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VICTOR IVANOVICH BURENKOV

(to the 80th birthday)

On July 15, 2021 was the 80th birthday of Victor Ivanovich Burenkov,
editor-in-chief of the Eurasian Mathematical Journal (together with V.A.
Sadovnichy and M. Otelbaev), professor of the S.M. Nikol'skii Institute
of Mathematics at the RUDN University (Moscow), chairman of the Dis-
sertation Council at the RUDN University, research fellow (part-time) at
the Steklov Institute of Mathematics (Moscow), honorary academician of
the National Academy of Sciences of the Republic of Kazakhstan, doctor
of physical and mathematical sciences(1983), professor (1986), honorary
professor of the L.N. Gumilyov Eurasian National University (Astana,

Kazakhstan, 2006), honorary doctor of the Russian-Armenian (Slavonic) University (Yerevan, Arme-
nia, 2007), honorary member of sta� of the University of Padua (Italy, 2011), honorary distinguished
professor of the Cardi� School of Mathematics (UK,2014), honorary professor of the Aktobe Regional
State University (Kazakhstan, 2015).

V.I. Burenkov graduated from the Moscow Institute of Physics and Technology (1963) and com-
pleted his postgraduate studies there in 1966 under supervision of the famous Russian mathematician
academician S.M. Nikol'skii.He worked at several universities, in particular for more than 10 years
at the Moscow Institute of Electronics, Radio-engineering, and Automation, the RUDN University,
and the Cardi� University. He also worked at the Moscow Institute of Physics and Technology, the
University of Padua, and the L.N. Gumilyov Eurasian National University. Through 2015-2017 he
was head of the Department of Mathematical Analysis and Theory of Functions (RUDN University).
He was one of the organisers and the �rst director of the S.M. Nikol'skii Institute of Mathematics at
the RUDN University (2016-2017).

He obtained seminal scienti�c results in several areas of functional analysis and the theory of
partial di�erential and integral equations. Some of his results and methods are named after him:
Burenkov's theorem on composition of absolutely continuous functions, Burenkov's theorem on con-
ditional hypoellipticity, Burenkov's method of molli�ers with variable step, Burenkov's method of
extending functions, the Burenkov-Lamberti method of transition operators in the problem of spec-
tral stability of di�erential operators, the Burenkov-Guliyevs conditions for boundedness of operators
in Morrey-type spaces. On the whole, the results obtained by V.I. Burenkov have laid the ground-
work for new perspective scienti�c directions in the theory of functions spaces and its applications
to partial di�erential equations, the spectral theory in particular.

More than 30 postgraduate students from more than 10 countries gained candidate of sciences or
PhD degrees under his supervision. He has published more than 190 scienti�c papers. His monograph
�Sobolev spaces on domains� became a popular text for both experts in the theory of function spaces
and a wide range of mathematicians interested in applying the theory of Sobolev spaces. In 2011 the
conference �Operators in Morrey-type Spaces and Applications�, dedicated to his 70th birthday was
held at the Ahi Evran University (Kirsehir, Turkey). Proceedings of that conference were published
in the EMJ 3-3 and EMJ 4-1.

V.I. Burenkov is still very active in research. Through 2016-2021 he published 20 papers in leading
mathematical journals.

The Editorial Board of the Eurasian Mathematical Journal congratulates Victor Ivanovich Bu-
renkov on the occasion of his 80th birthday and wishes him good health and new achievements in
science and teaching!
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NONEXISTENCE OF NONTRIVIAL WEAK SOLUTIONS
OF SOME NONLINEAR INEQUALITIES

WITH INTEGER POWER OF THE LAPLACIAN

W.E. Admasu, E.I. Galakhov, O.A. Salieva

Communicated by M.L. Gol'dman

Key words: a priori estimates, nonlinear capacity, nonexistence of nontrivial weak solutions.
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Abstract. In this paper, we make modi�cation of the results obtained by Mitidieri and Pokhozhaev
on su�cient conditions for the nonexistence of nontrivial weak solutions of nonlinear inequalities and
systems with integer power of the Laplacian with the nonlinearity term of the form a(x) |∆mu|q +
b(x)|u|s. We obtain an optimal a priori estimate by employing the nonlinear capacity method under
a special choice of test functions. Finally, we prove the nonexistence of nontrivial weak solutions of
the considered inequalities and systems by contradiction.

