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Abstract. The purpose of this paper is to study the behaviour of Hardy-type operator on weighted
Orlicz spaces. The results on modular inequalities for the considered operators of Hardy type are
important, since such operators arise in the study of decreasing rearrangements for generalized Bessel
and Riesz potentials, in which case Orlicz�Lorentz space serves as an underlying space.
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1 Introduction

The purpose of this paper is to study the behaviour of Hardy-type integral operators

Fϕ[g](t) =

∞∫
0

fϕ(t; τ)g(τ) dτ

on weighted Orlicz spaces, see [1, 3, 7, 8, 10].
Here ϕ is positive, decreasing and continuous on (0,∞),

fϕ(t; τ) = min{ϕ(t), ϕ(τ)}.
Such operators appear when we study integral properties of generalized Bessel and Riesz potentials

de�ned as convolutions of kernels of potentials with functions belonging to Orlicz spaces, see [4, 6, 9].
They were introduced by Z.W. Birnbaum and W. Orlicz in the 1920s and have been widely studied
since the 1930s. The book [2] by M.A. Krasnosel'skii and Ya.B. Rutickii in 1961 acted as a catalyst
in the theory and gained these spaces wide acceptance in many areas of analysis. This large class
of spaces, which includes Lebesgue Lp - spaces, has been e�ectively used in the theory of di�erential
and integral equations, probability, statistics, and harmonic analysis.

This paper is devoted to studying the behaviour of integral operators on weighted Orlicz spaces
with emphasis on new features of this situation as compared with the case of Lebesgue spaces. It is
natural to consider embeddings of spaces along with boundedness of operators and we address those
topics as well.

2 Auxiliary de�nitions

De�nition 1. (i) A Banach function space, shortly BFS, E = E(Rn) is a Banach space of Lebesgue
measurable functions f : Rn → C with monotone norm, i.e. such that

|f | ≤ g, g ∈ E implies f ∈ E, ‖f‖E ≤ ‖g‖E, (2.1)
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and with the Fatou property:

0 ≤ fn ↑ f, fn ∈ E implies f ∈ E, ‖fn‖E ↑ ‖f‖E.

(ii) A BFS E is called a rearrangement-invariant space, shortly: RIS, if its norm is monotone
with respect to rearrangements,

f ∗ ≤ g∗, g ∈ E implies f ∈ E, ‖f‖E ≤ ‖g‖E. (2.2)

Here f ∗ is the decreasing rearrangement of the function f , i.e. a nonnegative decreasing right
continuous function on R+ = (0,∞), which is equimeasurable with f :

µn {x ∈ Rn : |f(x)| > y} = µ1 {t ∈ R+ : |f ∗(t)| > y} , y ∈ R+, (2.3)

where µn is the n�dimensional Lebesgue measure.

De�nition 2. The potential space HG
E ≡ HG

E (Rn) on the n-dimensional Euclidean space Rn is
de�ned by

HG
E (Rn) =

{
u = G ∗ f : f ∈ E(Rn)

}
. (2.4)

Here E(Rn) is a rearrangement-invariant space, and

‖u‖HG
E

= inf
{
‖f‖E : f ∈ E(Rn), G ∗ f = u

}
. (2.5)

We assume that the kernel G of a representation (2.4) is admissible, i.e

G ∈ L1(Rn) + E ′(Rn).

Here the convolution G ∗ f is de�ned as the integral

(G ∗ f)(x) =

∫
Rn

G(x− y)f(y) dµn(y). (2.6)

Moreover, E ′(Rn) is the associated RIS, i.e. RIS with the norm:

‖g‖E′ = sup

{∫
Rn
|fg| dµ : f ∈ E, ‖f‖E ≤ 1

}
. (2.7)

Remark 1.

E = Lp, 1 ≤ p ≤ ∞ ⇒ E ′ = Lp′ ;
1

p
+

1

p′
= 1.

For the RIS E(Rn), E ′(Rn), we consider the spaces Ẽ = Ẽ(R+), Ẽ ′ = Ẽ ′(R+) � their Luxemburg
representations [1], i.e. RIS for which the following equalities are satis�ed

‖f‖E = ‖f ∗‖Ẽ, f ∈ E(Rn); ‖g‖E′ = ‖g∗‖Ẽ′ , g ∈ E ′(Rn).

