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1 Introduction

In the present paper by a space we mean a topological T1-space, by a compact a Hausdorff compact
space and by a map a continuous map.

A collection ω of subsets of a set X is said to be star-countable (respectively, star-finite) if each
element of ω intersects at most a countable (respectively, finite) set of elements of ω. A collection
ω of subsets of a set X refines a collection Ω of subsets of X if for each element A ∈ ω there is an
element B ∈ Ω such that A ⊂ B. It is also said that ω is a refinement of Ω. For a point x ∈ X and
a natural number n Kp(x, ω) ≤ n means that no more than n elements of ω contain x ([1], p. 270),
Kpω ≤ n if Kp(x, ω) ≤ n for every x ∈ X.

A finite sequence of subsets M0, . . . , Ms of a set X is [4] a chain connecting sets M0 and Ms, if
Mi−1 ∩Mi 6= ∅ for i = 1, . . . , s. A collection ω of subsets of a set X is said to be connected if for
any pair of sets M , M ′ ⊂ X there exists a chain in ω connecting the sets M and M ′ . The maximal
connected subcollections of ω are called components of ω. A star-finite open cover of a space X is
said to be a finite-component cover if the number of elements of each component is finite.

For a collection ω = {Oα : α ∈ A} of subsets of a space X we put [ω] = [ω]X = {[Oα]X : α ∈ A}.
For a space X, its subspace W and a point x ∈ X \W an open cover λ of the space W pricks out
the point x in X if x /∈ ∪[λ]X [4].

For a Tychonoff space X let β X be its the Stone-Cěch compactification (i. e. the maximal
compact extension).

A Tychonoff space X is said to be Π-complete if for every point x ∈ β X \ X there exists a
finite-component cover ω of X which pricks out the point x in β X [4].

Recall the notion of a perfect compactification. For a topological space X and its subset A a set
FrXA = [A]X ∩ [X \ A]X = [A]X \ IntXA is called a boundary of A.

Let vX be a compact extension of a Tychonoff space X. If H ⊂ X is an open set in X, then
by O(H) (or by OvX(H)) we denote the maximal open set in vX satisfying OvX(H) ∩X = H. It is
easy to see that

OvX(H) =
⋃

Γ∈τvX ,
Γ∩X=H

Γ,
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where τvX is the topology of the space vX.
A compactification vX of a Tychonoff space X is called perfect with respect to an open set H in

X, if the equality [FrXH]vX = FrvXOvX(H) holds. If vX is perfect with respect to every open set
in X, then it is called a perfect compactification of the space X ([1], p. 232). A compactification
vX of a space X is perfect if and only if for any two disjoint open sets U1 and U2 in X the equality
O(U1

⋃
U2) = O(U1)

⋃
O(U2) holds. The Stone-Cěch compactification β X of X is a perfect com-

pactification of X. The equality O(U1

⋃
U2) = O(U1)

⋃
O(U2) holds for every pair of open sets U1

and U2 in X if and only if X is normal, and the compactification vX coincides with the Stone-Cěch
compactification β X, i. e. vX ∼= β X.

The following criterion plays a key role in investigation the class of Π-complete spaces ([4], The-
orem 1.1 Π), see pages 16-17).

Theorem 1.1. A Tychonoff space X is Π-complete if and only if for every x ∈ bX\X of an arbitrary
perfect compatification bX there exists a cover ω of X with Kpω = 1, pricking out x in bX (i. e.
x 6∈ ∪[ω]bX).

Since the Stone-Cěch compactification β X of a Tychonoff space X is a perfect compactification
of X then Theorem 1.1 implies the following assertion.

Corollary 1.1. A Tychonoff space X is Π-complete if and only if for every x ∈ β X \X there exists
a cover ω of X with Kpω = 1, pricking out x in β X (i. e. x 6∈ ∪[ω]β X).

Note that every compact (∼= Hausdorff compact space) is Π-complete. The square of the Sorgen-
frey line is Π-complete, but it is not paracompact (hence, it is not compact). The space T (ω1) of all
ordinal numbers less than the first uncountable number is a normal space but it is not Π-complete.