DOI: https://doi.org/10.32523/2077-9879-2021-12-3-09-18

1 Introduction

In recent decades, great interest was shown to problems of partial di�erential equations and inequal-
ities. In particular, much attention was paid by researchers to �nding solutions of various classes of
partial di�erential equations and inequalities. Nowadays, many authors are interested in proving the
nonexistence of solutions of various classes of partial di�erential equations and inequalities in various
function classes.

This paper is inspired by various recent works on proving the nonexistence of nontrivial weak
solutions of some nonlinear elliptic partial di�erential inequalities and systems of such inequalities
with integer power of the Laplacian. We obtain su�cient conditions for the nonexistence of nontrivial
weak solutions for some nonlinear inequalities and systems with integer power of the Laplacian with
the nonlinearity of the form |∆mu|q by the nonlinear capacity method proposed by S.I. Pokhozhaev
[8]. Later on this method was developed in the joint work of E. Mitidieri and S.I. Pokhozhaev [7] (see
also [10], [9]). Since the method allowed them to obtain new sharp su�cient unsolvability conditions
for wider classes of functions (which cannot be obtained by the comparison method for such classes
of functions), the authors are interested in applying it using a special choice of test functions for
various operators (see [10]).

The method was based on obtained asymptotically optimal a priori estimates by applying appro-
priate algebraic inequalities to the integral form of the considered inequality under a special choice
of test functions. The method was applied to various types of elliptic equations, inequalities, and
systems. It can be found, for instance, in [1] - [5], [11], [12].

In the present work we modify the nonexistence condition obtained in [8] by modifying the
nonlinearity term for the inequalities and systems with integer power of the Laplacian considered
there.

In Section 2, we prove the nonexistence of nontrivial solutions of the considered inequality and
in Section 3, we prove the nonexistence of nontrivial solutions of a system of such inequalities.
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2 Scalar inequalities

Consider the inequality of the form

∆ku(x) ≥ a(x) |∆mu(x)|q + b(x)|u(x)|s, x ∈ RN (2.1)

with
k,m ∈ N,m < k, q > 1, s > 1, (2.2)

where a and b are locally integrable nonnegative functions satisfying the inequalities

a(x) ≥ c1(1 + |x|)α, b(x) ≥ c2(1 + |x|)β (2.3)

for some c1, c2 > 0, α, β ∈ R and all x ∈ RN .

De�nition 1. By a weak solution to nonlinear inequality (2.1), we mean a function u ∈ L1
loc(RN)

such that a|∆mu|q ∈ L1
loc(RN), b|u|s ∈ L1

loc(RN), and the inequality∫
RN

(a(x) |∆mu(x)|q + b(x)|u(x)|s)ϕ(x)dx ≤
∫
RN
u(x)∆kϕ(x)dx (2.4)

holds for any test function ϕ ∈ C2k
0 (RN ;R+).

Theorem 2.1. Suppose that the exponents q and s satisfy inequalities (2.1) and

1 < q ≤ N + α

N − 2(k −m)
if N ≤ 2(k−m),

1 < s ≤ N + β

N − 2k
if N ≤ 2k.

(2.5)

Then problem (2.1) has no nontrivial weak solutions.

Proof. By the de�nition of a weak solution, integrating by parts, we have∫
RN

(a(x) |∆mu(x)|q + b(x)|u(x)|s)ϕ(x)dx ≤
∫
RN
u(x)∆kϕ(x)dx

≤ 1

2

∫
RN

∆mu(x)∆k−mϕ(x)dx+
1

2

∫
RN
u(x)∆kϕ(x)dx

≤ 1

2

∫
RN
|∆mu(x)| · |∆k−mϕ(x)|dx+

1

2

∫
RN
|u(x)| · |∆kϕ(x)|dx.

