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of the corresponding classical inequalities for integrals and sums.
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1 Introduction

Let (X,µ) and (Y, ν) be two σ-finite measure spaces with non-negative measures. The classical
Hölder and Minkowski inequalities can be generalized to hold for continuously many functions as we
can see in the following theorem.

Theorem 1.1. Let f(x, y) be positive and measurable functions on (X × Y, µ× ν) and let u(x) and
v(y) be weight functions on X and on Y, respectively.

(i) Then, for p ≥ 1 (∫
Y

(∫
X

f(x, y)u(x) dµ(x)

)p
v(y) dν(y)

) 1
p

≤
∫
X

(∫
Y

fp(x, y)v(y) dν(y)

) 1
p

u(x) dµ(x). (1.1)

(ii) Moreover, if
∫
X
u(x) dµ(x) = 1, then∫

Y

exp

(∫
X

log f(x, y)u(x) dµ(x)

)
v(y) dν(y)

≤ exp

(∫
X

log

(∫
Y

f(x, y)v(y) dν(y)

)
u(x) dµ(x)

)
. (1.2)

As usual, here and in the sequel, by a weight or a weight function u(x) on X we mean a non-
negative measurable function on X.
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Remark 1. Inequality (1.1) is also known as the integral form of the Minkowski inequality (see
e.g. [7, p. 41], [12]). The case p < 1 is described in details in paper [4] and under some additional
assumptions the sign in inequality (1.1) is reversed. Inequality (1.2) is called a continuous form of
the Hölder inequality (see e.g. [1], [6]). The reason why that inequality got its name is based on the
following particular case: Namely, putting

f(x, y) :=

{
fp(y) for x ∈ X1

gq(y) for x ∈ X2,

where X = X1 ∪X2, X1 ∩X2 = ∅ ,
∫
X1
u(x) dµ(x) = 1

p
and

∫
X2
u(x) dµ(x) = 1

q
, and hence

1

p
+

1

q
= 1.

Then inequality (1.2) is reduced to the usual integral Hölder inequality for two functions

‖fg‖1 ≤ ‖f‖p · ‖g‖q, (1.3)

where ‖F‖p :=

(∫
Y

|F (y)|pv(y) dν(y)

)1/p

. This notation will be used through the whole of our
paper.

Similarly, putting

f(x, y) :=


f(y)

α1

for x ∈ X1

g(y)

α2

for x ∈ X2,

where X = X1 ∪X2, X1 ∩X2 = ∅ ,
∫
X1
u(x) dµ(x) = α1 and

∫
X2
u(x) dµ(x) = α2, in (1.1) we get the

usual integral Minkowski inequality for two functions:

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

A discussion about the reverse versions of these two inequalities is given in the third section.

Recently, in paper [2] the following result was proved:

Theorem 1.2. Let p, q > 1 be such that
1

p
+

1

q
= 1, f and g be real functions defined on [u, v] such

that |f |p and |g|q be integrable functions on [u, v], −∞ ≤ u < v ≤ ∞ and α1, α2 be non-negative
continuous functions on [u, v] such that α1(t) + α2(t) = 1 for all t ∈ [u, v]. Then∫ v

u

|f(y)g(y)| dy ≤
2∑
i=1

[∫ v

u

αi(y)|f(y)|p dy
] 1
p

·
[∫ v

u

αi(y)|g(y)|q dy
] 1
q

. (1.4)

A similar result for n functions αi was also given in [2]. Moreover, in [5] it was proved that the
right-hand side of inequality (1.4) is not greater than(∫ v

u

|f(y)|p dy
) 1

p

·
(∫ v

u

|g(y)|q dy
) 1

q

.

So, together with inequality (1.4) we have a refinement of the Hölder inequality for integrals (1.3)
with Y = [u, v] and v(y) dν(y) = dy.

The aim of this paper is to discuss some similar refinements but for continuous forms of some
classical inequalities. More exactly, in Section 2 we derive a new refinement of a continuous form
of the Hölder inequality, which as special cases contain the above mentioned results in [2] and [5]
(see Theorem 2.1). Moreover, also another new refinement of another continuous form of the Hölder
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inequality is proved and discussed (see Theorem 2.2.) In addition, the sharpness of these results are
studied by investigating some functionals describing the "gaps" in these inequalties (see Theorem
2.3). The corresponding results concerning a continuous form of the Minkowski inequality are given in
Section 3 (see Theorem 3.1 and Theorem 3.2.) Section 4 is used to state and prove the corresponding
results related to classical Popoviciu and Bellman inequalities (see Theorems 4.2 and 4.5).

