication.
The space Ψm of pseudodi�erential operators (ψDO) of order ≤ m with constant coe�cients is

the space of operators

A(−i∂t)
def
= F−1A(p)F : S(R) −→ S(R), A(p) ∈ Smcl ,

where F is the Fourier transform, S(R) is the Schwartz space on R. The space Ψ =
⋃
m Ψm is called

the algebra of pseudodi�erential operators with constant coe�cients. The spaces Smcl and Ψm are
Fr�echet spaces (see [24, Section 27]).

De�nition 1. The space of periodic ψDOs of order ≤ m is the space of operators

Ψm
per =

{
D =

∑
k∈Z

Dk(−i∂t)eikt : S(R) −→ S(R)

}
. (2.1)

It is assumed here that the elements Dk(−i∂t) ∈ Ψm rapidly tend to 0 in the following sense: given
k ∈ Z and N ≥ 1, we have the estimate

‖Dk(−i∂t)‖` ≤ C`N(1 + |k|)−N ,

where ‖ · ‖` is an arbitrary semi-norm on the Fr�echet space Ψm. The space Ψper =
⋃
m Ψm

per is called
the algebra of periodic ψDOs.

Lemma 2.1. The representation of operator D ∈ Ψm
per as a series in (2.1) is unique.

Proof. We will give the proof in the case m = 0 (the general case is reduced to this one by the order
reduction). After applying the Fourier transform F , the operator D in (2.1) will take the form of an
operator with shifts

D̃ = FDF−1 =
∑
k∈Z

Dk(p)T
k, where (Tu)(p) = u(p− 1). (2.2)

The closure of the set of operators of form (2.2) with respect to the operator norm in L2(R) cor-
responds to the C∗-dynamical system (A,Z, τ). Here A ⊂ Cb(R) is the C∗-algebra of continuous
functions on R having limits as p→ +∞ and p→ −∞ (this algebra is isomorphic to the C∗-algebra
C[0, 1] and is the closure of S0

cl), and τ : Z→ Aut(A) is the group action by automorphisms(
τ(k)f

)
(p) = f(p− k).

Since the action of τ on the spectrum Â ' [−∞,+∞] ' [0, 1] is topologically free (see [1, De�nition

12.13]), by the isomorphism theorem [1, Corollary 12.17], representation (2.2) of operator D̃ as a
sum is unique. Hence, the inverse Fourier transform gives us the desired unique decomposition of D
in (2.1).
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De�nition 2. The principal symbol of periodic ψDOs is the mapping

σ = (σ+, σ−) : Ψm
per −→ C∞(S1)⊕ C∞(S1),

D =
∑
k∈Z

Dk(−i∂t)eikt 7−→ σ±(D)(ϕ) =
∑
k∈Z

σ±(Dk(−i∂t))eikϕ, ϕ ∈ [0, 2π],

where σ±
(
Dk(−i∂t)

)
= lim

p→±∞
|p|−mDk(p).

It is easy to check that for all A,B ∈ Ψper the composition formula

σ±(AB) = σ±(A)σ±(B) (2.3)

holds.

3 Regularized traces

De�ne the averaging operation

Av: Ψper −→ Ψ,

D 7−→ 1

2π

∫ 2π

0

TϕDT−ϕdϕ,
where Tϕu(t) = u(t− ϕ).

If KD(t, t′) is the Schwartz kernel of D, then AvD has the Schwartz kernel

KAvD(t, t′) =
1

2π

∫ 2π

0

KD(t+ ϕ, t′ + ϕ)dϕ.

Also, we obviously have

Av

(∑
k∈Z

Dk(−i∂t)eikt
)

= D0(−i∂t). (3.1)

Recall (see [18, De�nition 2]) that the regularized integral of a function f(p) ∈ Scl is the value of
the constant term in the asymptotic expansion of its integral over the segment [−P, P ] as P → +∞:

−
∫
R
f(p) = a0, where

∫ P

−P
f(p)dp ∼

∑
k≤N

akP
k + b0 lnP, (3.2)

N > 0 and ak, bk ∈ C.

Lemma 3.1. For the functional

α : Ψ−1 −→ C,

D(−i∂t) 7−→ −
∫
R
D(p)dp,

where D(p) = FD(−i∂t)F−1,

the following equality holds:

α
(
D(−i∂t)

)
=
√

2π lim
t→0

[
KD(t, 0) +KD(−t, 0)

2
− c1(ln |t|+ γ)

]
. (3.3)

Here, KD(t, t′) is the Schwartz kernel of operator D(−i∂t), c1 = lim
t→0

(KD(t, 0)/ ln |t|) and γ is the

Euler constant.
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Proof. For convenience, we denote f̃(p) = D(p). The inverse Fourier transform of this function

equals f(t) = F−1(f̃(p)) =
√

2πKD(t, 0). Since D(−i∂t) ∈ Ψ−1, there is an expansion

f̃(p) = f̃0(p) + C1χ+(p)p−1 + C2χ−(p)p−1, (3.4)

where f̃0(p) = O
(
(1 + |p|)−2

)
and

χ+(p) =

{
0, p < 1,
1, p ≥ 1,

χ−(p) =

{
1, p ≤ −1,
0, p > −1.