(2.6)

Hence, applying the following Young inequality:

AB ≤ Ap

p
+
Bp′

p′

(
A,B > 0, p > 1, p′ =

p

p− 1

)
, (2.7)

we estimate the right-hand terms in (2.6) in the following manner:

1

2

∫
RN
|∆mu(x)| · |∆k−mϕ(x)|dx

≤ 1

2

∫
RN
a(x) |∆mu(x)|q ϕ(x)dx+ C1(q)

∫
RN
|∆k−mϕ(x)|q′a−

q′
q (x)ϕ−

q′
q (x)dx,

(2.8)

where (2.7) is applied with p = q,  A(x) = a
1
q |∆mu(x)|ϕ

1
q ,

B(x) = a−
1
q

∣∣∆k−mϕ
∣∣ϕ− 1

q .

(2.9)
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and
1

2

∫
RN
|u(x)| · |∆mϕ(x)|dx

≤ 1

2

∫
RN
b(x)|u(x)|sϕ(x)dx+ C2(s)

∫
RN
|∆kϕ(x)|s′b−

s′
s (x)ϕ−

s′
s (x)dx,

(2.10)

where (2.7) is applied with p = s and A(x) = b
1
s |u(x)|ϕ 1

s ,

B(x) = a−
1
s |∆kϕ|ϕ− 1

s ,
(2.11)

Here C1(q) and C2(s) are positive constants depending only on q and s, respectively. Then, we obtain
the following a priori estimate

1

2

∫
RN
|∆mu|q ϕdx ≤

∫
RN

(
C1(q)

|Lk−m(ϕ)|q
′

(aϕ)q′−1
+ C2(q)

|Lk(ϕ)|s
′

(bϕ)s′−1

)
dx, (2.12)

where Lj(ϕ) = ∆jϕ (j = k −m or k), q′ = q
q−1

.

Now choose the test function ϕ of the form

ϕ(x) = ϕ0

(
|x|2

R2

)
, (2.13)

where ϕ0 ∈ C2k
0

(
RN ;R+

)
is such that

ϕ0(s) =

{
1, 0 ≤ s ≤ 1,

0, s ≥ 2.
(2.14)

Next, let us change the variables,

x→ ξ : x = Rξ. (2.15)

Then we obtain ∫
RN

|Lk−m(ϕ)|q
′

(aϕ)q′−1
dx = Rθ1

∫
1≤|ξ|≤

√
2

∣∣L∗k−m(ϕ0)
∣∣q′

(a0ϕ0)q′−1
dξ, (2.16)

where L∗k−m(ϕ0) = ∆k−mϕ0, a0(ξ) = a(Rξ), θ1 = N −
(

2(k −m) + α
q

)
q′, and

∫
RN

|Lk(ϕ)|s
′

(bϕ)s′−1
dx = Rθ2

∫
1≤|ξ|≤

√
2

|L∗k(ϕ0)|q
′

(b0ϕ0)s′−1
dξ, (2.17)

where L∗k(ϕ0) = ∆kϕ0, b0(ξ) = b(Rξ), θ2 = N −
(

2k + β
q

)
q′.

Now, choose a test function ϕ0 such that∫
1≤|ξ|≤

√
2

∣∣L∗k−m(ϕ0)
∣∣q′

(a0ϕ0)q′−1
dξ <∞
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and ∫
1≤|ξ|≤

√
2

|L∗k(ϕ0)|q
′

(b0ϕ0)s′−1
dξ <∞,

so that the integral on the right-hand side of (2.12) is �nite. Then, (2.12) implies that∫
RN