2 Refinements of some continuous forms of the Hölder inequality

The following theorem gives a continuous generalization of the result from [2] and [5].

Theorem 2.1. Let f(x, y) be positive and measurable functions on (X × Y, µ× ν) and let u(x) and

v(y) be weight functions on X such that
∫
X

u(x) dµ(x) = 1. Moreover, let (Z, dz) be a measure space

and α(z, y) be a non-negative integrable function on Z × Y such that∫
Z

α(z, y) dz = 1, for y ∈ Y. (2.1)

Then the following refinement of continuous form (1.2) of the Hölder inequality holds:∫
Y

exp

(∫
X

log f(x, y)u(x) dµ(x)

)
v(y) dν(y)

≤
∫
Z

[
exp

∫
X

log

(∫
Y

α(z, y)f(x, z)v(y) dν(y)

)
u(x) dµ(x)

]
dz

≤ exp

[∫
X

log

(∫
Y

f(x, y)v(y)dν(y)

)
u(x) dµ(x)

]
. (2.2)

Proof. By using condition (2.1) and the Fubini theorem we get∫
Y

exp

(∫
X

log f(x, y)u(x) dµ(x)

)
v(y) dν(y)

=

∫
Y

[∫
Z

α(z, y) exp

(∫
X

log f(x, y)u(x) dµ(x)

)
dz

]
v(y) dν(y)

=

∫
Z

[∫
Y

exp

(∫
X

log f(x, y)u(x) dµ(x)

)
α(z, y)v(y) dν(y)

]
dz.

Now, by applying the continuous form of the Hölder inequality to the term in the square brackets
and again the same inequality to the whole term we obtain that

∫
Z

[∫
Y

exp

(∫
X

log f(x, y)u(x) dµ(x)

)
α(z, y)v(y) dν(y)

]
dz

≤
∫
Z

exp

[∫
X

log

(∫
Y

f(x, y)α(z, y)v(y) dν(y)

)
u(x)dµ(x)

]
dz

≤ exp

[∫
X

log

(∫
Z

(∫
Y

f(x, y)α(z, y)v(y) dν(y)

)
dz

)
u(x)dµ(x)

]
= exp

[∫
X

log

(∫
Y

(∫
Z

f(x, y)α(z, y)dz

)
v(y) dν(y)

)
u(x)dµ(x)

]
= exp

[∫
X

log

(∫
Y

f(x, y)v(y) dν(y)

)
u(x)dµ(x)

]
,
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where the Fubini theorem and (2.1) are used in the last two equalities.

Next we point out some consequences of the above-mentioned theorem and compare it with
already known results.

Corollary 2.1. a) Let the assumptions of Theorem 2.1 hold and let p(x) be a measurable function
on X. Then ∫

Y

exp

(∫
X

p(x) log f(x, y)u(x) dµ(x)

)
v(y) dν(y)

≤
∫
Z

[
exp

∫
X

(∫
Y

α(z, y)f(x, y)p(x)v(y) dν(y)

)
u(x) dµ(x)

]
dz

≤ exp

[∫
X

log

(∫
Y

f(x, y)p(y)v(y) dν(y)

)
u(x) dµ(x)

]
. (2.3)

b) Let p, q > 1 be such that
1

p
+

1

q
= 1. If f(y), g(y), α(z, y) are non-negative functions such that

fg ∈ L1(Y ), f, α1/p(z, .)f ∈ Lp(Y ), g, α1/q(y, .)g ∈ Lq(Y ),
∫
Z

α(z, y) dz = 1 for all y ∈ Y , then the

following refinement of the Hölder inequality holds:

‖fg‖1 ≤
∫
Z

‖α1/p(z, .)f(.)‖p · ‖α1/q(z, .)g(.)‖q dz ≤ ‖f‖p‖g‖q. (2.4)

c) Let p, q > 1 be such that
1

p
+

1

q
= 1. If f, g, α are non-negative functions on Y such that

fg ∈ L1(Y ), f, α1/pf ∈ Lp(Y ), g, α1/qg ∈ Lq(Y ) and α(y) ≤ 1 for all y ∈ Y , then we find that also
the following refinement of Hölder inequality holds:

‖fg‖1 ≤ ‖α
1
pf‖p · ‖α

1
q g‖q + ‖(1− α)

1
pf‖p · ‖(1− α)

1
q g‖q ≤ ‖f‖p‖g‖q. (2.5)

Proof. a) This is a simple consequence of Theorem 2.1 applied with f(x, y)p(x) in place of f(x, y).

b) By putting in the a) part of this corollary: X = X1 ∪ X2, X1 ∩ X2 = ∅, such that∫
X1

u(x) dµ(x) =
1

p
,
∫
X2

u(x) dµ(x) =
1

q
, and

f(x, y) :=

{
f(y) for x ∈ X1

g(y) for x ∈ X2

p(x) :=

{
p for x ∈ X1

q for x ∈ X2,

we get inequality (2.4).

c) Inequality (2.5) follows from inequality (2.4) by taking:

Z = [0, 2], Z1 = [0, 1], Z2 = [1, 2], α(z, y) :=

{
α(y) for z ∈ Z1

1− α(y) for z ∈ Z2.
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Our next remark shows in particular that Corollary 2.1 may be regarded as a genuine generaliza-
tion of the results in [2] and [5].

Remark 2. a) The chain of inequalities from part c) of the above corollary for Y = [a, b],
v(y)dν(y) = dy can be found in [5], while the first inequality was proved in [2]. Moreover, if Y = [a, b],
v(y)dν(y) = dy, and α(t) = b− t the chain of inequalities from part c) was proved in [2].

b) By using the same idea as in part b) we can derive a refinement of the Hölder inequality with
n functions involved (n = 2, 3, . . .).

Another nice inequality of Hölder type can be found in [1, VI.11.35]:

exp

[∫
X

log a(x)u(x) dµ(x)

]
+ exp

[∫
X

log b(x)u(x) dµ(x)

]

≤ exp

[∫
X

log (a(x) + b(x)) u(x) dµ(x)

]
(2.6)

(provided that all integrals exist and a(.) and b(.) are non-negative).
Next we will give a refinement also of this inequality.

Theorem 2.2. Let (X,µ), (Y, ν) and (Z, dz) be σ-finite measure spaces. Let a and b be positive
measurable functions on X, u(x) be a weight on X, v(y) be a weight on Y and α(z, y) be a non-

negative function on Z×Y such that
∫
Z

α(z, y) dz = 1 for all y ∈ Y . If Y has partition Y = Y1∪Y2,

such that
∫
Yi

v(y)dν(y) = 1, i = 1, 2, and the integrals A(z) :=

∫
Y1

α(z, y)v(y) dν(y) and B(z) :=∫
Y2
α(z, y)v(y) dν(y) exist, then

exp

[∫
X

log a(x)u(x) dµ(x)

]
+ exp

[∫
X

log b(x)u(x) dµ(x)

]

≤
∫
Z

[
exp

∫
X

log
(
A(z)a(x) +B(z)b(x)

)
u(x) dµ(x)

]
dz

≤ exp

[∫
X

log
(
a(x) + b(x)

)
u(x) dµ(x)

]
. (2.7)

Proof. By putting in inequality (2.1)

f(x, y) :=

{
a(x) for y ∈ Y1

b(x) for y ∈ Y2

after a straightforward calculation we get inequality (2.7).

Remark 3. Let us take
Z = [0, 2], Z1 = [0, 1], Z2 = [1, 2],

and let Y has partition Y = Y1 ∪ Y2 such that
∫
Yi

v(y)dν(y) = 1, i = 1, 2.

Denote

α(z, y) :=


A for z ∈ Z1, y ∈ Y1

1− A for z ∈ Z1, y ∈ Y2

B for z ∈ Z2, y ∈ Y1

1−B for z ∈ Z2, y ∈ Y2,
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where A,B ∈ [0, 1].
The condition on α(z, y) is fulfilled.
Hence the middle term in (2.7) takes the form

exp

[∫
X

log
(
Aa(x) +Bb(x)

)
u(x) dµ(x)

]

+ exp

[∫
X

log
(

(1− A)a(x) + (1−B)b(x)
)
u(x) dµ(x)

]
,

where A,B ∈ [0, 1].