A straightforward computation gives the following expression for the left-hand side in (3.3):

−
∫
R
f̃(p)dp =

∫
R
f̃0(p)dp+ C1 · 0 + C2 · 0 =

√
2πf0(0). (3.5)

Let us now calculate the right-hand side in (3.3) for the function

f(t) = f0(t) + F−1
(
C1χ+(p)p−1 + C2χ−(p)p−1

)
. (3.6)

By linearity, we substitute the �rst and the second terms in (3.6) to (3.3) separately. For the �rst
term, we have

lim
t→0

[
f0(t) + f0(−t)

2
− c1 (ln |t|+ γ)

]
= lim

t→0

f0(t) + f0(−t)
2

= f0(0) (3.7)

since f0(t) is continuous at t = 0 and therefore c1 = limt→0(f0(t)/ ln |t|) = 0. We write the second
term in (3.6) as

g(t) =F−1
(
C1χ+(p)p−1 + C2χ−(p)p−1

)
=

1√
2π

[
C1

∫ ∞
1

eipt
dp

p
+ C2

∫ −1

−∞
eipt

dp

p

]
=

1√
2π

[
C ′1

∫ ∞
1

cos pt
dp

p
+ C ′2

∫ ∞
1

sin pt
dp

p

]
=

1√
2π

[
C ′1

∫ ∞
|t|

cos p
dp

p
+ C ′2 sgn t

∫ ∞
|t|

sin p
dp

p

]
=

1√
2π

[
−C ′1 Ci(|t|)− C ′2 sgn t si(|t|)

]
=

1√
2π

[
−C ′1 (γ + ln |t| − Cin(|t|))− C ′2 sgn t

(
Si(|t|)− π

2

)]
=

1√
2π

[
−C ′1 ln |t|+

(
−C ′1γ + C ′2 sgn t

π

2

)
+O(t)

]
,

where C ′1 = C1 − C2 and C
′
2 = i(C1 + C2). Here we use the special functions (see [4]): the integral

cosine

Ci(t) = −
∫ ∞
x

cos p

p
dp, Cin(t) =

∫ x

0

1− cos p

p
dp, wherein Ci(t) + Cin(t) = γ + ln t,

and the integral sine

si(t) = −
∫ ∞
x

sin p

p
dp, Si(t) =

∫ x

0

sin p

p
dp, wherein si(t) = Si(t)− π/2.

Hence, for g(t) we obtain

c1 = lim
t→0

g(t)

ln |t|
= − C ′1√

2π
, (3.8)

g(t) + g(−t)
2

− c1 (ln |t|+ γ) = −C ′1 ln |t| − C ′1γ + C ′1 (ln |t|+ γ) +O(t) = O(t). (3.9)
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Thus, it follows from (3.7) and (3.9) that the right-hand side in (3.3) for function (3.4) equals√
2πf0(0) and coincides with the left-hand side (see (3.5)). This completes the proof of Lemma 3.1.

Proposition 3.1. The functional Tr
def
= α ◦ Av: Ψ−1

per → C is a trace. More precisely, for all
A,B ∈ Ψper such that ordA+ ordB ≤ −1, the following equality holds:

Tr(AB) = Tr(BA).

Proof. By (3.1), it su�ces to prove the desired equality for operators Ak(−i∂t)eikt and B−k(−i∂t)e−ikt,
k ∈ Z. A straightforward computation gives

eiktB−k(−i∂t) = B−k(−i∂t − k)eikt.

Hence, we have

Tr
(
Ak(−i∂t)eiktB−k(−i∂t)e−ikt

)
= Tr(Ak(−i∂t)B−k(−i∂t − k)) = −

∫
R
Ak(p)B−k(p− k)dp. (3.10)

Similarly we obtain

Tr
(
B−k(−i∂t)e−iktAk(−i∂t)eikt

)
= −
∫
R
B−k(p)Ak(p+ k)dp = −

∫
R
Ak(p+ k)B−k(p)dp. (3.11)

The integrands in (3.10) and (3.11) are elements of S−1
cl and di�er from each other by a shift by k.

Lemma 3.2. Regularized integral (3.2) is translation invariant, i.e. given f̃ ∈ S−1
cl , we have −

∫
R f̃(p+

k)dp = −
∫
R f̃(p)dp for all k ∈ R.

Proof. The regularized integral of function (3.4) shifted by k equals

−
∫
R
f̃(p+ k)dp =−

∫
R

(
f̃0(p+ k) + C1

1

p+ k
χ+(p+ k) + C2

1

p+ k
χ−(p+ k)

)
dp

=

∫
R
f̃0(p+ k)dp+−

∫
R

(
C1

1

p
χ+(p) + C1

(
1

p+ k
χ+(p+ k)− 1

p
χ+(p)

)
+C2

1

p
χ−(p) + C2

(
1

p+ k
χ−(p+ k)− 1

p
χ−(p)

))
dp

=

∫
R
f̃0(p)dp+ C1

∫
R

[
1

p+ k
χ+(p+ k)− 1

p
χ+(p)

]
dp

+ C2

∫
R

[
1

p+ k
χ−(p+ k)− 1

p
χ−(p)

]
dp.

Hence

−
∫
R
f̃(p+ k)dp−−

∫
R
f̃(p)dp

=C1

∫
R

[
1

p+ k
χ+(p+ k)− 1

p
χ+(p)

]
dp+ C2

∫
R

[
1

p+ k
χ−(p+ k)− 1

p
χ−(p)

]
dp.

(3.12)

Evaluating the �rst integral in (3.12) for k > 0, we obtain∫
R

[
1

p+ k
χ+(p+ k)− 1

p
χ+(p)

]
dp =

∫ 1

−k+1

dp

p+ k
+

∫ ∞
1

(
1

p+ k
− 1

p

)
dp

= ln(p+ k)
∣∣∣1
−k+1

+
(
ln(p+ k)− ln(p)

)∣∣∣∞
1

= ln(1 + k)− ln(1 + k) = 0.
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For k < 0, (3.12) gives us∫
R

[
1

p+ k
χ+(p+ k)− 1

p
χ+(p)

]
dp = −

∫ −k+1

1

dp

p
+

∫ ∞
−k+1

(
1

p+ k
− 1

p

)
dp

=− ln(p)
∣∣∣−k+1

1
+
(
ln(p+ k)− ln(p)

)∣∣∣∞
−k+1

= − ln(−k + 1) + ln(−k + 1) = 0.

