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1 Introduction

The classical Hilbert transform H (for measurable functions on R) is defined, in the sense of principal
value, by the following formula

(Hx)(t) = p.v.
1

π

∫
R

x(s)

t− s
ds.

However, it may be undefined for some measurable functions. Later we will show that the maximal
domain for H is the Lorentz space Λϕ0(R) (see Remark 2.1), where ϕ0 is defined in (2.6) below. Over
the last few years, the characterization of optimal domain and range spaces, has been considered for
many different kinds of operators and function spaces as applications to Sobolev embeddings [7, 9];
classical results in Fourier analysis such as the Hausdorff-Young inequality and Fourier multipliers
[2, 16, 17]; vector measures [19]. For instance, in [18] the optimal domain and range spaces for Lp
(among solid Banach spaces), and in [8] the optimal domains in the class of rearrangement-invariant
Banach function spaces were described. Operators with a similar bihaviour to the Hilbert transform
were studied in the papers [4], [10]. The symmetric quasi-Banach optimal range of the classical
Hilbert transform acting on a symmetric quasi-Banach function spaces were studied in [22] (see
also [12] [23], [24]), where authors described the optimal range for its noncommutative counterparts
including the triangular truncation operator with applications to the theory of operator Lipschitz
functions and commutator estimates in ideals of compact operators.

Let E and F be rearrangement-invariant Banach function spaces on R. In this paper, we are
considering the problem of what is the least rearrangement-invariant Banach function space F (R)
such that H : E(R) → F (R) is bounded for a fixed rearrangement-invariant Banach function space
E(R).We shall be referring to the space F (R) as the optimal range space for the operatorH restricted
to the domain E(R) ⊆ Λϕ0(R). Similar constructions have been considered in [20] and [6] (see also
[21]) for the optimal range and domain spaces for the Hardy and Hardy type operators. We use
their methods to obtain similar results for the Hilbert transform. This problem reduces to a familiar
problem settled by D. Boyd [5] in 1967. Indeed, in this special case [5, Theorem 2.1] (see also [1]
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for the discrete case) asserts that H : E(R) → F (R) if and only if S : E(R+) → F (R+), where the
operator S, known as the Calderòn operator, is defined by the formula

(Sx)(t) =
1

t

∫ t

0

x(s)ds+

∫ ∞
t

x(s)

s
ds, x ∈ Λϕ0(R+).

Effectively, the problem reduces to describing the optimal range of the operator S. Addressing pre-
cisely this framework, one of our main results, Theorem 3.1, provides a description of the optimal
range F (R) among the rearrangement-invariant Banach function spaces for a given rearrangement-
invariant Banach function space E(R), thereby complementing [5, Theorem 2.1]. The main results
will be proved in Section 3. We also obtain some results on the existence of optimal rearrangement-
invariant Banach function range of the Hilbert transform on the Lorentz and Marcinkiewicz spaces
in Section 4.

2 Preliminaries

2.1 Rearrangement-invariant Banach function spaces

Let (I,m) denote the measure space I := R+ = (0,+∞) (resp. I := R = (−∞,+∞)) equipped
with the Lebesgue measure m. Let L(I) be the space of all measurable real-valued functions on
I equipped with the Lebesgue measure m, i.e. functions which coincide almost everywhere are
considered identical. Let L(I)+ be the cone of m-measurable functions on R whose values lie in
[0,∞]. The characteristic function or indicator of a m-measurable subset ∆ of R will be denoted by
χ∆.

Definition 1. [3, Definition I. 1.1, p. 2] A mapping ρ : L(I)+ → [0,∞] is called a Banach function
norm if, for all x, y, xn, (n = 1, 2, 3, ...), in L(I)+, for all m-measurable subsets ∆ of R, the following
properties hold:

(i) ρ is a norm

(ii) 0 ≤ y ≤ x a.e. ⇒ ρ(y) ≤ ρ(x)

(iii) 0 ≤ xn ↑ x a.e. ⇒ ρ(xn) ↑ ρ(x)

(iv) ρ(∆) <∞ ⇒ ρ(χ∆) <∞

(v) ρ(∆) <∞ ⇒
∫

∆
xdm ≤ c∆ρ(x)

for some constant c∆, 0 < c∆ <∞, depending on ∆ and ρ but independent of x.

Let ρ be a function norm. The set E = E(ρ) of all functions x in L(I) for which ρ(|x|) < ∞ is
called a Banach function space. For any x ∈ E, define

‖x‖E = ρ(|x|).