Π-complete spaces have the following properties.

(a) A closed subset of a Π-complete space is Π-complete ([4], p. 19).

(b) If f : X → Y is a perfect map onto a Π-complete space Y then X is also Π-complete ([4], p.
26).

(c) A Π-complete space is complete in the Dieudonné sense ([4], p. 18).

It is well-known that the action of functors on various categories of topological spaces and their
continuous maps is one of the main problems of the theory of covariant functors (see, for example,
[6], [2]). In the present paper we investigate the action of the functor exp (the construction of taking
of a hyperspace of a given space) on Π-complete spaces (section 2) and Π-complete maps (section 3).

2 Hyperspace of Π-complete spaces

Let X be a space. By exp X we denote a set of all nonempty closed subsets of X. A family of sets

O〈U1, . . . , Un〉 = {F ∈ exp X : F ⊂
n⋃
i=1

Un, F ∩ U1 6= ∅, . . . , F ∩ Un 6= ∅}

forms a base of a topology on exp X, where U1, . . . , Un are open nonempty sets inX. This topology is
called the Vietoris topology. A space exp X equipped with the Vietoris topology is called a hyperspace
of X. For a compact X its hyperspace exp X is also a compact.

Note for any space X it is well known [3] that

[O〈U1, . . . , Un〉]exp X = O 〈[U1]X , . . . , [Un]X〉 . (2.1)
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Let f : X → Y be a continuous map of compacts, F ∈ exp X. We put

(exp f)(F ) = f(F ).

This equality defines a map exp f : exp X → exp Y . For a continuous map f the map exp f is
continuous. Indeed, this follows from the equality

(exp f)−1O〈U1, . . . , Um〉 = O〈f−1(U1), . . . , f−1(Um)〉

which can be checked directly. Note that if f : X → Y is an epimorphism, then exp f is also an
epimorphism.

For a Tychonoff space X we put

expβ X = {F ∈ exp β X : F ⊂ X}.

It is clear, that expβ X ⊂ exp X. Consider the set expβ X as a subspace of the space exp X.
For a Tychonoff spaces X the space expβ X is also a Tychonoff space with respect to the induced
topology.

For a continuous map f : X → Y of Tychonoff spaces we put

expβ f = (exp βf)|expβ X
,

where βf : β X → β Y is the Stone-Cěch compactification of f (it is unique).
It is well known that for a Tychonoff space X the set expβ X is everywhere dense in exp β X, i. e.

exp β X is a compactification of the space expβ X. We claim exp β X is a perfect compactification
of expβ X. First we will prove the following technical statement.

Lemma 2.1. Let γX be a compact extension of a space X and, V and W be disjoint open sets in
γX. Let V X = X ∩ V and WX = X ∩W . Then the following equality is true:

[X \ V X ]γX ∩ [X \WX ]γX = [X \ (V X ∪WX)]γX .

Proof. It is clear that [X\V X ]γX∩[X\WX ]γX ⊃ [X\(V X∪WX)]γX . Let x ∈ [X\V X ]γX∩[X\WX ]γX .
Then each open neighbourhood Ox in γX of x intersects with the sets X \ V X and X \WX . Hence,
Ox 6⊂ V X and Ox 6⊂ WX . Therefore, since V X ∩ WX = ∅, we have Ox 6⊂ V X ∪ WX , i. e.
Ox ∩ X \ (V X ∪WX) 6= ∅. By virtue of arbitrariness of the neighbourhood Ox we conclude that
x ∈ [X \ (V X ∪WX)]γX .

Theorem 2.1. For a Tychonoff space X the space exp β X is a perfect compactification of the space
expβ X.

Proof. It is enough to consider basic open sets. Let U1 and U2 be disjoint open sets in X. Since β X
is perfect compactification of X we have Oβ X(U1 ∪ U2) = Oβ X(U1) ∪Oβ X(U2). Consider open sets

O〈Ui〉 = {F : F ∈ expβ X,F ⊂ Ui}, i = 1, 2

in expβ X. It is clear, that O〈U1〉 ∩O〈U2〉 = ∅. We will show that

Oexp β X(O〈U1〉 ∪O〈U2〉) = Oexp β X(O〈U1〉) ∪Oexp β X(O〈U2〉).