Similar calculations for the second integral in (3.12) also give 0.

Now the desired equality of the expressions in (3.10) and (3.11) follows by Lemma 3.2.

De�nition 3. The formal trace on the algebra Ψ0
per is the functional

T̃r : Ψ0
per −→ C,

D 7−→ −iTr[t,D],

where [t,D] = tD −Dt is the commutator and Tr
def
= α ◦ Av.

Lemma 3.3. The formal trace is a trace on Ψ0
per, i.e. we have T̃r(AB) = T̃r(BA) for all A,B ∈ Ψ0

per.
It can be computed as follows:

T̃rD =
1

2π

∫ 2π

0

(
σ+(D)(ϕ)− σ−(D)(ϕ)

)
dϕ, D ∈ Ψ0

per. (3.13)

Proof. The cyclic property is checked directly. Let us prove equality (3.13). Let D ∈ Ψ0
per. On the

one hand, we have

T̃rD = −iTr[t,D] = −
∫
R
[∂p, D̃]0dp = −

∫
R
∂p(D̃0)dp = D0(+∞)−D0(−∞), D̃ = FDF−1, (3.14)

whereD0 is a term from the representationD =
∑
DkT

k. The limits in (3.14) exist sinceDk(p) ∈ S0
cl.

On the other hand, we have

1

2π

∫ 2π

0

(
σ+(D)(ϕ)− σ−(D)(ϕ)

)
dϕ

= σ+

(
D0(−i∂t)

)
− σ−

(
D0(−i∂t)

)
= D0(+∞)−D0(−∞). (3.15)

From (3.14) and (3.15), we obtain the desired equality (3.13).

Table 1 summarizes most useful operations in t- and p-spaces. The last row of the table is de�ned
in the next section.

Remark 1. All the results in this section can be generalized to operators in the algebra Ψper⊗MatN
of matrix N × N ψDOs. In particular, the regularized trace Tr: Ψ−1

per ⊗ MatN → C is de�ned as
Tr = tr ◦α ◦ Av, where tr is the trace for matrices.

4 η-invariant

De�nition 4. Let D ∈ Ψm
per ⊗ MatN be an invertible matrix operator. We assume that D−1 ∈

Ψ−mper ⊗MatN . Then the number

η(D)
def
= − 1

2π
Tr(D−1[t,D]) (4.1)

is called the η-invariant of D.
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t-space p-space

Operator D =
∑
k∈Z

Dk (−i∂t) eikt
D̃ =

∑
k∈Z

Dk(p)T
k,

Tu(p) = u(p− 1)

Di�erentiation D 7→ −i[t,D] D̃ 7→ [∂p, D̃]

Averaging D 7→ AvD D̃ 7→ D0(p)

Regularized

integral

f(t) 7→
√

2π lim
t→0

[
f(t)+f(−t)

2
−

c1(ln |t|+ γ)] , where

c1 = limt→0(f(t)/ ln |t|)

−
∫
R
f(p)dp = c0, where∫ P

−P
f(p)dp ∼

∑
j≤0

cjP
j+

d0 lnP as P → +∞

Formal

trace

T̃rD = −iα (Av[t,D]) =

1

2π

∫ 2π

0

(σ+(D)− σ−(D))dϕ

T̃rD(p) = −
∫
R
∂pD0(p)dp =

D0(+∞)−D0(−∞)

η-invariant η(D) = − 1

2π
α
(
Av(D−1[t,D])

)
η(D) =

1

2πi
−
∫
R
(D−1[∂p, D])0dp

Table 1: Transition between t- and p-spaces

Proposition 4.1. The η-invariant satis�es the logarithmic property

η(AB) = η(A) + η(B)

for all invertible A,B ∈ Ψper ⊗MatN .

Proof. We have

−2πη(AB) = Tr
(
(AB)−1[t, AB]

)
= Tr

(
B−1A−1([t, A]B + A[t, B])

)
= Tr

(
BB−1A−1[t, A]

)
+ Tr

(
B−1A−1A[t, B]

)
= Tr

(
A−1[t, A]

)
+ Tr

(
B−1[t, B]

)
= −2π

(
η(A) + η(B)

)
.

Here the third equality follows by linearity and the cyclic property of Tr (see Proposition 3.1). Note
that the conditions in Proposition 3.1 are satis�ed since ord

(
B−1A−1[t, A]B

)
≤ −1.

Proposition 4.2. Let Dε ∈ Ψm
per ⊗MatN , ε ∈ [0, 1] be a smooth homotopy of invertible operators.

Then the derivative of the η-invariant of Dε with respect to ε is equal to

∂εη(Dε) =
1

4π2i

∫ 2π

0

tr
[
σ−1

+ (Dε)∂εσ+(Dε)− σ−1
− (Dε)∂εσ−(Dε)

]
dϕ. (4.2)

Proof. We have

−2π∂εη(Dε) = Tr
(
∂ε(D

−1
ε [t,Dε])

)
= Tr

(
−D−1

ε (∂εDε)D
−1
ε [t,Dε] +D−1

ε [t, ∂εDε]
)

= Tr
(
−D−1

ε [t,Dε]D
−1
ε (∂εDε) +D−1

ε [t, ∂εDε]
)

= Tr
(
[t,D−1

ε ]∂εDε +D−1
ε [t, ∂εDε]

)
= Tr

(
[t,D−1

ε ∂εDε]
)

= i T̃r(D−1
ε ∂εDε)

=
i

2π

∫ 2π

0

tr
(
σ−1

+ (Dε)∂εσ+(Dε)− σ−1
− (Dε)∂εσ−(Dε)

)
dϕ.
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Here, the second equality follows by the Leibniz rule, the third by the cyclic property of Tr (see
Proposition 3.1), the fourth by the Leibniz rule for the commutator, the �fth by the commutator

de�nition, the sixth by the de�nition of T̃r and the last one follows by Lemma 3.3.

