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Abstract. In this paper the class of stochastic processes N, ,(F') is introduced and
an interpolation theorem for a quasilinear transform is proved. This theorem is a
generalization of the Marcinkiewicz interpolation theorem:.

1 Introduction

Assume that (€2, §, P) is a complete probability space. A family F' = {§,},>1 of
o-algebras §, such that §; C ... C §, C ... C § is called a filtration.

Let F' be a filtration and a sequence {X,},>; of random variables X,, be such
that for any n > 1 X, is a measurable function with respect to the o-algebra §,.
Then we say that the set X = (X,,,§,)n>1 is a stochastic process.

We consider the nondecreasing sequence of numbers X (F) = {X,,(F)},, where

_ 1
Xi(F) = sup —_—

CkeN.
Acg,,P(a)>0 P(A)

/A X P(dw)

By N, 4(F), 0 < p < oo, 0<q <oowe denote the set of all stochastic processes
X, defined on F' for which

1X 1 3y.q) = (Z k1%7Z> < oo (1)
k=1

if 0 < ¢ < oo and
[ X e () = sup k™ » X < 00 (2)

if ¢ = o0.

These classes are similar to the net spaces, which were introduced in [4], [5].

In this paper we prove a Marcinkiewicz-type interpolation theorem for the
introduced spaces. An interpolation method, essentially related to the properties
of the Markov stopping times, is introduced.
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Let us note that the interpolation properties of a quasilinear transform in the
space of martingales are studied in [2], [3], [6], [7] and other papers.

We write A < B (or A 2 B) if A < ¢B (or cA > B) for some positive constant ¢
independent of appropriate quantities involved in the expressions A and B. Notation
A =< B means that A < B and A 2 B.

2 Properties of the spaces N, ,(F)

It is said that a stochastic process (X,,§n)n>1, is a martingale if for every n € N
the following conditions hold: 1) F|X,,| < 00; 2) E(X,41|8») = X, (a.p.). If instead
of property 2) it is assumed that F(X,1|§,) > X, (E(Xu11|8n) < X,), then it
is said that the process X = (X, §,)>2, is a submartingale (supermartingale).

Definition. We say that a stochastic process X belongs to the class W (F') if there

exists a constant ¢ such that for every k < m and for every A € §y,

<c

/A X P(dw)

/A X, P(dw)

This inequality implies that X, (F) < c¢X,,(F) for every k < m. The class W (F)
contains martingales, nonnegative submartingales, nonpositive supermartingales.
The property of a process which is determined by belonging of the process to the
class W (F') we call the generalized monotonicity.

Lemma 1. Let X € W(F). Then
1) for 0 < q < q < oo,

||X||Np,q1(F) S Cp7q7q1||X||Np,q(F)’

2) for 0 <py <p<o00,0<q,q < o0,

||X||Np1,q1 (F) S Cp7Q7p17q1||X||Np,q(F)’
where Cp.g.q15 Cpgpign > 0 depend only on the indicated parameters.

Remark. Here and in the sequel constants c, ¢, etc. may be different in different
formulas.

Proof. Let ¢ > 0. By Minkowski’s inequality and by the generalized monotonicity
of a process X = (X,,, §n)n>1 We get

o " %
”XHNp,ql(F) — Z k€q1*1k—6q1—?XZ1 5
k=1

q1

1
o] [e%¢) q ar
< (S (Srene) ) s

k=1 r=k
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1
q1 a1

[ee] ) o a1
S () ) s

AN

k=1 r=k

q

1
5 rerom($e))

k=1

A

S (Z IX) = [1X| v, -

r=1

To prove the second statement it is enough to show that || X||n, . ) < (XN, )
and apply the first statement. Since p; < p, we have

1
q1
Xl ) = (zk XZI) <

0 a
k=1

Lemma 2. Let 0 < p < oo, a> 1. If X € W(F), then for 0 < ¢ < oo

1
o0 g q q
Xy, r) = (Z (a X) ) , (3)

k=0

and for ¢ = oo

||X||Np,oo( Asupa ank
keN

Here by X, we mean Xak), where [a*] is the integer part of the number

a*. Moreover, expressions X and ZB br will be understood as X[ Zk [a
respectively.

