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1 Introduction

Consider the following unitary system of functions of the form

v±n (t) ≡ a (t)ω+
n (t)± b (t)ω−n (t) , t ∈ [0, a] , n ∈ N, (1.1)

where a; b;ω±n : [0, a] → C are some Lebesgue measurable, generally speaking, complex valued
functions on a finite segment [0, a]. Let us associate this system with the following double system

{A (t) Wn (t) ; A (−t) Wn (−t)}n∈N , (1.2)

where
A (t) =

{
a (t) , t ∈ [0, a] ,
b (−t) , t ∈ [−a, 0) ,

Wn (t) =

{
ω+
n (t) , t ∈ [0, a] ,
ω−n (−t) , t ∈ [−a, 0) .

These systems are modifications of the perturbed systems of sines

{sin (n+ β) t}n∈N , (1.3)

cosines
{cos (n+ β) t}n∈N , (1.4)

and exponents {
ei(n+β signn)t

}
n∈Z , (1.5){

ei(n+β signn)t
}
n6=0

, (1.6)

where β ∈ C is a complex parameter. Systems of forms (1.3) and (1.4) arise when solving partial
differential equations of mixed (or elliptic) type by Fourier method. Regarding the related works,
you can see, e.g. [19, 20, 11, 12, 15]. The study of basis properties of systems (1.3)-(1.6) has a
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long history. It dates back to the works by Paley-Wiener [18] and B.Y. Levin [10]. In L2, the final
result regarding the Riesz basicity of system (1.5) follows from the results obtained by B.Y. Levin
[10] and M.I. Kadets [9]. For the first time, basicity criterion for the system (1.5) in Lp, has been
obtained by A.M. Sedletski [21]. For other methods, the same and other results concerning systems
(1.3) - (1.6) were obtained by E.I. Moiseev [13, 14]. Wherein E.I. Moiseev first studies the basis
properties of (1.3) and (1.4) in Lp (0, π) and then using these results he obtains similar results with
respect to systems (1.5) and (1.6) in Lp (−π, π). Further development of this approach, used in
establishing basis properties of systems of form (1.1) is due to B.T. Bilalov [3]-[6]. He deduced
the basis properties of unitary systems (1.1) in Lp (0, a) from similar properties of double systems
(1.2) in Lp (−a, a). This method was applied by T.R. Muradov in the Lebesgue space with a variable
summability exponent in [16, 17]. We will also follow the scheme proposed by B.T. Bilalov. The basis
properties (completeness, minimality and basicity) of the system of exponents in weighted Morrey
spaces, where the weight function is defined as a product of power functions are investigated in [7].
Some approximation problems have been investigated in the Morrey-Smirnov classes in [8].

In this paper, the Morrey space Lp,α (I) is considered on some segment I ⊂ R. Using the
shift operator, its subspace Mp,α (I) in which continuous functions are dense is defined. A relation-
ship between the completeness properties of systems (1.1) and (1.2) in the spaces Mp,α (0, a) and
Mp,α (−a, a), respectively, is established.

2 Preliminaries

Let us first define the Morrey space Lp,α (a, b) , −∞ < a < b < ∞, 1 ≤ p ≤ ∞, 0 ≤ α ≤ 1. It is a
Banach space of all measurable functions on (a, b) with the finite norm

‖f‖Lp,α(a,b) = sup
I⊂(a,b)

(
|I|α−1

∫
I

|f (t)|p dt
) 1

p

,

where sup is taken over all intervals I ⊂ (a, b). For 0 ≤ α1 ≤ α2 ≤ 1 the fol-
lowing continuous embedding holds: Lp,α1 ⊂ Lp,α2 . It is easy to notice that Lp,1 (a, b)
= Lp (a, b) and Lp,0 (a, b) = L∞ (a, b). Moreover Lp,α (a, b) ⊂ L1 (a, b) , ∀p > 1, ∀α ∈ [0, 1]. It is
known that Lp,α (a, b) , 1 ≤ p < +∞, α ∈ (0, 1), is not separable and C [a, b] is not dense in it. Let

Mp,α (a, b) =
{
f ∈ Lp,α (a, b) : ‖f (·+ δ)− f (·)‖Lp,α(a,b) → 0, δ → 0

}
.