(a |∆mu|q + bus)ϕdx ≤ CRθ, (2.18)

where θ = max(θ1, θ2). Now, assume that θ = θ1 ≥ θ2 (the opposite case can be treated similarly)
and consider the following two cases for the values of θ.
Case 1: if θ < 0, passing to the limit as R→∞ in (2.18) we have∫

RN
(a |∆mu|q + bus)dx ≤ 0. (2.19)

Thus, the assertion of theorem is proved for θ < 0, i.e.,

1 < q <
N

N − 2(k −m)− α
. (2.20)

Case 2: if θ = 0, then

q =
N

N − 2(k −m)− α
. (2.21)

In this case, relation (2.16) implies that∫
RN

|Lk−m(ϕ)|q
′

(aϕ)q′−1
dx = c1, (2.22)

where

c1 =

∫
1≤|ξ|≤

√
2

∣∣L∗k−m(ϕ0)
∣∣q′

(a0ϕ0)q′−1
dξ, (2.23)

and (since θ2 ≤ θ1 = 0) ∫
RN

|Lk(ϕ)|s
′

(bϕ)s′−1
dx = lim

R→∞
c2R

θ2 ≤ c2, (2.24)

where

c2 =

∫
1≤|ξ|≤

√
2

|L∗k(ϕ0)|s
′

(b0ϕ0)s′−1
dξ. (2.25)

Hence, by (2.12), we have ∫
RN
|∆mu|q ϕdx ≤ c, (2.26)

where c = c1C1(q) + c2C2(s). Passing to the limit as R→∞, we obtain∫
RN
|∆mu|q dx ≤ c. (2.27)

Now, let us return to inequality (2.6). Note that

supp {Lm(ϕ)} ⊆ {x ∈ RN | R ≤ |x| ≤
√

2R} = B√2R\BR,
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where BL = {x ∈ RN : |x| < L}.

Then, by the H�older inequality, relation (2.6) implies∫
RN

(a |∆mu|q + bus)ϕdx

≤
(∫

R≤|x|≤
√

2R

a |∆mu|q ϕdx
) 1

q

(∫
R≤|x|≤

√
2R

|Lk−m(ϕ)|q
′

(aϕ)q′−1
dx

) 1
q′

+

(∫
R≤|x|≤

√
2R

busϕdx

) 1
s

(∫
R≤|x|≤

√
2R

|Lk−m(ϕ)|s
′

(bϕ)s′−1
dx

) 1
s′

.

(2.28)

However, by (2.27) and the absolute convergence of integrals (2.22) and (2.24), we have∫
R≤|x|≤

√
2R

a |∆mu|q dx→ 0 (2.29)

and ∫
R≤|x|≤

√
2R

b|u|sdx→ 0 (2.30)

as R→∞.

Passing to the limit as R → ∞ in (2.28) and taking into account (2.22) and (2.24), we obtain
(2.19) again. Thus, u = 0 almost everywhere in this case as well, i.e., with regard to (2.21), the
nonexistence condition for a solution is �nally expressed as 1 < q ≤ N

N−2(k−m)
.

3 Systems of inequalities

Consider the system of the form ∆k1u(x) ≥ a(x) |∆m1v(x)|q1 + b(x)|v(x)|s1 , x ∈ RN ,

∆k2v(x) ≥ c(x) |∆m2u(x)|q2 + d(x)|v(x)|s2 , x ∈ RN
(3.1)

with

k1, k2,m1,m2 ∈ N, k1 > m2, k2 > m1, min(q1, q2, s1, s2) > 1,
a(x) ≥ C(1 + |x|)α1 , b(x) ≥ C(1 + |x|)β1 ,
c(x) ≥ C(1 + |x|)α2 , d(x) ≥ C(1 + |x|)β2

(3.2)

for some C > 0 and all x ∈ RN .