We denote:

f ∗∗(t) =
1

t

t∫
0

f ∗(τ) dτ ; t ∈ R+. (2.8)

We introduce the class of monotone functions In(R), R > 0 as follows. A function θ: (0, R)→ R+

belongs to the class In(R) if θ satis�es the following conditions:
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1. θ is decreasing and continuous on (0, R),

2. there is a constant c ∈ R+, such that

r∫
0

θ(ρ)ρn−1 dρ ≤ cθ(r)rn, r ∈ (0, R). (2.9)

Now, we introduce

ϕ(τ) = θ

(( τ
Vn

) 1
n

)
∈ I1(T ), T = VnR

n.

where Vn is the volume of the unit ball in Rn.

fϕ(t; τ) = min
{
ϕ(t), ϕ(τ)

}
=

{
ϕ(t), 0 < τ ≤ t,

ϕ(τ), τ > t.
(2.10)

De�nition 3. Let θ ∈ In(∞). The potentials u ∈ HG
E (Rn) are called generalized Riesz potentials, if

G(x) ∼= θ(|x|), x ∈ Rn, (∼= means two-sided estimate).

De�nition 4. Let θ ∈ In(R). The potentials u ∈ HG
E (Rn) are called generalized Bessel potentials, if

G(x) = G0
R(x) +G1

R(x),

BR = {x ∈ Rn : |x| < R}, R ∈ R+,

G0
R(x) = G(x)χBR(x), G1

R(x) = G(x)χBcR(x),

G0
R(x) ∼= θ(|x|), x ∈ BR, G1

R(x) ∈ (L1 ∩ E ′)(Rn),

∫
Rn

G dx 6= 0.

De�nition 5. A function Φ: [0,+∞)→ [0,+∞) is called an N -function if

Φ(t) =
t∫

0

φ(τ) dτ ; where φ is continuous, 0 < φ ↑; φ(0) = 0; φ(∞) = ∞. Let φ−1 be the right

continuous inverse function of φ, and de�ne

Ψ(t) =

t∫
0

φ−1(τ) dτ.

Ψ is called the complementary function of Φ.

De�nition 6. a) An N -function Φ is said to satisfy the ∆2 condition (we write Φ ∈ ∆2) if there is
a constant B > 0, such that

Φ(2t) ≤ BΦ(t), ∀t > 0. (2.11)

b) We write Φ1 � Φ2 if there is a constant L0 > 0, such that the inequality

∞∑
i=1

Φ2 ◦ Φ−1
1 (ai) ≤ L0Φ2 ◦ Φ−1

1

( ∞∑
i=1

ai

)
(2.12)

holds for every sequence {ai} with ai ≥ 0.
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c) Let ω be a positive, measurable weight function and Φ be an N -function. The Orlicz space
LΦ(ω) consists of all measurable functions f (modulo equivalence almost everywhere) with

‖f‖Φ(ω) = inf

{
λ > 0,

∞∫
0

Φ(λ−1|f(x)|)ω(x) dx ≤ 1

}
. (2.13)

We call ‖ · ‖Φ(ω) the Luxemburg norm.
The Orlicz norm of a function f is given by

‖f‖′Ψ(ω) = sup

{ ∞∫
0

|fg|ωdx :

∞∫
0

Ψ(|g|)ωdx ≤ 1

}
, (2.14)

where Ψ is the complementary function of Φ.

Remark 2. LΦ(ω) is a Banach space and the Luxemburg and Orlicz norms are equivalent. In fact,

‖f‖Φ(ω) ≤ ‖f‖′Ψ(ω) ≤ 2‖f‖Φ(ω).

3 Equivalent descriptions of cones of rearrangements

In this section we show how Hardy-type operators appear in the theory of potentials. Let G be
an admissible kernel. We consider the following cones of rearrangements, equipped with a positive
homogeneous functional:

M ≡MG
E = {h(t) = u∗(t), t ∈ (0,∞) : u ∈ HG

E }. (3.1)

ρM(h) = inf{‖u‖HG
E

: u ∈ HG
E , u

∗(t) = h(t), t ∈ (0,∞)}.
De�nition 7. Consider a cone

K ≡ Kϕ
E =

 h(t) =
∞∫
0

fϕ(t; τ)g(τ) dτ

t ∈ (0,∞) : g ∈ Ẽ0(0,∞)

 (3.2)

equipped with the functional

ρK(h) = ‖g‖Ẽ(0,∞), Ẽ0(0,∞) =
{
g ∈ Ẽ(0,∞) : 0 ≤ g ↓, g(t+ 0) = g(t), t ∈ (0,∞)

}
.