Define L0(I) to be the subset of L(I) which consists of all functions x such that

m({t : |x(t)| > s})

is finite for some s > 0. Two functions x and y are called equimeasurable, if

m({t : |x(t)| > s}) = m({t : |y(t)| > s}).
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For x ∈ L0(I), we denote by µ(x) the decreasing rearrangement of the function |x|. That is,

µ(t, x) = inf{s ≥ 0 : m({|x| > s}) ≤ t}, t > 0.

We say that y is submajorized by x in the sense of Hardy–Littlewood–Pólya (written y ≺≺ x) if∫ t

0

µ(s, y)ds ≤
∫ t

0

µ(s, x)ds, t ≥ 0.

Definition 2. [3, Definition 4.1, p. 59] A Banach function space E is called rearrangement-invariant
if, whenever x belongs to E and y is equimeasurable with x, then y also belongs to E and ‖y‖E =
‖x‖E.

Throughout this paper we use RIBF space instead of rearrangement-invariant Banach function
space. It is well known that Lp(I), (1 ≤ p ≤ ∞) and the Lorentz spaces Lp,q(I), (1 < p, q < ∞)
are basic examples of RIBF spaces. For the general theory of RIBF spaces, we refer the reader to
[3, 11, 12].

The dilation operator on L0(I) is defined by

σsx(t) := x

(
t

s

)
, s > 0.

It is obvious that the dilation operator σs is continuous on L0(I) (see [11, Chapter II.3, p. 96]).
Let E be a RIBF space on I. The upper and lower Boyd indices of E(I) are numbers βE and β

E
defined by

βE := lim
t→0+

log ‖σs‖E→E
log t

, β
E

:= lim
t→∞

log ‖σs‖E→E
log t

.

Moreover, they satisfy 0 ≤ β
E
≤ βE ≤ 1 (see [3, Definition III.5.12 and Proposition III.5.13, p.

149]).

2.2 Köthe dual of RIBF spaces

Next we define the Köthe dual (or associate) space of RIBF spaces. Given a RIBF space E on I,
equipped with the Lebesgue measure m the Köthe dual space E× on I is defined by

E(I)× =

{
y ∈ L0(I) :

∫
I

|x(t)y(t)|dt <∞, ∀x ∈ E(I)

}
.

E× is a Banach space with the norm

‖y‖E(I)× := sup

{∫
I

|x(t)y(t)|dt : x ∈ E(I), ‖x‖E(I) ≤ 1

}
. (2.1)

If E(I) is a RIBF space, then (E×(I), ‖ · ‖E×(I)) is also a RIBF space (cf. [3, Section 2.4]). For
more details we refer to [3, 12]).

2.3 L1 ∩ L∞ and L1 + L∞ spaces

Two examples below are of particular interest. Consider the separated topological vector space L0(I)
consisting of all measurable functions x such that m({t : |x(t)| > s}) is finite for some s > 0 with
the topology of convergence in measure. Then the spaces L1(I) and L∞(I) are algebraically and
topologically imbedded in the topological vector space L0(I), and so these spaces form a Banach
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couple (see [11, Chapter I] for more details). The space (L1 ∩L∞)(I) = L1(I)∩L∞(I) consists of all
bounded summable functions x on I with norm

‖x‖(L1∩L∞)(I) = max{‖x‖L1(I), ‖x‖L∞(I)}, x ∈ (L1 ∩ L∞)(I).

The space (L1 +L∞)(I) = L1(I)+L∞(I) consists of functions which are sums of bounded measurable
and summable functions x ∈ L0(I) equipped with the norm given by

‖x‖(L1+L∞)(I) = inf{‖x1‖L1(I) + ‖x2‖L∞(I) : x = x1 + x2,

x1 ∈ L1(I), x2 ∈ L∞(I)}.
For more details we refer the reader to [3], [11]. We recall that that every RIBF space on I (with
respect to Lebesgue measure) satisfies

(L1 ∩ L∞)(I) ⊂ E(I) ⊂ (L1 + L∞)(I)

equipped with the norm given by with continuous embeddings (see for instance [11, Theorem II. 4.1.
p. 91]).