As shown in [2], Mp,α (a, b), for 1 ≤ p < +∞, 0 ≤ α < 1, is a separable Banach space and C∞0 (a, b)
(the space of all infinitely differentiable functions on (a, b) with compact support) is dense in it.
When defining the spaceMp,α (a, b), the function f (·) is assumed to be extended outside the interval
(a, b) by zero.

We will also need the following elementary

Lemma 2.1. Let f ∈ Mp,α (a, b) , 1 ≤ p < +∞ , 0 ≤ α < 1, be an arbitrary function. Then
‖fχE‖Lp,α(a,b) → 0, as |E| → 0, where E ⊂ (a, b) is an arbitrary interval, |E| is the length of this
interval.

Proof. Indeed, let f ∈Mp,α (a, b) be an arbitrary function and ε > 0 be an arbitrary number. Since,
C [a, b] is dense in Mp,α (a, b), then it is clear that ∃ g ∈ C [a, b] : ‖f − g‖Lp,α(a,b) < ε. If |E| is
sufficiently small we have

‖fχE‖Lp,α(a,b) ≤ ‖(f − g)χE‖Lp,α(a,b) + ‖gχE‖Lp,α(a,b)

≤ ‖f − g‖Lp,α(a,b) + ‖g‖∞ ‖χE‖Lp,α(a,b) < ε+ ‖g‖∞ |E|
α
p < 2ε.

From the arbitrariness of ε we obtain what is required.
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We define the space (Mp,α (a, b))
′
associated with Mp,α (a, b) and, for brevity, denote it by M ′.

Let S be the unit ball in Mp,α (a, b), i.e.

S =
{
f ∈Mp,α (a, b) : ‖f‖Lp,α(a,b) ≤ 1

}
.

M ′ is the Banach space of all measurable functions on (a, b) for which the norm

‖g‖M ′ = sup
f∈S

∣∣∣∣∫ b

a

fgdt

∣∣∣∣ < +∞

is finite.
Now we state the following known (see, for example, [1])

Proposition 2.1. [1] The conjugate space X∗ to a Banach space of functions X is isometrically
isomorphic to the associated space X ′ if and only if X has an absolutely continuous norm.

Taking into account Lemma 2.1, in particular, from this statement we obtain that M ′ is isomet-
rically isomorphic to the conjugate to the space Mp,α (a, b) for 1 ≤ p < +∞, 0 ≤ α < 1, and denote
it by M∗ = (Mp,α (a, b))∗.

We will also need the following completeness criterion of a system in a Banach space X.

Proposition 2.2. A system {xn}n∈N ⊂ X in a Banach space X is complete if and if only if from
the relation v ∈ X∗ : v (xn) = 0, ∀n ∈ N, follows that v = 0.

3 Main results

If Re f ; Im f ∈Mp,α (a, b) , we say that a complex-valued function f belongs to the spaceMp,α (a, b).
Similarly, g ∈ M∗ ⇔ Re g ; Im g ∈ M∗. Each functional g ∈ M∗ is generated by some function (we
will also denote it by g (·)) g ∈M ′ by the expression

< g, f >=

∫ b

a

f (t) g (t) dt, ∀f ∈Mp,α (a, b) .

So, the following theorem is true.

Theorem 3.1. Let {aω+
n ; b ω−n : ∀n} ⊂Mp,α (0, a), 1 ≤ p < +∞, 0 < α ≤ 1, and the double system

Vn;m ≡ (A (t) Wn (t) ;A (−t) Wm (−t)) , n,m ∈ N,

is defined by expressions (1.2). Then this system is complete in Mp,α (−a, a) if and only if the unitary
systems {v+

n }n∈N and {v−n }n∈N are complete in Mp,α (0, a) simultaneously.