5 Example. η-invariant of �rst-order operators

We consider the operator
D = −i∂t + a(t) : Hs(R) −→ Hs−1(R), (5.1)

where a(t) is a smooth periodic complex-valued function with period 2π and Hs(R) is the Sobolev
space with the smoothness exponent s. Denote S1

z = {z ∈ C : |z| = 1}.

Proposition 5.1.

1. Operator (5.1) is invertible if and only if

Im

∫ 2π

0

a(t)dt 6= 0.

2. The η-invariant of invertible operator (5.1) equals

η(D) = −1

2
sgn Im

∫ 2π

0

a(t)dt.

Proof. 1. Let us obtain invertibility conditions for operator (5.1). By Fz : L2(R) → L2(S1
t × S1

z) we
denote the Fourier-Laplace transform(see [25, 20])

(Fzu)(t, z) = zt/2π
∑
n∈Z

znu(t+ 2πn) (5.2)

of a compactly supported function u for a �xed branch of the complex logarithm ln z. Note that
many variants of this transform exist in the literature (for historical notes see [13, p. 359]). The
inverse Fourier-Laplace transform is given by the formula

u(t) =
1

2πi

∮
|z|=1

z−t/2π(Fzu)(t, z)
dz

z
.

By [21, Theorem 2] (see also [25, Lemma 4.3]) it follows that the operator D : Hs(R)→ Hs−1(R) is
invertible if and only if the operator

Dz = FzDF−1
z : Hs(S1

t )→ Hs−1(S1
t )

is invertible for all z = eiθ, θ ∈ [0, 2π]. We have

DFzu(t) = (−i∂t + a(t))
(
zt/2π

∑
n

znu(t+ 2πn)
)

= − i

2π
zt/2π ln z

∑
n

znu(t+ 2πn)

− izt/2π
∑
n

znu′(t+ 2πn) + a(t)
(
zt/2π

∑
n

znu(t+ 2πn)
)

=− i

2π
ln zFzu(t) + zt/2π

∑
n

zn
(
−i∂t + a(t)

)
u(t+ 2πn) = − i

2π
ln zFzu(t) + FzDu(t).
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Hence, FzD =
(
D + i

2π
ln z
)
Fz, and therefore

Dz = D +
i

2π
ln z = −i∂t + a(t)− θ

2π
. (5.3)

The latter operator has index zero, thence, its invertibility is equivalent to triviality of its kernel.
Let us calculate the kernel of Dz. The equation Dzu = 0 has the solution

u(t) = C exp

(
−i
∫ t

0

(
a(t′)− θ

2π

)
dt′
)
,

where C is some constant. The solution is required to satisfy the periodicity conditions

u(0) = C, u(2π) = C exp

(
−i
∫ 2π

0

(
a(t′)− θ

2π

)
dt′
)

= C.

Hence, the kernel of Dz is trivial if and only if∫ 2π

0

(
a(t′)− θ

2π

)
dt′ 6= 2πk ⇐⇒

∫ 2π

0

a(t′)dt′ 6= 2πk + θ, ∀k ∈ Z.

Therefore, all operators Dz, z = eiθ, are invertible if and only if

Im

∫ 2π

0

a(t)dt 6= 0.

2. Let us calculate the η-invariant of invertible operator (5.1). First, we describe operator D−1.
A straightforward computation gives us

Lemma 5.1. Let f be a compactly supported function. The equation Du = f has the solution

u(t) =


i

∫ t

−∞
exp

(
−i
∫ t

t′
a(t′′)dt′′

)
f(t′)dt′ if Im

∫ 2π

0

a(t)dt < 0.

−i
∫ +∞

t

exp

(
i

∫ t′

t

a(t′′)dt′′

)
f(t′)dt′ if Im

∫ 2π

0

a(t)dt > 0.

By Lemma 5.1, for Im
∫∞

0
a(t)dt < 0, the Schwartz kernel of D−1 is equal to

KD−1(t, t′) = i exp

(
−i
∫ t

t′
a(t′′)dt′′

)
χ(t− t′), where χ(t− t′) =

{
1 if t− t′ ≥ 0,

0 if t− t′ < 0.

Let B = D−1[t,D]. Since [t,D] = i Id, we have KB = iKD−1 . The Schwartz kernel of the averaged
operator AvB equals

KAvB(t, t′) =
1

2π

∫ 2π

0

exp

(
−i
∫ t+δ

t′+δ

a(t′′)dt′′
)
χ(t− t′)dδ. (5.4)

In what follows, to calculate the η-invariant, we use formula (3.3). Since the Schwartz kernel KAvB

(see (5.4)) is bounded, the constant c1 in (3.3) equals 0 and we obtain

η(D) =
1

2π
lim
h→0+

∫ 2π

0

1

2

(
exp

(
−i
∫ h+δ

δ

a(t′′)dt′′
)
· 1 + exp

(
−i
∫ −h+δ

δ

a(t′′)dt′′
)
· 0
)
dδ =

1

2
.

For Im
∫ 2π

0
a(t)dt > 0, we similarly obtain

η(D) = −1

2
.
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6 Index of pseudodi�erential operators

ψDOs on the real line periodic at in�nity. We assume that the following objects are given:

• operators with periodic coe�cients D+, D− ∈ Ψn
per ⊗MatN ;

• a classical symbol D(t, p) ∈ C∞(R, Sncl ⊗MatN);

• the following compatibility condition for the principal symbols of operatorsD± and the principal
symbol Dn(t, p): there exists a number T > 0 large enough such that

Dn(t,±1) = σ±(D+)(t) as t ≥ T and Dn(t,±1) = σ±(D−)(t) as t ≤ −T ; (6.1)

• a partition of unity 1 = χ2
− + χ2

0 + χ2
+ subordinate to the cover

R = (−∞,−T + ε) ∪ (−T − ε, T + ε) ∪ (T − ε,+∞).