2.4 Lorentz and Marcinkiewicz spaces

Definition 3. [11, Definition II. 1.1, p. 49] A function ϕ : [0,∞)→ [0,∞) is said to be quasiconcave
if

(i) ϕ(t) = 0⇔ t = 0;

(ii) ϕ(t) is positive and increasing for t > 0;

(iii) ϕ(t)
t

is decreasing for t > 0.

Observe that every nonnegative concave function on [0,∞) that vanishes only at origin is quasi-
concave. The reverse, however, is not always true. But, we may replace, if necessary, a quasiconcave
function ϕ by its least concave majorant ϕ̃ such that

1

2
ϕ̃ ≤ ϕ ≤ ϕ̃

(see [3, Proposition 5.10, p. 71]).
Let Ω denote the set of all increasing concave functions ϕ such that ϕ(+0) = 0. For a function ϕ

in Ω, the Lorentz space Λϕ(I) is defined by setting

Λϕ(I) :=

{
x ∈ L0(I) :

∫
R+

µ(s, x)dϕ(s) <∞
}

equipped with the norm

‖x‖Λϕ(I) :=

∫
R+

µ(s, x)dϕ(s). (2.2)

Let ψ ∈ Ω. Define the Marcinkiewicz space Mψ(I) as follows:

Mψ(I) :=

{
x ∈ L0(I) : sup

t>0

1

ψ(t)

∫ t

0

µ(s, x)ds <∞
}

(2.3)

with the norm

‖x‖Mψ(I) := sup
t>0

1

ψ(t)

∫ t

0

µ(s, x)ds <∞. (2.4)

These spaces are examples of RIBF spaces. For more details on the Lorentz and Marcinkiewicz
spaces, we refer the reader to [3, Chapter II.5] and [11, Chapter II.5].
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2.5 Calderón operator and Hilbert transform

Let E(R+) be a RIBF space. For a function x ∈ E(R+), the operator S is defined as follows:

(Sx)(t) :=
1

t

∫ t

0

x(s)ds+

∫ ∞
t

x(s)
ds

s
. (2.5)

It is obvious that S is a linear operator. Next, it is easy to see that if 0 < t < t′, then

min
(

1,
s

t′

)
≤ min

(
1,
s

t

)
≤ t′

t
·min

(
1,
s

t′

)
, (s > 0).

So, if x is nonnegative, it follows from the first of these inequalities that (Sx)(t) is a decreasing
function of t. The operator S is often applied to the decreasing rearrangement µ(x) of a function
x defined on some other measure space. Since Sµ(x) is itself decreasing, it is easy to see that
µ(Sµ(x)) = Sµ(x). Throughout this paper, we shall use the symbol A . B to indicate that there
exists a universal positive constant cabs, independent of all important parameters, such that A ≤
cabsB. A ≈ B means that A . B and A & B.

The next proposition, which gives the exact domain of the operator S, was proved in [23]. For
the convenience, we recall its proof here.

Proposition 2.1. Let S be the operator defined by the above formula (2.5). If

ϕ0(t) :=

{
t log( e

2

t
), 0 < t < 1,

2 log(et), 1 ≤ t <∞, (2.6)

then the Lorentz space Λϕ0(R+) is the maximal among the RIBF spaces E(R+) such that

S : E(R+)→ (L1 + L∞)(R+).

Proof. Let E(R+) be a RIBF space such that S : E(R+)→ (L1 + L∞)(R+). If

‖Sµ(x)‖(L1+L∞)(R+) ≈ ‖x‖Λϕ0 (R+), (2.7)

then, for any x ∈ E(R+), we have

‖x‖Λϕ0 (R+) . cabs‖Sµ(x)‖(L1+L∞)(R+) . cabs‖x‖E(R+).

This shows that E(R+) ⊂ Λϕ0(R+). Therefore, it is sufficient to show (2.7). Indeed, if x ∈ Λϕ0(R+),
then by using Fubini’s theorem and (2.6), we obtain

‖Sµ(x)‖(L1+L∞)(R+) =

∫ 1

0

Sµ(t, x)dt
(2.5)
=

∫ 1

0

1

t

∫ t

0

µ(s, x)dsdt+

∫ 1

0

∫ ∞
t

µ(s, x)

s
dsdt

=

∫ 1

0

µ(s, x)
(
1− log(s)

)
ds+

∫ ∞
1

µ(s, x)
1

s
ds

≤
∫ 1

0

µ(s, x)
(
1− log(s)

)
ds+ 2

∫ ∞
1

µ(s, x)
1

s
ds

(2.2)
= ‖x‖Λϕ0 (R+).