Proof. Let a system {Vn;m}n;m∈N be complete inMp,α (−a, a). Let us prove that the systems {v+
n }n∈N

and {v−n }n∈N are complete in Mp,α (0, a). Based on the completeness criterion (Proposition 2.1), we
propose the opposite, i.e. let for some functions fk (·) ∈M ′ (a, b) , k = 1, 2,∫ a

0

v+
n (t) f1 (t)dt = 0,∀n ∈ N ;

∫ a

0

v−n (t) f2 (t)dt = 0, ∀n ∈ N,
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hold. Define

f+ (t) =

{
f1 (t) , t ∈ [0, a] ,
f1 (−t) , t ∈ [−a, 0) ,

f− (t) =

{
f2 (t) , t ∈ [0, a] ,
−f2 (−t) , t ∈ [−a, 0) .

We have ∫ a

−a
A (t) Wn (t) f+ (t)dt

=

∫ a

0

a (t)ω+
n (t) f1 (t)dt+

∫ 0

−a
b (−t)ω−n (−t) f1 (−t)dt

=

∫ a

0

v+
n (t) f1 (t)dt = 0,∀n ∈ N.

Since, f+ (·) is a even function on (−a, a), then it is clear that∫ a

−a
A (−t)Wn (−t) f+ (t)dt =

∫ a

−a
A (t)Wn (t) f+ (t)dt = 0, ∀n ∈ N.

From the completeness of the system {Vn;n}n∈N inMp,α (−a, a) , it follows that f+
1 (t) = 0, for almost

all t ∈ (−a, a), and f1 (t) = 0, for almost all t ∈ (0, a). So, we obtain the completeness of the system
{v+

n }n∈N in Mp,α (0, a).
In the same way the completeness of system {v−n }n∈N is proved in Mp,α (0, a).
Next, let systems {v+

n }n∈N and {v−n }n∈N be complete in Mp,α (0, a). Suppose that for some
function F ∈M ′ (−a, a) ∫ a

−a
A (t) Wn (t)F (t)dt = 0,∫ a

−a
A (−t) Wn (−t)F (t)dt = 0,∀n ∈ N,

holds. Transforming, we have

I+
n =

∫ a

−a
A (t) Wn (t)F (t)dt =

∫ a

0

a (t)ω+
n (t)F (t)dt

+

∫ a

0

b (t)ω−n (t)F (−t)dt = 0,∀n ∈ N ;

I−n =

∫ a

−a
A (−t) Wn (−t)F (t)dt =

∫ a

0

a (t)ω+
n (t)F (−t)dt

+

∫ a

0

b (t)ω−n (t)F (t)dt = 0,∀n ∈ N.

Consequently,

I+
n + I−n =

∫ a

0

v+
n (t)

(
F (t) + F (−t)

)
dt = 0,∀n ∈ N. (3.1)

It is clear that g ∈M ′ (0, a), where g (t) = F (t) +F (−t). Indeed, let ϕ ∈Mp,α (0, a) be an arbitrary
function. We have∫ a

0

ϕ (t) g (t) dt =

∫ a

0

ϕ (t)F (t) dt+

∫ a

0

ϕ (t)F (−t) dt =

∫ a

−a
Φ (t)F (t) dt, (3.2)
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where
Φ (t) =

{
ϕ (t) , t ∈ [0, a]
ϕ (−t) , t ∈ [−a, 0) .

Let I ⊂ [−a, a] be an arbitrary interval. Assume I1 = [−a, 0]
⋂
I, I2 = [0, a]

⋂
I. We have

1

|I|1−α
∫
I

|Φ (t)|p dt =
1

|I|1−α

(∫
I1

|ϕ (−t)|p dt+

∫
I2

|ϕ (t)|p
)
dt

=
1

|I|1−α

(∫
−I1
|ϕ (t)|p dt+

∫
I2

|ϕ (t)|p dt
)

≤ 1

|−I1|1−α
∫
−I1
|ϕ (t)|p dt+

1

|I2|1−α
∫
I2

|ϕ (t)|p dt ≤ 2 ‖ϕ‖Lp,α(0,a) .