A cone K covers a cone M (and we write M ≺ K), if there exists c1 ∈ R+, such that, for every
function h1 ∈M , there exists a function h2 ∈ K, satisfying the conditions

ρK(h2) ≤ c1ρM(h1),

h1(t) ≤ h2(t) t ∈ (0,∞).

Remark 3. The equivalence of cones means the mutual covering:

M ≈ K ⇔M ≺ K ≺ M. (3.3)

Theorem 3.1. Let θ ∈ In(∞), E(Rn) be an RIS, and the following conditions be ful�lled:

G(x) ∼= θ(|x|), x ∈ Rn; fϕ(t; ·) ∈ Ẽ ′(R+), t ∈ R+.

Then for the generalized Riesz potenial,

MG
E ≈ Kϕ

E.

.
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4 Auxiliary theorems

De�nition 8. Generalized Hardy operators are operators of the form

Rf(x) =

x∫
0

k(x, t)f(t) dt, R∗g(t) =

+∞∫
t

k(x, t)g(x) dx, (4.1)

where
a) k :

{
(x, t) ∈ R2 : 0 < t < x < +∞

}
→ [0,+∞);

b) k(x, t) ≥ 0 is nondecreasing in x, nonincreasing in t;
c) k(x, y) ≤ D

(
k(x, t) + k(t, y)

)
, whenever 0 ≤ y ≤ t < x < +∞ for some constant D.

Theorem 4.1. (see [3]). Let Φ1, Φ2 be N-functions, Φ1 � Φ2 (see De�nition 6), R be a generalized
Hardy operator de�ned by (4.1). Let a, b, v and ω be positive weight functions. Then there exists a
constant A > 0 such that the inequality

Φ−1
2

 +∞∫
0

Φ2(aRf)ωdx

 ≤ Φ−1
1

 +∞∫
0

Φ1(Afb)vdx

 (4.2)

holds for all non-negative, measurable functions f if and only if there exists a constant C > 0 such
that the inequalities

Φ−1
2

 +∞∫
r

Φ2

(
a(x)

C

∥∥∥∥k(r; ·)χ
(0,r)

(.)

εvb

∥∥∥∥
Ψ1(εv)

)
ω(x) dx

 ≤ Φ−1
1

(
1

ε

)
(4.3)

and

Φ−1
2

 +∞∫
r

Φ2

(
a(x)

C

∥∥∥∥χ(0,r)
(.)

εvb

∥∥∥∥
Ψ1(εv)

k(x; r)

)
ω(x) dx

 ≤ Φ−1
1

(
1

ε

)
(4.4)

hold for all ε, r > 0.

Theorem 4.2. (see [3]): Let Φ1, Φ2 be N-functions, Φ1 � Φ2, and R∗ be a generalized Hardy
operator de�ned by (4.1). Then there exists a constant A > 0 such that the inequality

Φ−1
2

 +∞∫
0

Φ2(aR∗fωdt

 ≤ Φ−1
1

 +∞∫
0

Φ1(Abf)vdt

 (4.5)

holds for all nonnegative, measurable functions f if and only if there exists a constant C > 0 such
that the inequalities

Φ−1
2

 r∫
0

Φ2

(
a(t)

C

∥∥∥∥k(·; r)χ
(r,+∞)

(.)

εvb

∥∥∥∥
Ψ1(εv)

)
ω(t) dt

 ≤ Φ−1
1

(
1

ε

)
(4.6)

and

Φ−1
2

 r∫
0

Φ2

(
a(t)

C

∥∥∥∥χ(r,+∞)
(.)

εvb

∥∥∥∥
Ψ1(εv)

k(r; t)

)
ω(t) dt

 ≤ Φ−1
1

(
1

ε

)
(4.7)

hold for all ε, r > 0.
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5 Main result

Recall that

Kϕ
E =

h(x) =

∞∫
0

fϕ(x; τ)g(τ) dτ ; x ∈ (0,∞) : g ∈ Ẽ0(0,∞)

 ;

fϕ(x; τ) =

{
ϕ(x), 0 < τ ≤ x,

ϕ(τ), τ > x;

0 < ϕ ↓,
x∫

0

ϕ(τ) dτ ≤ cϕ(x)x.