Proof. Using the generalized monotonicity of process X, we have

1
00 oo aktl-1 q
HX”Np,q(F) = (Z ]{;_%—17];) Z Z l———lqu Z

k=1 k=0 [=ak

l=ak k=0

1
o0 aktt—1 a oo a
Za_%Xakq Z % e (Z (a_ﬁXak)q> :
k=0

One can prove the reverse estimate in a similar way.
We will need the following Hardy-type inequalities.
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Lemma 3. Lets > 1, v >0, a >0, >0, v> 0, then for a nonnegative sequence
a = {ag }x the following inequalities hold:

s\ 1/s
(vk)” /

00 1/s
Zk as—1 Z lﬁ 1al S ’Ya a,f,s,v (Z k(ﬁ—g)s—laz> ;
k=1

oo 1/s
Z kozs—l Z lﬁ 1al _aCa,ﬁ,s,y (Z k(ﬁ+ )s—1 s) ’
k=1 =(vk)¥ k=1
o 1/s
(Z (2 —ak Z Qﬁm ) ) < Caﬁsw <Z (2(5 )k ak)s> ’
k=0 k=0
0o 1/s
(Z (2‘*’“ > 25mam> ) < Copion ( (2<5+‘5>kak)8> :
k=0 m=~k k=0

3 Interpolation theorem

Let T = {7,}32, be a transform that transforms a stochastic process X, which
is defined on the system F = {F}>°,, to the stochastic process T(X) =
{Th(X), ®,}5°,, which is defined on the system R = {9R}°°,. It is said that the
transform 7' is quasilinear if there exists a constant C' > 0 such that for any n € N
the following inequality is almost probably true

|T(X) = T, (V)| < CITW(X =Y. (4)

A random variable 7, which takes values in the set (1,2,...,00), is called the
Markov time of the filtration G = {&,,},>1 if {w : 7(w) = n} € &, for any n € N.
The Markov time 7, for which 7(w) < oo (a.p.), is called the stopping time.

Let X = (X, ,),>1 be a stochastic process, 7 be Markov time. By X7 we denote

n—1
the stopped process X7 = (X,ar, &,,), where Xonr = D0 XoXrem(w) + XoXrsn(w)
m=1

and y4(w) is the characteristic function of the set A.
It is known that if a process X = (X, ®,),>1 is a martingale (submartingale),
then the process X7 = (X,nr, B,)n>1 is also a martingale (submartingale) [2].
Denote X/ (w) = max | Xk(w)] and X* = (X}, &) n>1-

The transforms X7 and X* of the stochastic process X are examples of
quasilinear transforms.

Theorem.Let()<po<p1<oo O<qgp<q <oo,0<b<1,1<s < o0,
l =Lt + o £ l = lp 6 +— X e W(F) and T = {T,}>2, be a quasilinear transform.
Iffor cmy k E N the followmg conditions hold

IT(X*) vy, o) < Ml XF| ) (5)



12 T. Aubakirov, E. Nursultanov

IT(X = X[ wgy e (m) < Mol X = X P, 289, (6)

then
IT(X) |, o) < CMy" MY X |, (), (7)

where C' > 0 depends only on po, p1, qo, q1, 0.

Proof. Let v > 0, v > 0. Using quasilinearity of the transform 7" and Minkowski’s
inequality, we have

1
1T(X) || nyo(r) = (Z ETAT(X) ) S

< (Zklmmms) +(Zk13Tk<X—X<vk>">°> S
k=1

k=1

Denote A\, = (vk)” for any k € N. Using the definition of functional (2) and
conditions (5) and (6), we have

Te(X %) < fear My || X ||y, o DX — X)) < koo Mol| X — XAk||Np071(F). (9)

By definitions of processes X* and X — X*, taking into account the generalized
monotonicity of the sequences {X;} and {X,, — Xy}, we have

Ap—1 00
X |y iy = S U X+ X, YU S

=1 1=\p

Ak

< (Zr X AL T Zz*mg) ,
=1 I=\g
1X = X\, 1 (r Z TI0 =S eR B P > (10)

=X\ =X\

Substituting estimates (9) and (10) in the first summand of the right-hand side
of (8) and using Minkowski’s inequality we have

1
[e.9] )\k § s
S (S (e o Zf‘“f) )
l

=1 1 )\k
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(Z k (k q ql )\Po P1 Zl poXl> ) . (12)

=X,

Let us estimate the first summand in the right-hand side of (12):