On the other hand, we have

‖x‖Λϕ0 (R+)
(2.2)
=

∫ 1

0

µ(s, x)
(
1− log(s)

)
ds+ 2

∫ ∞
1

µ(s, x)
1

s
ds

≤ 2

∫ 1

0

µ(s, x)
(
1− log(s)

)
ds+ 2

∫ ∞
1

µ(s, x)
1

s
ds

(2.5)
= 2‖Sµ(x)‖(L1+L∞)(R+)
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Let x ∈ Λϕ0(I). Since for each t > 0, the kernel kt(s) = 1
s
·min

{
1, s

t

}
is a decreasing function of

s, it follows from [3, Theorem II.2.2, p. 44] that

|(Sx)(t)| (2.5)
=
∣∣∣ ∫

R+

x(s) min
{

1,
s

t

}ds
s

∣∣∣
≤
∫
R+

|x(s)|min
{

1,
s

t

}ds
s

≤
∫
R+

µ(s, x) min
{

1,
s

t

}ds
s

(2.5)
= (Sµ(x))(t).

(2.8)

For more information about these operators, we refer to [3, Chapter III] and [11, Chapter II].
If x ∈ Λϕ0(R), then the classical Hilbert transform H is defined by the principal-value integral

(Hx)(t) = p.v.
1

π

∫
R

x(s)

t− s
ds, x ∈ Λϕ0(R). (2.9)

Remark 2.1. Let x = xχ(0,∞) be such that x is a non-negative decreasing function on R+. Then, it
is easy to see that

|(Hx)(−t)| (2.9)
=

1

π

∣∣∣∣∫
R+

x(s)

−t− s
ds

∣∣∣∣
=

1

π

∫
R+

x(s)

t+ s
ds =

1

π

(∫ t

0

x(s)

t+ s
ds+

∫ ∞
t

x(s)

t+ s
ds

)
≥ 1

π

(∫ t

0

x(s)

2t
ds+

∫ ∞
t

x(s)

2s
ds

)
=

1

2π
·
(

1

t

∫ t

0

x(s)ds+

∫ ∞
t

x(s)

s
ds

)
(2.5)
=

1

2π
(Sx)(t), t > 0.

If (Hx)(−t) exists for any t > 0, then it follows that Sµ(x) exists, and it means x belongs to the
domain of S, i.e. x ∈ Λϕ0(R+) (see (2.5)). On the other hand, if x ∈ Λϕ0(R+), then by [3, Theorem
III.4.8, p. 138], we have

µ(Hx) . Sµ(x),

which shows the existence of Hx.

3 Optimal range for the Hilbert transform

In this section, we describe the optimal RIBF range space for the classical Hilbert transform. So,
we shall say optimal RIBF range instead of optimal rearrangement-invariant Banach function range
space. Let E and F be RIBF spaces on R+ and let E× and F× be their Köthe duals on R+,
respectively.

First, we need the following lemma.

Lemma 3.1. Let S be the operator defined in (2.5). Then S is a self-adjoint operator in the following
sense: ∫

R+

(Sx)(s)y(s)ds =

∫
R+

x(s)(Sy)(s)ds, (3.1)

for all nonnegative functions x, y ∈ Λϕ0(R+).
Furthermore, if S : E(R+)→ F (R+), then S : F×(R+)→ E×(R+) and we have

‖S‖F×(R+)→E×(R+) ≤ ‖S‖E(R+)→F (R+). (3.2)
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Proof. Equality (3.1) follows immediately from (6.31) in [11, Chapter II.7, p. 138]. Let us prove
(3.2). Since S : E(R+)→ F (R+) and S is a positive operator, it follows from [15, Proposition 1.3.5,
p. 27] that S is bounded from E(R+) to F (R+). Then by the definition of the Köthe duality (see
(2.1)) and (3.1), we have

‖Sy‖E×(R+)
(2.1)
= sup{

∫
R+

x(s)(Sy)(s)ds : x ∈ E(R+), ‖x‖E(R+) ≤ 1}

(3.1)
= sup{

∫
R+

(Sx)(s)y(s)ds : x ∈ E(R+), ‖x‖E(R+) ≤ 1}

≤ sup{‖Sx‖F (R+)‖y‖F×(R+) : x ∈ E(R+), ‖x‖E(R+) ≤ 1}
≤ sup{‖S‖E(R+)→F (R+)‖x‖E(R+)‖y‖F×(R+) : x ∈ E(R+), ‖x‖E(R+) ≤ 1}
≤ ‖S‖E(R+)→F (R+)‖y‖F×(R+).