Next we will point out a technique which can give important complementary information on some
of the refinements we have presented so far, but first we introduce some abbreviations and notations:

LH(v) :=

∫
Y

exp

(∫
X

log f(x, y)u(x) dµ(x)

)
v(y) dν(y),

MH(v) :=

∫
Z

[
exp

∫
X

log

(∫
Y

α(z, y)f(x, y)v(y) dν(y)

)
u(x) dµ(x)

]
dz,

RH(v) := exp

[∫
X

log

(∫
Y

f(x, y)v(y)dν(y)

)
u(x) dµ(x)

]
,

H0(v) := RH(v)− LH(v),

H1(v) := MH(v)− LH(v).

As we can see, the functional H0 is the difference between the right-hand side and the left-hand
side of the continuous Hölder inequality (1.2) while H1 is the difference between the middle term in
the refinement (2.2) and the left-hand side of (1.2). In the following theorem some superadditivity
properties of the functionals H0, H1, RH and MH are given.

Theorem 2.3. Let the assumptions of Theorem 2.1 hold and let v(y) and w(y) be weight functions
on Y . Then LH is linear and the functionals H0, H1, RH and MH satisfy

Hi(v + w) ≥ Hi(v) +Hi(w), i = 0, 1,

MH(v + w) ≥ MH(v) +MH(w),

RH(v + w) ≥ RH(v) +RH(w).

Proof. By putting in (2.6)

a(x) =

∫
Y

α(z, y)f(x, z)v(y) dν(y), b(x) =

∫
Y

α(z, y)f(x, z)w(y) dν(y)

we get that

exp

[∫
X

log

(∫
Y

α(z, y)f(x, z)v(y) dν(y

)
u(x) dµ(x)

]

+ exp

[∫
X

log

(∫
Y

α(z, y)f(x, z)w(y) dν(y

)
u(x) dµ(x)

]
≤ exp

[∫
X

log

(∫
Y

α(z, y)f(x, z)(v(y) + w(y)) dν(y

)
u(x) dµ(x)

]
.

Now by integrating over Z we obtain that MH(v + w) ≥ MH(v) + MH(w). The superadditivity
of RH can be proved in the similar manner. In the consideration for Hi we use the fact that
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LH(v + w) = LH(v) + LH(w) and the just obtained properties for MH and RH . Particularly, for H1

we have
H1(v + w)−H1(v)−H1(w)

=
(
MH(v + w)−MH(v)−MH(w)

)
−
(
LH(v + w)− LH(v)− LH(w)

)
≥ 0.

The proof is similar for H0.

Corollary 2.2. The functionals H0, H1, RH and MH are non-decreasing.

Proof. This is a corollary of the positivity and superadditivity of the considered functionals. For
example, let us prove this fact for the functional H0. If v ≥ w, then v − w ≥ 0 and from Theorem
2.1 we get that H0(v − w) ≥ 0. Hence, by using Theorem 2.3 we obtain that

H0(v) = H0(w + (v − w)) ≥ H0(w) +H0(v − w) ≥ H0(w).

The proof is similar for the other functionals and therefore omitted.

3 A refinement of the continuous form of the Minkowski inequality

Our first main result in this section reads:

Theorem 3.1. Let f(x, y) be a positive and measurable function on (X × Y, µ × ν) , let u(x) and
v(y) be weight functions on X and Y, respectively. Moreover, let α(z, y) be a non-negative function
such that ∫

Z

α(z, y) dz = 1, for y ∈ Y.

If p ≥ 1, then ∫
Y

(∫
X

f(x, y)u(x) dµ(x)

)p
v(y) dν(y)

≤
∫
Z

[∫
X

(∫
Y

α(z, y)fp(x, y)v(y) dν(y)

)1/p

u(x) dµ(x)

]p
dz

≤

[∫
X

(∫
Y

fp(x, y)v(y) dν(y)

)1/p

u(x) dµ(x)

]p
.