Hence it follows that Φ ∈Mp,α (−a, a). Since F ∈M ′ (−a, a), then from (3.1) it follows that∣∣∣∣∫ a

0

ϕ (t) g (t) dt

∣∣∣∣ < +∞, ∀ϕ ∈Mp,α (0, a) ,

i.e. g ∈ M ′ (0, a). As the system {v+
n }n∈N is complete in Mp,α (0, a), then from relation (3.2) it

follows that g (t) = 0, for almost all t ∈ (0, a), i.e. F (t) = −F (−t), for almost all t ∈ (0, a).
In exactly the same way, from the relation

I+
n − I−n =

∫ a

0

v−n (t)
(
F (t)− F (−t)

)
dt = 0,∀n ∈ N,

and from the completeness of the system {v−n }n∈N in Mp,α (0, a) it follows that F (t) = F (−t), for
almost all t ∈ (0, a). From these two relations we obtain that F (t) = 0, for almost all t ∈ (−a, a).

The following statement is proved in a similar way.

Theorem 3.2. Let {aω+
n ; b ω−n : ∀n} ⊂Mp,α (0, a), 1 ≤ p < +∞, 0 < α ≤ 1, and the double system

Vn;m ≡ (A (t) Wn (t) ;A (−t) Wm (−t)) , n,m ∈ N,

is defined by expressions (1.2). The system 1
⋃
{Vn;n}n∈N is complete in the space Mp,α (−a, a) if

and only if the systems 1
⋃
{v+

n }n∈N and {v−n }n∈N are complete in Mp,α (0, a).

As a particular case, we consider the systems of sines

{sin (nt+ β (t))}n∈N , (3.3)

and cosines
1
⋃
{cos (nt+ β (t))}n∈N , (3.4)

where β : [0, π] → C generally speaking, is a complex-valued function. Let us extend the function
β (·) to the segment [−π, π] by parity and also denote it by β (·). Applying the above notation to
this case, we obtain the following corollaries.

Corollary 3.1. The double system of exponents{
ei(nt+β(t) signn)

}
n6=0

,

is complete in Mp,α (−π, π), 1 ≤ p < +∞, 0 < α ≤ 1, if and only if the systems of sines (3.3) and
cosines {cos (nt+ β (t))}n∈N are complete in Mp,α (0, π).
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Corollary 3.2. The system of exponents

1
⋃{

ei(nt+β(t) signn)
}
n 6=0

,

is complete in Mp,α (−π, π), 1 ≤ p < +∞, 0 < α ≤ 1, if and only if systems (3.3) and (3.4) are
complete in Mp,α (0, π).

Using the result of [2], in particular, we also obtain the following

Corollary 3.3. Let β ∈ C be a complex parameter and 2Reβ + α
p
/∈ Z, where 1 < p < +∞,

0 < α < 1 (Z is the set of integers). If
[
2Reβ + α

p

]
≤ 0 ([·] is the integer part), then the systems of

sines {sin (n+ β) t}n∈N and cosines 1
⋃
{cos (n+ β) t}n∈N are complete in Mp,α (0, π).

Now let us establish the relationship between the minimality of systems (1.1) and (1.2). Let
the system {Vn;n}n∈N be minimal in Mp,α (−a, a) and {h+

n ;h−n }n∈N ⊂ M ′ (−a, a) be a biorthogonal
system to it. Define

ϑ+
k (t) ≡ h+

k (t) + h−k (−t) ,∀k ∈ N.

Let us show that
{
ϑ+
k

}
k∈N ⊂M ′ (0, a). Let f ∈Mp,α (0, a) be an arbitrary function. We have∫ a

0

ϑ+
k (t) f (t) dt =

∫ a

0

h+
k (t) f (t) dt+

∫ 0

−a
h−k (t) f (−t) dt.