0o 1 i1 Ak i § % o N (vk)¥ __1
;:E kqm?:l X, = Z: zy (—)
=1 =1

k=1

» =

By applying Lemma 3 and using equalities

1 1-0 6 1 1-0 ¢
q o @ p Po D
and
(2-2)
q0 q1
V=",
1 1
(po pl)
we obtain

s 1
=1 _1l,1 _1_L ’ 11

(Si(terrm) ) st e
k=1

By using Lemma 3 we estimate the second summand of the right-hand side of (12):

e 1 . 1 0 o S\ s
(E E (k ;+q11 )\IZO P1 E [ =27 Xl) ) =
=1 1=\

w =

e 1
SEad D3l ot B
=1 =(vk)”
1
S XN, (14)
Substituting estimates (13) and (14) in (12), we get
1
—— 11
<Zk15Tk(XA’C)> S Myys o || X, ) (15)
k=1

Applying the second estimates of (9) and (10) to the second summand of the right
hand side of (8), we have

1
<Z kW) <

k=1
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1

i e 21X 2\ ¢ 11
<M, T [ < Myys o || X . 16
san (Sout b (AR ) S ot il 09
k=1 1=y
09 9091
Choosing v = My* ™™ M°™" and substituting (15) and (16) in (8), we obtain (7).
]
The classical interpolation Marcinkievicz - Calderon theorem follows from this
theorem. Let f be a measurable function on (€2, 1) and

m(o, f) = piz: |f(z)] > o}

its distribution function. The function

fr@t) =inf{o : m(o, f) <t}

is called the nonincreasing rearrangement of the function f.

Let 0 < p < oo and 0 < g < co. The Lorentz space L,,(€2, i) is defined as the
set, of all measurable functions f such that

o0 1/q
HfHLp,qz( / <t1/pf*<t>>q%) <

Il =510 1757 < 0

for 0 < g < 0o and

for ¢ = oo.

Corollary (Marcinkievicz—Calderon theorem). Let 1 < s < 00, 0 < pg < p1 <
00,0<qo<g<q <00,0€(0,1),1/p=(1-0)/po+0/p1, 1/qg= (1-0)/q0+0/q1.
If T is a quasilinear map and

T:L,1(D,v) = Ly (2, u)  with the norm M;, i =0,1,

then
T:L,o(D,v) — Lys(Q,u) and ||T| < My MY

Proof. Let f > 0, f € L,s(Q,p) and f*(t) be the nonincreasing rearrangement
of f. Let us define sets Q, = {w e Q: f(w) < f*(1/n)}, n € N. The sequence
X = (Xu,8n),> is a stochastic process of class W(F'), where X,(w) =

min { f(w), f*(1/n)}, §, is the minimal o— algebra containing set 2 and system
of all measurable subsets €2,,. By the property of monotonicity of f* we have

0o 1/s 00 1/s
HfHLp,s(n,u)X<Z (k:—if*u/k:))}) =(Z (ﬁﬁ)ﬁ) = Xl

k=1

Let X", X — X" be the stopping time, the starting time respectively, of the process
X corresponding to the time n. Then we also have

||Xn||Lp,s(Qyﬂ) = ||Xn||Np,s(F)’ (17)
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Hf - XnHLp,s(Qy/Jf) = ”X - Xn”Np,s(F)' (18)
For a quasilinear operator 7" we will define a transform T which transforms a
sequence X = {X;}~, to the sequence TX = {TX,};,. Define the system

of sets & = { Py}, P = {Qm}izzr Then for the stopped sequence X" =
()anwﬂw,f%)k21,“@ have

TX" = sup ko 0 su
” ”Nqo@o( p AE‘IE)k P(A)

[ X 2P0 <

1
< sup sup ko sup ———
k<r<n k€N P(A)>1 P(A)

/ TXr<y>dP<y>\ <

< sup [Ty, < swp MoK, S Mo Xl
<r<n

1<r<n
According to (17) we have
ITX™ | gy @) S Mo [ Xy, )

and

1
T(X — X" =sup ka 1 su
H ( )Hquy E A€<II>D;C P(A)

/P<A> T (X = Xa) <y>dP<y>' <

< sup sup I sup
r>n kEN P(A)>1 P(A)

/ T (X, —Xn)dP’ <
P(4)

S s [T(Xy = Xo)llp,, o, < Misup [ X = Xaflp, = Mi[lf = Xallp, , -
Thus, taking into account (18), we get

17X = X"l

a1,00(®)

SMX = Xally, )
then, by the Theorem, we have
17Xy, @) S Mo~ " MY | X |y, (k)

which is equivalent to
ITflly,, S Mg MY fl,, -

In the case when f changes sign, we consider the representation f = f. — f_, where
fr =max(f(x),0) >0, f. = fi. — f > 0. Using the quasilinearity of the operator T’
we obtain the statement of the corollary. O
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