With this data, we de�ne the operator

D = χ−D−χ− + χ0D0χ0 + χ+D+χ+ : Hs(R,CN) −→ Hs−n(R,CN), (6.2)

where D0 is a ψDO on the real line with the symbol D(t, p):

(D0u)(t) =
1√
2π

∫
eitpD(t, p)ũ(p)dp, ũ = Fu.

Operator (6.2) is called a ψDO periodic at in�nity. Note that operator (6.2) does not depend on a
partition of unity up to summands of order -1 with compactly supported Schwarz kernels.

Theorem 6.1. Operator (6.2) is Fredholm if the following conditions hold:

1) the principal symbol Dn(t, p) is invertible for all t ∈ R and p 6= 0;

2) operators D± : Hs(R,CN)→ Hs−n(R,CN) are invertible.

Proof. Let us construct an almost inverse operator for D:

R = χ−R−χ− + χ0R0χ0 + χ+R+χ+ : Hs−n(R,CN) −→ Hs(R,CN). (6.3)

Here R± = D−1
± ∈ Ψ−nper⊗MatN and R0 is a ψDO on the real line with the principal symbol Dn(t, p)−1.

Direct calculation shows that the di�erences

DR− Id and RD − Id

are operators of order −1 with compactly supported Schwartz kernels. Such operators are compact
in Hs(R,CN). Hence, D is a Fredholm operator by Atkinson's theorem.

A straightforward computation gives us

Lemma 6.1. Let f(t) be a continuous function on the real line, which is periodic with period 2π for
|t| > T0. Then for T > T0 we have ∫ T

−T
f(t)dt = kT + ϕ(T ), (6.4)

where k ∈ C and a periodic function ϕ(T ) are de�ned uniquely.



68 A.Yu. Savin, K.N. Zhuikov

De�nition 5. Given a function f satisfying the conditions of Lemma 6.1, the regularized integral of
f is equal to

=

∫
R
f(t)dt =

1

2π

∫ 2π

0

ϕ(T )dT.

Theorem 6.2. Let the conditions of Theorem 6.1 hold. Then the following index formula holds:

indD = − 1

2πi
=

∫
R

tr

(
D−1
n ∂tDn

∣∣∣p=1

p=−1

)
dt+ η(D+)− η(D−). (6.5)

Proof. It su�ces to prove the theorem for operators of order 0. Let us prove auxiliary results.

Lemma 6.2. The left- and right-hand sides in (6.5) do not change under smooth homotopies of
operators (6.2), where operators D±(ε) ∈ C∞

(
[0, 1],Ψn

per⊗MatN
)
and symbols D(ε, t, p) ∈ C∞

(
[0, 1]×

R, Sncl ⊗MatN
)
satisfy the conditions of Theorem 6.1 for all ε ∈ [0, 1].

Proof. For the left-hand side (i.e., for the Fredholm index) the desired statement is a reformulation of
the known homotopy invariance of the index. Let us prove that the right-hand side in formula (6.5)
does not change under homotopies. On one hand, from (4.2), we obtain

∂εη(D±) =
1

4π2i

∫ 2π

0

tr
[
σ−1

+ (D±)∂εσ+(D±)− σ−1
− (D±)∂εσ−(D±)

]
dϕ. (6.6)

On the other hand, the integrand in (6.5) satis�es the conditions of Lemma 6.1 and we have

∂ε =

∫
R

tr

((
D−1
n ∂tDn

)∣∣∣p=1

p=−1

)
dt

= =

∫
R

tr

(
−D−1

n (∂εDn)D−1
n ∂tDn +D−1

n ∂2
εtDn

∣∣∣p=1

p=−1

)
dt

= =

∫
R

tr

(
∂t
(
D−1
n ∂εDn

)∣∣∣p=1

p=−1

)
dt = reg- lim

T→+∞
tr

((
D−1
n ∂εDn

)∣∣∣p=1

p=−1

) ∣∣∣∣T
−T

=
1

2π

∫ 2π

0

tr
[(
D−1
n ∂εDn

)
(ε, T, p)

∣∣∣p=1

p=−1
−
(
D−1
n ∂εDn

)
(ε,−T, p)

∣∣∣p=1

p=−1

]
dT

=
1

2π

∫ 2π

0

tr
[
σ−1

+ (D+)∂εσ+(D+)− σ−1
− (D+)∂εσ−(D+)

− σ−1
+ (D−)∂εσ+(D−) + σ−1

− (D−)∂εσ−(D−)
]
dT.

(6.7)

The second equality in (6.7) follows from the cyclic property of tr. Then, the regularized limit reg-lim
in (6.7) of function f such that f(T ) = kT + ϕ(T ) for large T , where ϕ is a periodic function with
period 2π, is de�ned as

reg- lim
T→+∞

f(T ) =
1

2π

∫ 2π

0

ϕ(T )dT.

The last equality in (6.7) follows from the compatibility conditions (6.1). Finally, the right-hand side
in (6.5) is computed using (6.6) and (6.7):

− 1

2πi
∂ε =

∫
R

tr

(
D−1
n ∂tDn

∣∣∣p=1

p=−1

)
dt+ ∂εη(D+)− ∂εη(D−) = 0.

Thus, the right-hand side in (6.5) does not change under homotopies.
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Lemma 6.3. Let an elliptic operator D of order 0 have form (6.2). Then there exist numbers N ′ ∈ N,
k± ∈ Z and a smooth homotopy of elliptic operators

Dε : Hs(R,CN ⊕ CN ′) −→ Hs(R,CN ⊕ CN ′), ε ∈ [0, 1], (6.8)

such that D0 = D ⊕ IdN ′ and the limit operators D1± of operator D1 at in�nity are products by
exponentials: D1± = eik±t ⊕ IdN+N ′−1.