De�nition 2. By a weak solution to system of nonlinear inequalities (3.1), we mean a pair of
functions (u, v) ∈ Ls1loc(RN)× Ls2loc(RN) such that the inequalities∫

RN
(a(x) |∆m1v(x)|q1 + b(x)|v(x)|s1)ϕ(x)dx ≤

∫
RN
u(x)∆k1ϕ(x)dx, (3.3)∫

RN
(c(x) |∆m2u(x)|q2 + d(x)|v(x)|s2)ϕ(x)dx ≤

∫
RN
v(x)∆k2ϕ(x)dx (3.4)

hold for any test function ϕ ∈ C2k
0 (RN ;R+), where k = max(k1, k2).



14 W.E. Admasu, E.I. Galakhov, O.A. Salieva

Theorem 3.1. Let (3.2) hold. Suppose that θ
def
= max

i=1,...,4
θi ≤ 0, where

θ1 = N − 2(k1 −m2)q2 + α2

q2 − 1
, θ2 = N − 2(k1 −m2)s2 + β2

s2 − 1
,

θ3 = N − 2(k1 −m2)q1 + α1

q1 − 1
, θ4 = N − 2(k1 −m2)s1 + β1

s1 − 1
.

(3.5)

Then problem (3.1) does not have a nontrivial weak solution in RN .

Proof. Let us begin by setting ψ(x) = ϕ(x). By the de�nition of a weak solution, integrating by
parts, we obtain ∫

RN
(a(x) |∆m1v(x)|q1 + b(x)|v(x)|s1)ϕ(x)dx ≤

∫
RN
u(x)∆k1ϕ(x)dx

≤ 1

2

∫
RN

∆m2u(x)∆k1−m2ϕ(x)dx+
1

2

∫
RN
u(x)∆k1ϕ(x)dx

≤ 1

2

∫
RN
|∆m2u(x)| · |∆k1−m2ϕ(x)|dx+

1

2

∫
RN
|u(x)| · |∆k1ϕ(x)|dx,

(3.6)

∫
RN

(c(x) |∆m2u(x)|q2 + d(x)|v(x)|s2)ϕ(x)dx ≤
∫
RN
v(x)∆ϕk2(x)dx

≤ 1

2

∫
RN

∆m1v(x)∆k2−m1ϕ(x)dx+
1

2

∫
RN
v(x)∆k2ϕ(x)dx

≤ 1

2

∫
RN
|∆m1v(x)| · |∆k2−m1ϕ(x)|dx+

1

2

∫
RN
|v(x)| · |∆k2ϕ(x)|dx.

(3.7)

Hence, by applying the Young inequality in (3.6) and (3.7), we have

1

2

∫
RN
|∆m2u(x)| · |∆k1−m2ϕ(x)|dx

≤ 1

2

∫
RN
c(x) |∆m2u(x)|q2 ϕ(x)dx+ C1(q2)

∫
RN
|∆k1−m2ϕ(x)|q′c−

q′2
q2 (x)ϕ

− q
′
2
q2 (x)dx,

(3.8)

1

2

∫
RN
|u(x)| · |∆k1ϕ(x)|dx

≤ 1

2

∫
RN
d(x)|u(x)|s2ϕ(x)dx+ C2(s2)

∫
RN
|∆k1ϕ(x)|s′2d−

s′2
s2 (x)ϕ

− s
′
2
s2 (x)dx,

(3.9)

1

2

∫
RN
|∆m1u(x)| · |∆k2−m1ϕ(x)|dx

≤ 1

2

∫
RN
a(x) |∆mv(x)|q1 ϕ(x)dx+ C3(q1)

∫
RN
|∆k−mϕ(x)|q′1a−

q′1
q1 (x)ϕ

− q
′
1
q1 (x)dx,

(3.10)

1

2

∫
RN
|u(x)| · |∆k2ϕ(x)|dx

≤ 1

2

∫
RN
b(x)|u(x)|s1ϕ(x)dx+ C4(s1)