Since ‖S‖E(R+)→F (R+) is finite, this concludes the proof.

Definition 4. Let E be a RIBF space on R such that E(R) ⊂ Λϕ0(R), where ϕ0 defined in (2.6).
Let us define the set

F (R+) := {x ∈ (L1 + L∞)(R) : ‖x‖F (R) <∞},

where

‖x‖F (R) := sup
µ(y)∈(L1∩L∞)(R+)

1

‖Sµ(y)‖E×(R+)

∫
R+

µ(t, x)µ(t, y)dt,

and the operator S is defined as in Proposition 2.1.

It was proved in [20, Theorem 3.2] that (F (R+), ‖ · ‖F (R+)) is a RIBF space. Moreover, it was
shown that the space (F (R+), ‖ · ‖F (R+)) is the optimal range for the operator S. The following
theorem describes the optimal range for the Hilbert transform H defined on R among the RIBF
spaces.

Theorem 3.1. Let E be a RIBF space on R such that E(R) ⊂ Λϕ0(R), where ϕ0 defined in (2.6).
Then, the space F (R) defined in Definition 4 is the optimal RIBF range among the RIBF spaces for
the Hilbert transform H defined on E(R).

Proof. Let E(R) ⊂ Λϕ0(R). an argument similar to the one in [20, Theorem 3.2] shows that (F (R), ‖·
‖F (R)) is a RIBF space. Let us show that the Hilbert transform is bounded from E(R) into F (R).
Now, let x ∈ E(R), then by [3, Theorem III.4.8, p. 138] and by (3.1) in Lemma 3.1, we have

‖Hx‖F (R) = sup
µ(y)∈(L1∩L∞)(R+)

1

‖Sµ(y)‖E×(R+)

∫
R+

µ(s,Hx)µ(s, y)ds

≤ cabs sup
µ(y)∈(L1∩L∞)(R+)

1

‖Sµ(y)‖E×(R+)

∫
R+

Sµ(x)(s)µ(s, y)ds

(3.1)
= cabs sup

µ(y)∈(L1∩L∞)(R+)

1

‖Sµ(y)‖E×(R+)

∫
R+

µ(s, x)(Sµ(y))(s)ds

≤ cabs‖µ(x)‖E(R+) = cabs‖x‖E(R).

Hence, H : E(R) → F (R) is bounded. Now, suppose that G(R) is another RIBF space such that
H : E(R)→ G(R) is bounded. Let us show that F (R) ⊂ G(R). If x ∈ E(R+), then by [3, Proposition
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III. 4.10, p. 140] there is a function y ∈ E(R) equimeasurable with x such that Sµ(x) ≤ 2µ(Hy).
Thus

‖Sµ(x)‖F (R+) ≤ 2‖µ(Hy)‖F (R+) = 2‖Hy‖F (R)

≤ cabs‖y‖E(R) = cabs‖x‖E(R+),

which shows that
S : E(R+)→ F (R+)

is bounded. Therefore, Lemma 3.1 implies that S is self-adjoint and S : F×(R+) → E×(R+) is
bounded. So, for any y ∈ L0(R+) such that µ(y) ∈ F×(R+), we have

‖Sµ(y)‖E×(R+) ≤ ‖S‖G×(R+)→E×(R+)‖y‖G×(R+) ≤ ‖S‖E(R+)→G(R+)‖y‖G×(R+).

Hence, for any x ∈ G(R+), we obtain

‖x‖F (R+) = sup
µ(y)∈(L1∩L∞)(R+)

1

‖y‖G×(R+)

∫
R+

µ(s, x)µ(s, y)ds

≤ ‖S‖E(R+)→G(R+) sup
µ(y)∈(L1∩L∞)(R+)

1

‖Sµ(y)‖E×(R+)

∫
R+

µ(s, x)µ(s, y)ds

= ‖S‖E(R+)→G(R+)‖x‖F (R+).

Therefore, we have that F (R) ⊂ G(R) as claimed. So, the space F (R) is the optimal RIBF space for
the Hilbert transform H on E(R). This completes the proof.

Similarly to [20, Proposition 3.9], we obtain the following result for the Hilbert transform.