Proof. This result follows from [17]. For completeness, we present an independent proof.
Consider the limit operators D± ∈ Ψ0

per ⊗MatN of operator D. These operators are invertible
and, therefore, de�ne classes in the K-theory

[D±] = K1(Ψ0
per)

of algebra Ψ0
per. The closure of this algebra with respect to the norm is isomorphic to the crossed

product
Ψ0

per ' C(I) o Z. (6.9)

Here, I = [−∞,+∞] and Z acts by shifts f(p) 7→ f(p + k). Isomorphism (6.9) is de�ned by the
Fourier transform. We obtain isomorphisms of K-groups:

K1(Ψ0
per) ' K1(Ψ0

per) ' K1(C(I) o Z) ' K1(Co Z) = K1(C(Z)) = K1(C(S1)) = Z. (6.10)

Here, the �rst isomorphism follows by the spectral invariance of subalgebra Ψ0
per ⊂ Ψ0

per, the second
one is induced by isomorphism (6.9), the third one follows by the properties of the crossed products
by Z (see [6]), the fourth one is the isomorphism between C o Z and the group C∗-algebra of Z. It
follows from isomorphisms (6.10) that after stabilization (i.e. passing to the direct sums D± ⊕ IdN ′ ,
where N ′ is su�ciently large) there exists a homotopy between the operators

D± ⊕ IdN ′ and eik±t ⊕ IdN+N ′−1, where k± ∈ Z. (6.11)

Homotopy (6.11) of invertible operators can be lifted to the desired homotopy of elliptic opera-
tors (6.8).

For elliptic operator (6.2), we consider the homotopy Dε from Lemma 6.3. Then, for the Fredholm
index, we have

indD = indD0 = indD1. (6.12)

Here in the second equality we used the homotopy invariance of the index. Now we denote the
right-hand side in (6.5) by indtD. So we have by Lemma 6.2

indtD = indtD0 = indtD1. (6.13)

Since the limit operators of D1 are multiplication operators, the η-invariants of the limit operators
of D1 at ±∞ are equal to zero. Thus, we have

indtD1 = − 1

2πi
=

∫
R

tr
(
D−1

1 ∂tD1

) ∣∣∣∣p=1

p=−1

dt = − 1

2πi

∫ T

−T
tr
(
D−1

1 ∂tD1

) ∣∣∣∣p=1

p=−1

dt (6.14)

since D1 = eik±t ⊕ IdN+N ′−1 as |t| > T and, consequently,

D−1∂tD1

∣∣∣p=1

p=−1
= 0 whenever |t| > T.

Further, the analytical index of D1 is calculated by the Atiyah�Singer formula. It equals

indD1 = − 1

2πi

∫ T

−T
tr
(
D−1

1 ∂tD1

) ∣∣∣∣p=1

p=−1

dt. (6.15)

Now the desired index formula (6.5) follows from (6.12), (6.13), (6.14) and (6.15).
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7 η-invariant and index of di�erential operators

In this section, we obtain an index formula in the case of di�erential operators in terms of the
monodromy matrices of the limit operators at in�nity. We also express the η-invariant of di�erential
operators in terms of the spectrum of the monodromy matrix by comparing the resulting index
formula with the index formula in Section 5.

Invertibility of operators of arbitrary order. Consider a linear di�erential operator with pe-
riodic coe�cients (the period is 2π)

D =
∑

0≤k≤n

dk(t)(−i∂t)k : Hs(R,CN) −→ Hs−n(R,CN). (7.1)

Recall that the monodromy matrix of operator (7.1) is a matrix M ∈ MatnN such that the following
equality holds:

M(v0, . . . , vn−1) = (u(t), u′(t), . . . , u(n−1)(t))
∣∣∣
t=T+2π

.

Here u(t) is the solution of the homogeneous equation Du = 0 with the Cauchy data at t = T

u(T ) = v0, . . . , u
(n−1)(T ) = vn−1.

Proposition 7.1. Di�erential operator (7.1) is invertible if and only if one has SpecM ∩ S1
λ = ∅.

Here SpecM ⊂ C is the spectrum of the monodromy matrix M , while S1
λ = {λ ∈ C : |λ| = 1}.

Proof. The conjugation of D with the Fourier-Laplace transform (5.2) gives the operator family
(see (5.3))

Dz =
∑
k∈Z

dk(t)

(
−i∂t +

i

2π
ln z

)k
: Hs(S1

t ,CN) −→ Hs−n(S1
t ,CN), z ∈ S1

z.

Similarly to the proof of Proposition 5.1, D is invertible if and only if Dz is invertible on the circle
S1 = Rt/2πZ for all z ∈ S1

z. Since the index of Dz is equal to zero, Dz is invertible if and only if its
kernel is trivial for all z ∈ S1

z. Thus, it is necessary to �nd the conditions under which the problem
Dzu = 0,
u(0) = u(2π),

. . .
u(n−1)(0) = u(n−1)(2π)

(7.2)

has only trivial solution. It is easy to see that Dz = zt/2πDz−t/2π. Therefore, (7.2) is equivalent to
the problem 

D(z−t/2πu) = 0,
u(0) = u(2π),

. . .
u(n−1)(0) = u(n−1)(2π).

(7.3)

We claim that (7.3) is equivalent to the problem
Dw = 0,

z−1w(0) = w(2π),
. . .

z−1w(n−1)(0) = w(n−1)(2π)

(7.4)
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for w(t) = z−t/2πu(t). Indeed, we obtain

w(k)(t) = z−t/2π
∑

0≤j≤k

Cj
k

(
− ln z

2π

)k
u(k−j)(t),

w(k)(0) =
∑

0≤j≤k

Cj
k

(
− ln z

2π

)k
u(k−j)(0),

w(k)(2π) = z−1
∑

0≤j≤k

Cj
k

(
− ln z

2π

)k
u(k−j)(2π).