∫
RN
|∆k2ϕ(x)|s′1b−

s′1
s1 (x)ϕ

− s
′
1
s1 (x)dx,

(3.11)

where 1
qi

+ 1
q′i

= 1 and 1
si

+ 1
s′i

(i = 1, 2). Let us introduce the following notations

X =

∫
RN

(a(x) |∆m1v(x)|q1 + b(x)|v(x)|s1)ϕ(x)dx

and

Y =

∫
RN

(c(x) |∆m2u(x)|q2 + d(x)|u(x)|s2)ϕ(x)dx.
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Then, it follows from (3.6)�(3.11) that

X ≤ Y

2
+ C1(q2)

∫
RN
|∆k1−m2ϕ(x)|q′c−

q′2
q2 (x)ϕ

− q
′
2
q2 (x)dx

+C2(s2)

∫
RN
|∆k1ϕ(x)|s′2d−

s′2
s2 (x)ϕ

− s
′
2
s2 (x)dx,

(3.12)

Y ≤ X

2
+ C3(q1)

∫
RN
|∆k−mϕ(x)|q′1a−

q′1
q1 (x)ϕ

− q
′
1
q1 (x)dx

+C4(s1)

∫
RN
|∆k2ϕ(x)|s′1b−

s′1
s1 (x)ϕ

− s
′
1
s1 (x)dx.

(3.13)

Adding (3.12) and (3.13) and simplifying, we obtain

X + Y ≤ 2C1(q2)

∫
RN
|∆k1−m2ϕ(x)|q′c−

q′2
q2 (x)ϕ

− q
′
2
q2 (x)dx

+2C2(s2)

∫
RN
|∆k1ϕ(x)|s′2d−

s′2
s2 (x)ϕ

− s
′
2
s2 (x)dx

+2C3(q1)

∫
RN
|∆k2−m1ϕ(x)|q′1a−

q′1
q1 (x)ϕ

− q
′
1
q1 (x)dx

+2C4(s1)

∫
RN
|∆k2ϕ(x)|s′1b−

s′1
s1 (x)ϕ

− s
′
1
s1 (x)dx.

(3.14)

Now, introduce the standard test function ϕ of the form

ϕ(x) = ϕ0

(
|x|2

R2

)
,

where ϕ0 ∈ C2k
0 (R+) is such that

ϕ0(s) =

{
1, 0 ≤ s ≤ 1,

0, s ≥ 2.

Next, let us change the variables in the right-hand side of inequality (3.14):

x→ ξ : x = Rξ,

which yields ∫
RN
|∆k1−m2ϕ(x)|q′2c−

q′2
q2 (x)ϕ

− q
′
2
q2 (x)dx

= Rθ1

∫
1≤|ξ|≤

√
2

|∆k1−m2ϕ0(ξ)|q′2(c0ϕ0)1−q′2dξ, (3.15)

∫
RN
|∆k1ϕ(x)|s′2d−

s′2
s2 (x)ϕ

− s
′
2
s2 (x)dx

= Rθ2

∫
1≤|ξ|≤

√
2

|∆k1ϕ0(ξ)|s′2(d0ϕ0)1−s′2(ξ)dξ, (3.16)

∫
RN
|∆k2−m1ϕ(x)|q′1a−

q′1
q1 (x)ϕ

− q
′
1
q1 (x)dx
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= Rθ3

∫
1≤|ξ|≤

√
2

|∆k2−m1ϕ(ξ)|q′1(a0ϕ0)1−q′1(ξ)dξ, (3.17)

∫
RN
|∆k2ϕ(x)|s′1b−

s′1
s1 (x)ϕ

− s
′
1
s1 (x)dx

= Rθ4

∫
1≤|ξ|≤

√
2

|∆k2ϕ0(ξ)|s′1(b0ϕ0)1−s′1(ξ)dξ. (3.18)

Then, inequality (3.14) becomes

X + Y ≤ 2C1(q2)Rθ1

∫
1≤|ξ|≤

√
2

|∆k1−m2ϕ0(ξ)|q′2(c0ϕ0)1−q′2dξ

+2C2(s2)Rθ2

∫
1≤|ξ|≤

√
2

|∆k1ϕ0(ξ)|s′2(d0ϕ0)1−s′2(ξ)dξ

+2C3(q1)Rθ3

∫
1≤|ξ|≤

√
2

|∆k2−m1ϕ(ξ)|q′1(a0ϕ0)1−q′1(ξ)dξ

+2C4(s1)Rθ4

∫
1≤|ξ|≤

√
2

|∆k2ϕ0(ξ)|s′1(b0ϕ0)1−s′1(ξ)dξ.