The function f (·) on (−a, 0) is assumed to be extended by zero. Then it is
clear that f ∈ Mp,α (−a, a) and from the previous relation

∣∣∫ a
0
ϑ+
k (t) f (t) dt

∣∣ < +∞,
∀f ∈Mp,α (0, a), and as a result, ϑ+

k ∈M ′ (0, a), ∀k ∈ N . We have∫ a

0

ϑ+
n (t)ϑ+

k (t)dt =

∫ a

0

[
a (t)ω+

n (t) + b (t)ω−n (t)
] [
h+
k (t) + h+

k (−t)
]
dt

=

∫ a

0

a (t)ω+
n (t)h+

k (t)dt+

∫ 0

−a
b (−t)ω−n (−t)h+

k (t)dt

+

∫ 0

−a
a (−t)ω+

n (−t)h+
k (t)dt

+

∫ a

0

b (t)ω−n (t)h+
k (t)dt =

∫ a

−a
A (t)Wn (t)h+

k (t)dt

+

∫ a

−a
A (−t)Wn (−t)h+

k (t)dt = δnk,∀n, k ∈ N.

Consequently, the system
{
ϑ+
k

}
k∈N is biorthogonal to {ϑ+

n }n∈N and, therefore, it is minimal in
Mp,α (0, a).

Absolutely similarly one can show that the system

ϑ−k (t) ≡ h−k (−t) + h−k (t) ,∀k ∈ N,

is biorthogonal to {ϑ−n }n∈N , i.e. {ϑ−n }n∈N is minimal in Mp,α (0, a).
Next, let systems {ϑ±n }n∈N be minimal inMp,α (0, a) and {ϑ±n }n∈N ⊂M ′ (0, a) be the correspond-

ing biorthogonal systems. Define

ϑ̃±k (t) ≡
{
ϑ±k (t) , t ∈ (0, a)
±ϑ±k (−t) , t ∈ (−a, 0) ,



80 F. Seyidova

and
h±k (t) ≡ 1

2

[
ϑ̃+
k (t)± ϑ̃−k (t)

]
,∀k ∈ N.

By simple transformations we get∫ a

−a
A (t) Wn (t)h±k (t)dt =

1

2

∫ a

0

ϑ+
n (t)ϑ+

k (t)dt

±1

2

∫ a

0

ϑ−n (t)ϑ−k (t)dt =
1

2
[δnk ± δnk] , ∀n, k ∈ N ;∫ a

−a
A (−t) Wn (−t)h±k (t)dt =

1

2
[δnk ∓ δnk] ,∀n, k ∈ N.

It is easy to see that
{
h±k
}
k∈N ⊂ M ′ (−a, a). Then from the previous relations it follows that the

system {Vn;n}n∈N is minimal in Mp,α (−a, a). Thus, the following theorem is valid.

Theorem 3.3. Let {aω+
n ; b ω−n : ∀n} ⊂Mp,α (0, a), 1 ≤ p < +∞, 0 < α ≤ 1, and the double system

Vn;m ≡ (A (t) Wn (t) ;A (−t) Wm (−t)) , n,m ∈ N,

is defined by expressions (1.2). The system {Vn;n}n∈N is minimal in Mp,α (−a, a) if and only if the
systems {ϑ+

n }n∈N and {ϑ−n }n∈N are minimal in Mp,α (0, a).

Quite similarly the following statement is proved.

Theorem 3.4. Let {aω+
n ; b ω−n : ∀n} ⊂Mp,α (0, a), 1 ≤ p < +∞, 0 < α ≤ 1, and the double system

Vn;m ≡ (A (t) Wn (t) ;A (−t) Wm (−t)) , n,m ∈ N,

is defined by expressions (1.2). The system 1
⋃
{Vn;n}n∈N is minimal in Mp,α (−a, a) if and only if

the systems 1
⋃
{ϑ+

n }n∈N and {ϑ−n }n∈N are minimal in Mp,α (0, a).

Remark 1. It is not difficult to see that if the functions a; b and ω±n ;∀n, are bounded on [0, a], then
all conditions of above cited theorems are satisfied and therefore all the assertions of these theorems
are true for such systems.
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