Proposition 3.1. Let E be a RIBF space on R+ (respectively R) such that E(R+) ⊂ Λϕ0(R+)
(respectively E(R) ⊂ Λϕ0(R)), where ϕ0 defined in (2.6). Let S be the operator defined in (2.5).
Then, the following are equivalent:

(i) there exists an optimal RIBF range F (R) for the Hilbert transform H on E(R);

(ii) S : E(R+)→ (L1 + L∞)(R+) is a bounded operator;

(iii) Sχ(0,1) ∈ E×(R+).

Moreover, if any of these conditions holds, then the optimal RIBF range for the Hilbert transform on
E(R) is given by

F (R) := {x ∈ (L1 + L∞)(R) :

‖x‖F (R) = sup
µ(y)∈(L1∩L∞)(R+)

1

‖Sµ(y)‖E×(R+)

∫
R+

µ(s, x)µ(s, y)ds <∞}.

Proof. (i)⇒ (ii) Let F (R) be the optimal RIBF range for the Hilbert transform. Then H : E(R)→
F (R) is a bounded operator. Since the embedding F (R) ↪→ (L1 + L∞)(R) is continuous, it follows
that H : E(R) → (L1 + L∞)(R) is bounded. On the other hand, [3, Proposition III. 4.10, p. 140]
shows that to each x ∈ E(R+), there corresponds a function y ∈ E(R) equimeasurable with x such
that Sµ(x) ≤ 2µ(Hy). Then

‖Sµ(x)‖(L1+L∞)(R+) ≤ 2‖µ(Hy)‖(L1+L∞)(R+) = 2‖Hy‖(L1+L∞)(R)

≤ cabs‖y‖E(R) = cabs‖x‖E(R+),
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which shows that
S : E(R+)→ (L1 + L∞)(R+)

is bounded.
(ii) ⇒ (iii) Since S : E(R+) → (L1 + L∞)(R+) is bounded and self-adjoint, by Lemma 3.1 we

also have that S : (L1 ∩ L∞)(R+) → E×(R+) is bounded. Now, since χ(0,t) ∈ (L1 ∩ L∞)(R+) for
every t > 0, it follows that Sχ(0,t) ∈ E×(R+).

(iii)⇒ (ii) Let x ∈ E(R+). Since µ(Sx) ≤ Sµ(x) by (2.8), it follows from the Hölder inequality
[3, Theorem I.2.4, p.9] that

‖Sx‖(L1+L∞)(R+) =

∫ 1

0

µ(s, Sx)ds

(2.8)
≤
∫ 1

0

(Sµ(x))(s)ds

=

∫
R+

µ(s, x)Sχ(0,1)(s)ds

≤ ‖x‖E(R+)‖Sχ(0,1)‖E×(R+)
.

Hence, since Sχ(0,1) ∈ E×(R+), it follows that S : E(R+)→ (L1 + L∞)(R+) is bounded.
(ii)⇒ (i) As H satisfies the hypothesis of Theorem 3.1, we obtain that F (R) is the optimal RIBF

range for the Hilbert transform H on E(R).

Remark 3.2. Since Sχ(0,1) does not belong to L1(R+) and L∞(R+), one direct application of Propo-
sition 3.1 shows that there are no optimal RIBF ranges F (R) and G(R) which are Banach such that
H : L1(R)→ F (R) and H : L∞(R)→ G(R), respectively.

4 Existence of optimal RIBF range for the Lorentz and Marcinkiewicz
spaces

In this section, we will show the existence of the optimal range of the operator S and Hilbert transform
for the Lorentz and Marcinkiewicz spaces.

Similar result to the following was obtained in [21, Lemma 2.1] for the Hardy operator.

Lemma 4.1. Let ϕ be an increasing concave function such that ϕ(0+) = 0. Let E be a symmetric
space on R+ and let S be the operator defined in (2.5). The following conditions are equivalent:

(i) ‖Sχ(0,t)‖E(R+) . ϕ(t), t > 0;

(ii) S : Λϕ(R+)→ E(R+) is bounded.

Proof. Since the fundamental function of Λϕ(R+) is equal to ϕ(t) (see [3, Chapter II.5, pp. 65-73]),
(ii) ⇒ (i) part is clear. Let us now prove that (i) implies (ii). If x ∈ Λϕ0(R), where ϕ0 defined in
(2.6) is a positive function on R+, and x equal to zero on the negative semiaxis, then by the definition
of Hilbert transform (2.9), we have

H(x)(−t) = p.v.
1

π

∫
R

x(−s)
t− s

ds = p.v.
1

π

∫
R+

x(s)

t+ s
ds.