Hence, the equivalence of problems (7.3) and (7.4) follows directly.
We introduce a vector function W (t) =

(
w(t), w′(t), . . . , w(n−1)(t)

)
to solve problem (7.4). By

the de�nition of the monodromy matrix, we have W (2π) = MW (0). Therefore, problem (7.4) has a
nontrivial solution if and only if there is a nontrivial solution to the equation

MW (0) = z−1W (0).

The latter condition is equivalent to the condition z ∈ SpecM . Hence, the invertibility condition of
the family Dz is equivalent to the condition SpecM ∩ S1

z = ∅.

The index formula. Let the coe�cients of a di�erential operator of order n

D =
∑

0≤k≤n

dk(t)(−i∂t)k : Hs(R,CN) −→ Hs−n(R,CN) (7.5)

be smooth functions periodic with period 2π as |t| > T . We denote

d±k (t) = lim
j→+∞

dk(t± 2πj), D± =
∑
k

d±k (t)(−i∂t)k.

Theorem 7.1. Let the principal symbol of operator (7.5) be invertible and the operators
D+, D− : Hs(R,CN)→ Hs−n(R,CN) be invertible. Then operator (7.5) is Fredholm and its index is
equal to

indD =
1

2

(
signM− − signM+

)
. (7.6)

Here M± are the monodromy matrices of the operators D± and

signM = #{|λM | > 1} −#{|λM | < 1}

is the signature of M .

Proof. 1. The Fredholm property follows by Theorem 6.1. We de�ne the partition of R = (−∞,−T ]∪
[−T, T ]∪[T,+∞), where T > 0 is chosen from the conditions dk(t) = d+

k (t) as t ≥ T and dk(t) = d−k (t)
as t ≤ −T . Since the index does not depend on s, we assume that s = n. Furthermore, the spaces
L2(R,CN) and Hn(R,CN) are isomorphic to the spaces

L2
T (R,CN) = L2

(
(−∞,−T ],CN

)
⊕ L2

(
[−T, T ],CN

)
⊕ L2

(
[T,+∞),CN),

Hn
T (R,CN) ∩HB =

(
Hn
(
(−∞,−T ],CN

)
⊕Hn

(
[−T, T ],CN

)
⊕Hn

(
[T,+∞),CN

))
∩HB

respectively. Here HB =
{

(u−, u0, u+) ∈ Hn
T (R,CN)

}
, where u−, u0, u+ satisfy the compatibility

conditions
u

(j)
− (−T ) = u

(j)
0 (−T ) and u

(j)
0 (T ) = u

(j)
+ (T ) ∀j = 0, 1, . . . , n− 1.
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Consider the operator D′ : Hn
T (R,CN) ∩HB → L2

T (R,CN) isomorphic to D. We have

D′ = D− ⊕D0 ⊕D+

∣∣∣
Hn
T (R,CN )∩HB

,

where

D− = D
∣∣∣
(−∞,−T ]

: Hn
(
(−∞,−T ],CN

)
−→ L2

(
(−∞,−T ],CN

)
,

D0 = D
∣∣∣
[−T,+T ]

: Hn
(
[−T, T ],CN

)
−→ L2

(
[−T, T ],CN

)
,

D+ = D
∣∣∣
[T,+∞)

: Hn
(
[T,+∞),CN

)
−→ L2

(
[T,+∞),CN

)
.

Hence
indD = indD′ = indD− + indD0 + indD+ − 2nN, (7.7)

where the last term corresponds to the compatibility conditions included in the de�nition of HB.
2. Let us calculate the indices of operators in (7.7). Since the equation D0u0 = 0 has a solution

on the segment [−T, T ] for any Cauchy data (the solution is unique) and the cokernel of operator
D0 is trivial, we have

indD0 = nN. (7.8)

To calculate the index ofD+ : Hn
(
[T,+∞),CN

)
→ L2

(
[T,+∞),CN

)
, we consider the vector-function

U(t) =
(
u(t), u′(t), . . . , u(n−1)(t)

)
corresponding to the solution u of the equation D+u = 0. We have

U(T + 2πk) = Mk
+U(T ) as k ≥ 0,

where M+ is the monodromy matrix of D+.

Lemma 7.1. The condition U ∈ L2
(
[T,+∞),CN

)
holds if and only if U(T ) ∈ L±M+

, where L+
M+

and L−M+
are the direct sums of the eigenspaces and the root subspaces of the monodromy matrix M+

corresponding to the eigenvalues |λ| < 1 for L+
M+

and |λ| > 1 for L−M+
.

Proof. Given U(T ) ∈ L+
M+

, the following estimate holds:

‖U(T + 2πk)‖ ≤ qk‖U(T )‖, where q = max
λ∈SpecM+

|λ|<1

|λ|+ ε

and ε > 0 is small enough. Since D+ has periodic coe�cients, we obtain

‖U(t)‖ ≤ Ce−γ(t−T )‖U(T )‖ for all t ≥ T , where γ = − ln q

2π
.

This implies that U ∈ L2
(
[T,+∞),CN

)
. The converse is also true. More precisely, if U(T ) /∈ L+

M+
,

then
‖U(T + 2πk)‖ ≥ Cqk‖U(T )‖, where 1 < q = min

λ∈SpecM+

|λ|>1

|λ| − ε.

Since D+ has periodic coe�cients, there exists ε > 0 such that for all t satisfying |t− (T + 2πk)| < ε,
we obtain

‖U(t)‖ ≥ C ′eγ(t−T )‖U(T )‖, where γ =
ln q

2π
.