We consider the operator

Fϕ[g] =

∞∫
0

fϕ(x; τ)g(τ) dτ, (5.1)

Fϕ[g] = ϕ(x)

x∫
0

g(τ) dτ +

∞∫
x

ϕ(τ)g(τ) dτ = Fϕ1[g] + Fϕ2[g]. (5.2)

This means that Fϕ is the sum of two Hardy-type operators.

Theorem 5.1. Let Φ1, Φ2 be N-functions, Φ1 � Φ2, a, b, v, ω be positive weight functions, Fϕ be
de�ned by (5.1). Then there exists a constant A > 0 such that the inequality

Φ−1
2

 +∞∫
0

Φ2(a(x)Fϕg(x))ω(x)dx

 ≤ Φ−1
1

 +∞∫
0

Φ1(Ab(x)g(x))v(x)dx

 (5.3)

holds for all nonnegative, measurable functions g if and only if there exists a constant C > 0 such
that the inequality

Φ−1
2

 +∞∫
0

Φ2

(
a(x)

C
.
fϕ(x; r)

ϕ(r)

∥∥∥∥fϕ(·; r)
εvb

∥∥∥∥
Ψ1(εv)

)
ω(x) dx

 ≤ Φ−1
1

(
1

ε

)
(5.4)

holds for all ε, r > 0.

Proof. The necessity of condition (5.4).

Fix r, ε > 0. Since the Orlicz norm does not exceed the Luxemburg norm (see Remark 2) we
have for f ≥ 0

‖f‖Ψ1(εv) ≤ ‖f‖
′
Φ1(εv) = sup


+∞∫
0

fhεvdx : h ≥ 0;

+∞∫
0

Φ1(h)εvdx ≤ 1

 ,
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hence,

∥∥∥∥fϕ(·; r)
εbv

∥∥∥∥
Ψ1(εv)

≤ sup
+∞∫
0

Φ1(Ag(τ)b(τ))εv(τ)dτ≤1

+∞∫
0

fϕ(τ ; r)

εb(τ)v(τ)
Ag(τ)b(τ)εv(τ) dτ

= sup
+∞∫
0

Φ1(Ag(τ)b(τ))εv(τ)dτ≤1

A

+∞∫
0

fϕ(τ ; r)g(τ) dτ.

So, for any η < 1, it is possible to choose a nonnegative function g such that

+∞∫
0

Φ1(Ag(τ)b(τ))εv(τ)dτ ≤ 1

and

A

+∞∫
0

fϕ(τ ; r)g(τ) dτ ≥ η

∥∥∥∥fϕ(·; r)
εbv

∥∥∥∥
Ψ1(εv)

Thus, we have

Φ−1
2

 +∞∫
0

Φ2

(
η
a(x)

A

fϕ(x; r)

ϕ(r)

∥∥∥∥fϕ(·; r)
εbv

∥∥∥∥
Ψ1(εv)

)
ω(x) dx

 ≤
≤ Φ−1

2

 +∞∫
0

Φ2

a(x)

+∞∫
0

fϕ(τ ; r)g(τ) dτ
fϕ(x; r)

ϕ(r)

ω(x) dx

 . (5.5)

Since
fϕ(x; r)fϕ(τ ; r)

ϕ(r)
≤ fϕ(τ ;x)(

indeed,

if 0 < r < τ < x, then fϕ(x,r)·fϕ(τ,r)

ϕ(r)
= ϕ(x)·ϕ(τ)

ϕ(r)
≤ ϕ(x) = fϕ(τ, x),

if 0 < τ < r < x, then fϕ(x,r)·fϕ(τ,r)

ϕ(r)
= ϕ(x)·ϕ(r)

ϕ(r)
= ϕ(x) = fϕ(τ, x)

)
,

for any r,τ , t > 0, the right-hand side of (5.5) does not exceed

Φ−1
2

 +∞∫
0

Φ2(a(x)Fϕg(x))ω(x)dx

 .

Hypothesis (5.3) shows that the last expression is not greater than

Φ−1
1

 +∞∫
0

Φ1(Ag(x)b(x))v(x)dx

 ≤ Φ−1
1

(
1

ε

)
.

The necessity of condition (5.4) is proved with the constant C = A
η
.
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The su�ciency of condition (5.4).
Since by (5.2)

Fϕ[g](x) =

∞∫
0

fϕ(x; τ)g(τ) dτ = ϕ(x)

x∫
0

g(τ) dτ +

∞∫
x

ϕ(τ)g(τ) dτ = Fϕ1[g] + Fϕ2[g],

we only need to prove that there exists a constant A > 0, such that the inequalities

Φ−1
2

 +∞∫
0

Φ2(a(x)Fϕig(x))ω(x)dx

 ≤ Φ−1
1

 +∞∫
0

Φ1(Ag(x)b(x))v(x)dx


hold for all nonnegative measurable functions g, for i = 1, 2.