Hence, if t > 0, then

H(x)(−t) =

∫
R+

x(s)

t+ s
ds ≥ π

2
(Sx)(t).
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Taking decreasing rearrangement µ, we obtain

µ(t, Sx) . µ(t,Hx), t > 0. (4.1)

Let ∆ be a Lebesgue measurable subset of R+ and let x = χ∆. By [3, Theorem III. 4.8, p. 138], we
have

µ(t,Hχ∆) . Sχ(0,m(∆))(t), t > 0.

Combining (4.1) and preceding inequality, we obtain

µ(t, Sχ∆) . Sχ(0,m(∆))(t), t > 0. (4.2)

Note that for a measurable set ∆ with measure m(∆), by (4.2), we have

‖Sχ∆‖E(R+) . ‖Sχ(0,m(∆))‖E(R+) . ‖χ∆‖Λϕ(R+).

For a given x ∈ Λϕ(R+), denote ∆n = {s : 2n < |x(s)| ≤ 2n+1}, for n ∈ Z. Using (5.4) in [11, Chapter
II.5, p. 111]

‖x‖Λϕ(R+) =

∫
R+

ϕ(dx(t))dt,

where dx(t) = m({s : |x(t)| > s}) is the distribution function of x, we have

‖Sx‖E(R+) = ‖
∑
n∈Z

S(xχ∆n)‖E(R+) .
∑
n∈Z

2n+1‖χ∆n‖Λϕ(R+)

.
∑
n∈Z

2n+1ϕ(dx(2
n)) . ‖x‖Λϕ(R+).

This concludes the proof.

The following theorem yields a necessary and sufficient condition for the existence of optimal
RIBF range of the Hilbert transform H for a given Lorentz space Λϕ(R).

Theorem 4.1. Let ϕ be an increasing concave function on [0,∞) such that ϕ(0+) = 0. Then

(i) S : Λϕ(R+)→ (L1 + L∞)(R+) if and only if ϕ satisfies

ϕ(t) & ϕ0(t), t > 0, (4.3)

where ϕ0 defined in (2.6).

(ii) If ϕ(t) & ϕ0(t), t > 0, then the optimal range of the Hilbert transform on Λϕ(R) coincides with

G(R) := {x ∈ (L1 + L∞)(R) : µ(x) ≺≺ Sµ(y), ∃y ∈ Λϕ(R)}, (4.4)

endowed with the norm

‖x‖G(R) := inf{‖y‖Λϕ(R) : µ(x) ≺≺ Sµ(y))}.

Proof. First, let us prove (i). Let S : Λϕ(R+) → (L1 + L∞)(R+). Since S maps positive function
to a positive function, i.e. S is a positive operator (see [3, Chapter III, p. 134]), it follows from
[15, Proposition 1.3.5, p. 27] that S is bounded from Λϕ(R+) into (L1 + L∞)(R+). We know that
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‖χ(0,t)‖Λϕ(R+) = ϕ(t), t > 0 (see (5.21) in [3, Chapter II.6, p. 73]). Therefore, by using (2.7) in the
proof of Proposition 2.1, we obtain

ϕ0(t) = ‖χ(0,t)‖Λϕ0 (R+) ≈ ‖Sχ(0,t)‖(L1+L∞)(R+) . ‖χ(0,t)‖Λϕ(R+) = ϕ(t), t > 0.

On the other hand, let ϕ satisfies

ϕ(t) & ϕ0(t), t > 0.

We will show S : Λϕ(R+) → (L1 + L∞)(R+). Indeed, again using (2.7) in the proof of Proposition
2.1, we have

ϕ(t) & ϕ0(t) = ‖χ(0,t)‖Λϕ0 (R+) ≈ ‖Sχ(0,t)‖(L1+L∞)(R+), t > 0.