The inclusion ⊃ follows from the definition of the set O(H) (see [1], p. 234). That is why it is
enough to show the inverse inclusion. Let Φ ⊂ β X be a closed set such that Φ /∈ Oexp β X(O〈U1〉) ∪
Oexp β X(O〈U2〉). Then Φ ∈ exp β X \Oexp β X(O〈Ui〉), i = 1, 2. From [1] (see, p. 234) we have

exp β X \Oexp β X(O〈Ui〉) = [expβ X \O〈Ui〉]exp β X , i = 1, 2.
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Hence Φ ∈ [expβ X \O〈Ui〉]exp β X , i = 1, 2. Since O〈U1〉 ∩O〈U2〉 = ∅ by Lemma 2.1 we have

[expβ X \O〈U1〉]exp β X ∩ [expβ X \O〈U2〉]exp β X = [expβ X \O(〈U1〉 ∪O〈U2〉)]exp β X .

Therefore, Φ ∈ [expβ X \ Oexp β X(O〈U1〉 ∪ O〈U2〉)]exp β X , what is equivalent to the belonging Φ ∈
exp β X \Oexp β X(〈U1〉 ∪ 〈U2〉) (see [1], p. 234). In other words, we have Φ /∈ Oexp β X(〈U1〉 ∪ 〈U2〉).
Thus, we have established that the inclusion Oexp β X(〈U1〉∪〈U2〉) ⊂ Oexp β X(O〈U1〉∪Oexp β X(O〈U2〉)
is also true.

Lemma 2.2. Let U1, . . . , Un; V1, . . . , Vm be open subsets of a space X. Then

O〈U1, . . . , Un〉 ∩O〈V1, . . . , Vm〉 6= ∅

if and only if for each i ∈ {1, . . . , n} and for each j ∈ {1, . . . , m} there exists, respectively j(i) ∈
{1, . . . , m} and i(j) ∈ {1, . . . , n}, such that Ui ∩ Vj(i) 6= ∅ and Ui(j) ∩ Vj 6= ∅.

Proof. Assume that for every i ∈ {1, . . . , n} there exists j(i) ∈ {1, . . . , m} such that Ui ∩ Vj(i) 6= ∅
and for every j ∈ {1, . . . , m} there exists i(j) ∈ {1, . . . , n} such that Ui(j) ∩ Vj 6= ∅. For any pair
(i, j) ∈ {1, . . . , n} × {1, . . . , m} for which Ui ∩ Vj 6= ∅, choose a point xij ∈ Ui ∩ Vj and make

a closed set F consisting of these points. Then F ⊂
n⋃
i=1

Ui and F ⊂
m⋃
j=1

Vj. Besides, F ∩ Ui 6= ∅,

i = 1, . . . , n, and F ∩ Vj 6= ∅, j = 1, . . . , m. Therefore, F ∈ O〈U1, . . . , Un〉 ∩O〈V1, . . . , Vm〉.
We suppose exists i0 ∈ {1, . . . , n} such that Ui0 ∩ Vj = ∅ for all j ∈ {1, . . . , m}. Then

Ui0 ∩
m⋃
j=1

Vj = ∅ and for each F ∈ O〈U1, . . . , Un〉 we have F 6⊂
m⋃
j=1

Vj. Hence, F /∈ O〈V1, . . . , Vm〉.

Similarly, every Γ ∈ O〈V1, . . . , Vm〉 lies in
m⋃
j=1

Vj. Consequently, Γ ∩ Ui0 = ∅. Then Γ /∈

O〈U1, . . . , Un〉. Thus, O〈U1, . . . , Un〉 ∩O〈V1, . . . , Vm〉 = ∅.

Corollary 2.1. Let U , V be open subsets of a space X. Then O〈U 〉 ∩ O〈V 〉 6= ∅ if and only if
U ∩ V 6= ∅.