Consequently, U /∈ L2
(
[T,+∞),CN

)
.
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It follows by Lemma 7.1 that
dim kerD+ = dimL+

M+
. (7.9)

Moreover, we have {
dimL+

M+
+ dimL−M+

= nN,

dimL+
M+
− dimL−M+

= − signM+.
(7.10)

Further, since cokerD+ ' kerD∗+ and the domain of D∗+ has the form

D(D∗+) =
{
u+(t) : D∗+u+ ∈ L2

(
[T,+∞),CN

)
and u

(j)
+ (0) = 0 ∀j = 0, 1, . . . , n− 1

}
,

the cokernel is trivial: cokerD+ = 0. Consequently, (7.9) and (7.10) imply

indD+ = dim kerD+ − dim cokerD+ =
1

2
(nN − signM+). (7.11)

For D−, we similarly obtain

indD− = dim kerD− − dim cokerD− =
1

2
(nN + signM−). (7.12)

3. Finally, substituting (7.8), (7.11) and (7.12) into (7.7), we obtain the desired formula (7.6):

indD =
1

2
(nN − signM+ + nN + signM−) + nN − 2nN =

1

2
(signM− − signM+).

Example 1. Let us compute the index of di�erential operator D+ = −i∂t + a(t), where a is a
periodic function with period 2π, on the half-line [T,∞). The solution of the equation D+u = 0 is

u(t) = C exp

(
−i
∫ t

T

a(t)dt

)
= C exp

(
−iRe

∫ t

T

a(t)dt

)
exp

(
Im

∫ t

T

a(t)dt

)
.

Obviously, the kernel of the operator depends on the value

α
def
= sgn Im

∫ 2π

0

a(t)dt.

More precisely, for the existence of a solution for α < 0, the constant C can be chosen arbitrarily,
and for α > 0, the solution decreases at in�nity only when C = 0. Thus,

kerD+ =


{
C exp

(
−i
∫ t

T

a(t)dt

)}
, α < 0,

0, α > 0.

Considering cokerD+ = kerD∗+ and condition u(T ) = 0 for equation D∗+u = 0, we obtain

cokerD+ = 0.

Consequently,

indD+ =

{
1, α < 0,

0, α > 0.
(7.13)
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Let us express this result in terms of the signature. Since the solution of equation D+u = 0 has

the form u(t) = C exp
(
−i
∫ t
T
a(t)dt

)
as t > T , the corresponding monodromy matrix described by

u(2π) = M+u(0) is equal to

M+ = exp

(
−i
∫ 2π

0

a(t)dt

)
. (7.14)

Hence

|M+| = exp

(
Im

∫ 2π

0

a(t)dt

)
.

From (7.9) and (7.10), we obtain

signM+ = sgn Im

∫ 2π

0

a(t)dt, indD+ =
1

2

(
1− sgn Im

∫ 2π

0

a(t)dt

)
.

The latter coincides with (7.13).
Example 2. Using Example 1, let us calculate the index of the operator D : H1(R)→ L2(R) on the
real line R = (−∞,−T ] ∪ [−T, T ] ∪ [T,+∞). In accordance with such a partition of the real line,
the Sobolev space H1(R) is isomorphic to the space

H1(R) '
{

(u−, u0, u+) ∈ H1(−∞,−T ]⊕H1[−T, T ]⊕H1[T,+∞)
}
,

where u−, u0, u+ satisfy the compatibility conditions, namely, u−(−T ) = u0(−T ) and u0(T ) = u+(T ).
Therefore, the index formula gives us

indD = ind+D + ind−D + ind0D − 2,

where ind±D = indD±, ind0D is the index of D on the segment [−T, T ], and the last term cor-
responds to the compatibility conditions at ±T . Obviously, ind0D = 1, indD+ was evaluated in
Example 1. Thus, indD− is equal to

indD− =

{
0, α < 0,

1, α > 0.

We have

indD =
1

2

(
1− sgn Im

∫ 2π

0

a(t)dt+ 1 + sgn Im

∫ 2π

0

a(t)dt

)
− 1 = 0.

The latter coincides with the result in Theorem 7.1 since signM+ = signM− (see (7.14)).
Let us apply theorems 6.2 and 7.1 to compute η-invariants of di�erential operators.

Corollary 7.1. The η-invariant of an invertible di�erential operator D+ ∈ Ψn
per ⊗MatN equals

η(D+) = −signM+

2
. (7.15)

Here signM+ = #{|λM+ | > 1}−#{|λM+| < 1} is the signature of the monodromy matrix M+ of D+

and #A is the cardinality of a set A.

Proof. Given an invertible operator D+ ∈ Ψn
per ⊗MatN , we write it as

D+ =
∑

0≤k≤n

dk(t) (−i∂t)k , where dn(t) 6= 0.
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We de�ne the operator with periodic coe�cients

D− = dn(t) (−i∂t + i)n

and the operator with coe�cients periodic at in�nity

D = χ(t)D+ + (1− χ(t))D− : Hs(R,CN) −→ Hs−n(R,CN). (7.16)

Here χ ∈ C∞(R), χ(t) ≥ 0 and

χ(t) =

{
0 if t ≤ −T,
1 if t ≥ T.

Operator (7.16) satis�es the conditions in Theorem 6.1 and, therefore, has Fredholm property. On
one hand, we apply Theorem 6.2 to operator (7.16) and obtain

indD = η(D+)− η(D−) = η(D+) +
nN

2
. (7.17)

Indeed, by Propositions 4.1 and 5.1, we have

η(D−) = η(dn) + nNη(−i∂t + i) = −nN
2
,

where η(dn) = 0 (see (4.1)). On the other hand, Theorem 7.1 implies

indD =
1

2
(signM− − signM+) =

1

2
(nN − signM+). (7.18)

From relations (7.17) and (7.18), we obtain the desired equality (7.15).
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