Then applying Lemma 4.1 [(i)⇒ (ii)] when E(R+) = (L1 + L∞)(R+), we obtain the desired result.
Next, we prove the second part of the theorem. If

ϕ(t) & ϕ0(t), t > 0,

then by the first part of the theorem, we have S : Λϕ(R+)→ (L1 + L∞)(R+). Hence, it follows from
Proposition 3.1 [(ii)⇒ (i)] that the optimal range for the operator S on Λϕ(R+) exists. Let us show
that the optimal range coincides with G(R+) defined in (4.4). For this, first we have to show that
G(R+) is a RIBF space. However, it was proved in [20, Theorem 3.5] that the space G(R+) defined
as above is a minimal RIBF space such that S : Λϕ(R+) → G(R+) is bounded. Therefore, by [3,
Theorem III. 4.8, p. 138], H : Λϕ(R) → G(R) is bounded. It follows from the definition of optimal
range F (R) (see Definition 4) that F (R) ⊂ G(R). For the converse inclusion, pick any RIBF space
Y (R) such that H : Λϕ(R)→ Y (R) is bounded. Then by [3, Proposition III. 4.10, p. 140], we obtain
that S : Λϕ(R+) → Y (R+) is bounded. If x ∈ G(R+), then for every decreasing y ∈ Λϕ(R+) with
µ(x) ≺≺ Sy, by [3, Theorem II.4.6] we have

‖x‖Y (R+) ≤ ‖Sy‖Y (R+) ≤ ‖S‖Λϕ(R+)→Y (R+)‖y‖Λϕ(R+),

which implies via taking infimum over all such y’s that

‖x‖Y (R+) ≤ ‖S‖Λϕ(R+)→Y (R+)‖x‖G(R+),

i.e. G(R) ⊂ Y (R). This proves the minimality condition, and hence F (R) coincides with G(R).

Corollary 4.1. Given an increasing concave function ϕ such that ϕ(0+) = 0 and satisfying condition
(4.3), we have

Λϕ(R+) = G(R+),

where the space G(R+) is defined in (4.4), if and only if the upper and lower Boyd indices satisfy
0 < β

Λϕ
≤ βΛϕ < 1.

Proof. It is easy to see that, under condition (4.3), we always have Λϕ(R+) ⊂ G(R+). Indeed, if
x ∈ Λϕ(R+), then taking y = µ(x) ∈ Λϕ(R+) and by [20, Lemma 2.4 (ii)] we get that µ(x) = y ≺≺ Sy.
So, Λϕ(R+) = G(R+) holds if and only if G(R+) ⊂ Λϕ(R+), which is by Theorem 4.1 equivalent to
the boundedness S : Λϕ(R+) → Λϕ(R+). However, the latter condition is known to be equivalent
to the condition 0 < β

Λϕ
≤ βΛϕ < 1 (see, e.g. [3, Theorem III.5.18, p. 154]). This completes the

proof.

The next theorem gives a necessary and sufficient condition for the existence of optimal RIBF
range of the operator S for a given Marcinkiewicz space Mϕ(R+).
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Theorem 4.2. Let ϕ be an increasing concave function on [0,∞) such that ϕ(0+) = 0. Then

(i) S : Mϕ(R+)→ (L1 + L∞)(R+) if and only if ϕ satisfies∫ 1

0

ϕ(t)

t
dt+

∫ ∞
0

ϕ′(t)

1 + t
dt <∞; (4.5)

(ii) If ϕ satisfies (4.5), then the optimal range of the Hilbert transform on Mϕ(R) coincides with

G(R) := {x ∈ (L1 + L∞)(R) : µ(x) ≺≺ Sµ(y), ∃y ∈Mϕ(R)}, (4.6)

endowed with the norm

‖x‖G(R) := inf{‖y‖Mϕ(R) : µ(x) ≺≺ Sµ(y))}.

Proof. First, let us prove (i). It is easy to see by a calculation that

(Sχ(0,1))(s) ≈
1

1 + s
+ χ(0,1)(s) log

(1

s

)
, s > 0. (4.7)

By formula (4.7) condition (4.5) is equivalent to Sχ(0,1) ∈ Λϕ(R+). Since M×
ϕ (R+) = Λϕ(R+) (see

[11, Chapter II.5]), it follows from Proposition 3.1 [(iii) ⇒ (ii)] that Sχ(0,1) ∈ Λϕ(R+) is equivalent
to the boundedness of the operator S from Mϕ(R+) to (L1 + L∞)(R+). Next, let us prove (ii). If ϕ
satisfies (4.5), then by the first part of this theorem S : Mϕ(R+)→ (L1 +L∞)(R+) is bounded. But,
by Proposition 3.1 [(ii)⇒ (i)] this is equivalent to the existence of the optimal range of the Hilbert
transform on Mϕ(R+). The other part is proved similarly to the proof of Theorem 4.1 (ii).
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