Lemma 2.3. Let υ be an open cover of a Tychonoff space X with Kpυ = 1. Then the family
expβ υ = {O〈U1, . . . , Un〉 : Ui ∈ υ, i = 1, . . . , n; n ∈ N} is an open cover of the space expβ X with
Kp expβ υ = 1.

Proof. Let O〈G1, . . . , Gk〉 be an element of expβ υ. Owing to Kpυ = 1, Lemma 2.2 implies
O〈G1, . . . , Gk〉 ∩ O〈U1, . . . , Ul〉 6= ∅ if and only if k = l and for every i ∈ {1, . . . k} the equality
Gi = Uj holds for some unique j ∈ {1, . . . k}. In other words O〈G1, . . . , Gk〉 ∩ O〈U1, . . . , Ul〉 6= ∅
if and only if {G1, . . . , Gk} = {U1, . . . , Ul}. Hence, Kp expβ υ = 1.

Let F ∈ expβ X. There is a subfamily υF ⊂ υ such that F ⊂
⋃

U∈υF
U . From a cover {F ∩ U :

U ∈ υF , F ∩ U 6= ∅} of the compact F one can allocate a finite subcover {F ∩ Ui : i = 1, . . . , m}.
We have F ∈ O〈U1, . . . , Um〉. So, the family expβ υ is a cover of expβ X. On the other hand by the
definition of Vietoris topology the cover expβ υ is open. Thus, expβ υ is an open cover of expβ X
with Kp expβ υ = 1.

The following statement is the main result of the section.

Theorem 2.2. For a Tychonoff space X its hyperspace expβ X is Π-complete if and only if X is
Π-complete.
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Proof. Property (a) implies the Π-completeness of the closed subset X ⊂ expβ X.
Let X be a Π-complete space and F ∈ exp β X \ expβ X. Owing to Theorem 2.1 exp β X is a

perfect compactification of expβ X. That is why it is enough to show the existence an open cover ω
of expβ X with Kpω = 1, pricking out F in exp β X. We have F 6⊂ X. By Corollary 1.1 for every
point x ∈ F \ X ⊂ β X \ X there exists an open cover ωx with Kpωx = 1, pricking out x in β X,
i. e. x 6∈ ∪[ωx]β X . Fix a point x0 ∈ F \ X. Consequently F 6⊂ [U ]β X for every U ∈ ωx0 . Hence
F 6∈ O〈[U1]β X , . . . , [Un]β X〉 for every n-tuple {U1, . . . , Un} ⊂ ωx0 . Therefore by equality (2.1) we
have

F 6∈ ∪[exp ωx0 ]exp β X = {[O〈U1, . . . , Un〉]exp β X : Ui ∈ ωx0 , i = 1, . . . , n; n ∈ N} .
Now, the using of Theorem 1.1 and Lemma 2.3 completes the proof.

3 Π-completeness of the map expβ f

For a continuous map f : (X, τX) → (Y, τY ) and O ∈ τY a preimage f−1O is called a tube (above
O). Remind, a continuous map f : X → Y is called [4] a T0-map, if for each pair of distinct points
x, x′ ∈ X, such that f(x) = f(x

′
), at least one of these points has an open neighbourhood in X

which does not contain another point. A continuous map f : X → Y is called totally regular, if for
each point x ∈ X and every closed set F in X not containing x there exists an open neighbourhood
O of f(x) such that in the tube f−1O the sets {x} and F are functional separable. Totally regular
T0-map is said to be a Tychonoff map.

Obviously, each continuous map f : X → Y of a Tychonoff space X into a topological space Y
is a Tychonoff map. In this case for every Tychonoff space X owing to the fact that the set expβ X
is a Tychonoff space with respect to the Vietoris topology, the map expβ f : expβ X → expβ Y is a
Tychonoff map.

A continuous, closed map f : X → Y is said to be compact if the preimage f−1y of each point
y ∈ Y is compact. A continuous map f : X → Y is compact if and only if for each point y ∈ Y and
every cover ω of the fibre f−1y, consisting of open sets in X, there is an open neighbourhood O of y
in Y such that the tube f−1O can be covered with a finite subfamily of ω.