For Fϕ1, we apply Theorem 4.1 with k ≡ 1, and a(x) replaced by a(x) · ϕ(x). When k ≡ 1 it
su�ces to show that there is a constant C > 0 such that the inequality

Φ−1
2

 +∞∫
r

Φ2

(
a(x)ϕ(x)

C

∥∥∥χ(0,r)

εbv

∥∥∥
Ψ1(εv)

)
ω(x) dx

 ≤ Φ−1
1

(
1

ε

)
holds for any ε, r > 0. To do this, �x ε, r > 0, and notice that

1 =
fϕ(τ ; r)

ϕ(r)

and
ϕ(x) = fϕ(x; r)

whenever 0 ≤ τ ≤ r ≤ x < +∞. We have

Φ−1
2

 +∞∫
r

Φ2

(
a(x)

C
ϕ(x)

∥∥∥χ(0,r)

εbv

∥∥∥
Ψ1(εv)

)
ω(x) dx


= Φ−1

2

 +∞∫
r

Φ2

(
a(x)

C
· fϕ(x; r)

∥∥∥∥χ(0,r)
(.)fϕ(·; r)

εbv · ϕ(r)

∥∥∥∥
Ψ1(εv)

)
ω(x) dx


≤ Φ−1

2

 +∞∫
0

Φ2

(
a(x)

C
· fϕ(x; r)

ϕ(r)

∥∥∥∥χ(0,r)
(.)fϕ(·; r)
εbv

∥∥∥∥
Ψ1(εv)

)
ω(x) dx

 .

Condition (5.4) of the theorem implies that the right-hand side of the above inequality is dom-
inated by Φ−1

1

(
1
ε

)
as required. For Fϕ2 we apply Theorem 4.2 with k ≡ 1, and b(τ) replaced by

b(τ)/ϕ(τ) to the function g(τ) · ϕ(τ) by the conditions of the Theorem. When k ≡ 1 it is su�ces to
show that there is a constant C > 0 such that the inequality

Φ−1
2

 r∫
0

Φ2

(
a(x)

C

∥∥∥∥χ(r,+∞)
· ϕ

εbv

∥∥∥∥
Ψ1(εv)

)
ω(x) dx

 ≤ Φ−1
1

(
1

ε

)
holds for any ε, r > 0. We note that if 0 ≤ x ≤ r ≤ τ < +∞, then

fϕ(x; r) · fϕ(τ ; r)

ϕ(r)
= ϕ(τ),

and we proceed as we did for Fϕ1 to deduce the required inequality from condition (5.4) of the
Theorem. The details are omitted. This completes the proof of su�ciency.
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6 Application to weighted Lebesgue spaces

Here we apply Theorem 5.1 to the case of weighted Lebesgue spaces. Let 1 ≤ p, q <∞.

Φ1(t) = tp; Φ2(t) = tq; Ψ1(t) = tp
′
,

1

p
+

1

p′
= 1;

functions a, b, v, ω be as in Theorem 5.1. Then,

Φ−1
1 (τ) = τ

1
p ; Φ−1

2 (τ) = τ
1
q ;

Φ1 � Φ2 ⇔ p ≤ q.

Application of Theorem 5.1 gives the following result.

Let 1 ≤ p ≤ q <∞. Then there exists a constant A > 0 such that the inequality +∞∫
0

aq(x)(Fϕg)q(x)ω(x) dx

 1
q

≤ A

 +∞∫
0

(
bp(x)gp(x)

)
v(x) dx

 1
p

, (6.1)

holds for all nonnegative measurable functions g if and only if there exists a constant C > 0 such
that the inequality  +∞∫

0

a(x)qfϕ(x; r)qω(x) dx

 1
q ∥∥∥∥fϕ(·; r)

vb

∥∥∥∥q
Lp′ (v)

≤ Cϕ(r) (6.2)

holds for all r > 0.

Remark 4. We consider here the estimates for Hardy-type operators that are applicable for studying
the integral properties of generalized Bessel Potentials. Note that the di�erential properties of such
potentials were considered in the paper [5]
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