(3.19)

Now, choose the test function ϕ0 such that∫
1≤|ξ|≤

√
2

|∆k1−m2ϕ0(ξ)|q′2(c0ϕ0)1−q′2dξ <∞,

∫
1≤|ξ|≤

√
2

|∆k1ϕ0(ξ)|s′2(d0ϕ0)1−s′2(ξ)dξ <∞,

∫
1≤|ξ|≤

√
2

|∆k2−m1ϕ(ξ)|q′1(a0ϕ0)1−q′1(ξ)dξ <∞,

and ∫
1≤|ξ|≤

√
2

|∆k2ϕ0(ξ)|s′1(b0ϕ0)1−s′1(ξ)dξ <∞.

Then, inequality (3.19) implies that

X + Y ≤ C
r∑
i=1

Rθi (3.20)

with some C > 0. If any of inequalities (3.5) holds, i.e. if θ = max
i=1,...,4

θi ≤ 0, we have two cases.

Case 1: θ < 0.
Passing to the limit as R→∞ in (3.20) we get∫

RN
(a(x) |∆m1v(x)|q1 + b(x)|v(x)|s1)ϕ(x)dx

+

∫
RN

(c(x) |∆m2u(x)|q2 + d(x)|u(x)|s2)ϕ(x)dx = 0.

Hence, u = 0 and v = 0 almost everywhere in RN .

Case 2: θ = 0.



Nonexistence of nontrivial weak solutions of some nonlinear inequalities 17

In this case inequality (3.20) implies that∫
RN

(a(x) |∆m1v(x)|q1 + b(x)|v(x)|s1)ϕ(x)dx

+

∫
RN

(c(x) |∆m2u(x)|q2 + d(x)|u(x)|s2)ϕ(x)dx = c <∞.
(3.21)

Now, let us return to inequalities (3.6) and (3.7). Note that

supp {∆p(ϕ)} ⊆ {x ∈ RN | R ≤ |x| ≤
√

2R} = B√2R\BR for any p ∈ N .

Then, by the H�older inequality, relations (3.6) and (3.7) imply that∫
RN

(a(x) |∆m1v(x)|q1 + b(x)|v(x)|s1)ϕ(x)dx

≤
∫
R≤|x|≤

√
2R

(c(x) |∆m2u(x)|q1 + d(x)|u(x)|s2)ϕ(x)dx,
(3.22)

∫
RN

(c(x) |∆m2u(x)|q1 + d(x)|u(x)|s2)ϕ(x)dx

≤
∫
R≤|x|≤

√
2R

(a(x) |∆m1v(x)|q1 + b(x)|v(x)|s1)ϕ(x)dx.
(3.23)

However, by (3.21) and the absolute convergence of the integral
∫
RN |∆

mu(x)|s dx, we have∫
R≤|x|≤

√
2R

(a(x) |∆m1v(x)|q1 + b(x)|v(x)|s1)ϕ(x)dx

+

∫
R≤|x|≤

√
2R

(c(x) |∆m2u(x)|q2 + d(x)|u(x)|s2)ϕ(x)dx→ 0

as R→∞.

Passing to the limit as R→∞ in (3.23), we obtain∫
RN

(a(x) |∆m1v(x)|q1 + b(x)|v(x)|s1)dx = 0.

Then, inequality (3.22) implies∫
RN

(c(x) |∆m2u(x)|q1 + d(x)|u(x)|s2)dx = 0.

Thus, u = 0 and v = 0 almost everywhere in this case as well.
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