A compact map bf : bfX → Y is said to be a compactification of a continuous map f : X → Y
if X is everywhere dense in bfX and bf |X = f . On the set of all compactifications of the map f it is
possible to introduce a partial order: for the compactifications b1f : b1fX → Y and b2f : b2fX → Y
of f we put b1f ≤ b2f if there is a natural map of b2fX onto b1fX. B. A. Pasynkov showed that
for each Tychonoff map f : X → Y there exists its maximal compactification g : Z → Y , which he
denoted by βf , and the space Z where this maximal compactification defines by βfX. For a given
Tychonoff map f its maximal compactification βf is unique.

Remark 1. Note that the maps b1f , b2f , βf are compactifications of the map f . The spaces b1fX,
b2f , βfX are some extensions of X but they are not obliged to be compactifications.

A Tychonoff map f : X → Y is said to be Π-complete, if for every point x ∈ βf X \X there exists
a disjoint clopen (∼=closed-open) cover of X pricking out x in βf X ([5], pp. 120 – 121).

We introduce the following notion.

Definition 1. [7] A compactification bf : bf X → Y of a Tychonoff map f : X → Y is said to be a
perfect compactification of f if for each point y ∈ Y and for every disjoint open sets U1 and U2 in X
there exists an open neighbourhood O ⊂ Y of y such that the equality

ObfX(U1 ∪ U2) ∩ bf−1O =
(
ObfX(U1) ∪ObfX(U2)

)
∩ bf−1O

holds.
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Let f : X → Y be a continuous map of a Tychonoff space X into a space Y . It is well known
there exists a compactification vX of X such that f has a continuous extension vf : vX → Y on
vX. It is clear, vf is a perfect compactification of f .

The following result is an analog of Theorem 1.1 for the case of maps.

Theorem 3.1. Let bf : bfX → Y be a perfect compactification of a Tychonoff map f : X → Y .
The map f is Π-complete if and only if for every point x ∈ bf X \ X there exists a disjoint clopen
cover of X pricking out x in bfX.

Proof. The proof is carried out similar to the proof of Theorem 1.1 Π from [4].

The following result is a variant of Theorem 2.1 for the case of maps.

Theorem 3.2. Let f : X → Y be a Tychonoff map. Then

expβ βf : expβ βf X → expβ Y

is a perfect compactification of
expβ f : expβ X → expβ Y.

Proof. The proof is similar to the proof of Theorem 2.1. Here the equality

(expβ βf)−1O〈U1, . . . , Um〉 = O〈βf−1(U1), . . . , βf−1(Um)〉

is used.

The following statement is the main result of this section.

Theorem 3.3. The Tychonoff map expβ f : expβ X → expβ Y is Π-complete if and only if a map
f : X → Y is Π-complete.

Proof. Let expβ f : expβ X → expβ Y be a Π-complete map. It implies that f : X → Y is a
Π-complete map since X ∼= exp1 X is a closed set in expβ X.

Let now f : X → Y be a Π-complete map. We consider an arbitrary point

F ∈ expβ βf X \ expβ X

and using Theorems 3.1 and 3.2 show that there exists a disjoint clopen cover of expβ X pricking
out the point F in expβ βf X.

By definition for every point x ∈ F \X ⊂ βf X \X there exists a disjoint clopen cover ωx of X
pricking out x in βf X. Fix a point x0 ∈ F \ X. Then x0 6∈ ∪[ωx0 ]βf X . Hence F 6⊂ [U ]βf X for all
U ∈ ωx0 . Consequently, F 6∈ O〈[U1]βf X , . . . , [Un]βf X〉 for every finite subcollection {U1, . . . , Un} ⊂
ωx0 . Then F 6∈ ∪[expβ ωx0 ] owing to (2.1). Applying Lemma 2.3 and equality (2.1) one more time
we conclude that expβ ωx0 is a disjoint clopen cover of expβ X pricking out the considered point F
in expβ βf X.

Corollary 3.1. The functor expβ lifts onto category of Π-complete spaces and their continuous maps.
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