Proof. By using the condition on the function α(z, y) and the Fubini theorem we get∫
Y

(∫
X

f(x, y)u(x) dµ(x)

)p
v(y) dν(y)

=

∫
Y

[∫
Z

α(z, y)

(∫
X

f(x, y)u(x) dµ(x)

)p
dz

]
v(y) dν(y)

=

∫
Z

[∫
Y

α(z, y)

(∫
X

f(x, y)u(x) dµ(x)

)p
v(y) dν(y)

]
dz
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Moreover, by using the continuous Minkowski inequality on the term in the square brackets and,
then, on the integrals over Z and X we obtain that∫

Z

[∫
Y

α(z, y)

(∫
X

f(x, y)u(x) dµ(x)

)p
v(y) dν(y)

]
dz

≤
∫
Z

[∫
X

(∫
Y

α(z, y)fp(x, y)v(y) dν(y)

)1/p

u(x) dµ(x)

]p
dz

≤

[∫
X

[∫
Z

(∫
Y

α(z, y)fp(x, y)v(y) dν(y)

)
dz

]1/p

u(x) dµ(x)

]p

=

[∫
X

(∫
Y

(∫
Z

α(z, y)fp(x, y)dz

)
v(y) dν(y)

)1/p

u(x) dµ(x)

]p

=

[∫
X

(∫
Y

fp(x, y)v(y) dν(y)

)1/p

u(x) dµ(x)

]p
,

where we also used the Fubini theorem and the condition on the function α(z, y).

Example. By using the same substitutions as those described in Remark 1 for Minkowski inequality
we get a refinement of usual Minkowski inequality with two functions involved. In particular, we
have that

‖f + g‖p ≤
∫
Z

[(∫
Y

α(z, y)|f(y)|p dy
) 1

p

+

(∫
Y

α(z, y)|g(y)|p dy
) 1

p

]
dz

=

∫
Z

(
‖α

1
p (z, .)f(.)‖p + ‖α

1
p (z, .)g(.)‖p

)
dz

≤ ‖f‖p + ‖g‖p,

which corresponds to the part b) of Corollary 2.1.
Moreover, as in part c) of Corollary 2.1 for α, 0 ≤ α(y) ≤ 1 on Y we get that

‖f + g‖p ≤ ‖α
1
pf‖p + ‖α

1
p g‖p + ‖(1− α)

1
pf‖p + ‖(1− α)

1
p g‖p

≤ ‖f‖p + ‖g‖p.

These inequalities seem to be also new for this special case.
It is clear that in the same way we can derive the corresponding refinements of Minkowski in-

equality with n functions involved (n = 2, 3, . . .).

Let us use the following abbreviations:

LM = LM(v) =

∫
Y

(∫
X

f(x, y)u(x) dµ(x)

)p
v(y) dν(y),

MM = MM(v) =

∫
Z

[∫
X

(∫
Y

α(z, y)fp(x, y)v(y) dν(y)

)1/p

u(x) dµ(x)

]p
dz,

RM = RM(v) =

[∫
X

(∫
Y

fp(x, y)v(y) dν(y)

)1/p

u(x) dµ(x)

]p
.
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Using the above abbreviations the refinement of the Minkowski inequality in Theorem 3.1 has
the following form

LM ≤MM ≤ RM .

In our next theorem some properties of the functionals RM , MM , M0 := RM − LM and M1 :=
MM − LM are given.

Theorem 3.2. Let the assumptions in Theorem 3.1 hold and let v(y) and w(y) be weight functions
on Y . Then LM is linear and the functionals M0,M1, RM and MM satisfy

Mi(v + w) ≥ Mi(v) +Mi(w), i = 0, 1,

MM(v + w) ≥ MM(v) +MM(w),

RM(v + w) ≥ RM(v) +RM(w).

Proof. Let us first recall the following well known reversed form of integral Minkowski inequality for
two functions and exponent p ≥ 1 (see [10, p.114]):[∫

X

(
ap(x) + bp(x)

) 1
p
u(x) dµ(x)

]p

≥
[∫

X

a(x)u(x) dµ(x)

]p
+

[∫
X

b(x)u(x) dµ(x)

]p
, (3.1)

where a(x) ≥ 0, b(x) ≥ 0 and dµ(x) is non-negative.
By using (3.1) with

a(x) =

(∫
Y

fp(x, y)v(y) dν(y)

) 1
p

and b(x) =

(∫
Y

fp(x, y)w(y) dν(y)

) 1
p

we get that [∫
X

(∫
Y

fp(x, y)v(y) dν(y) +

∫
Y

fp(x, y)w(y) dν(y)

) 1
p

u(x) dµ(x)

]p

≥

[∫
X

(∫
Y

fp(x, y)v(y) dν(y)

) 1
p

u(x) dµ(x)

]p

+

[∫
X

(∫
Y

fp(x, y)w(y) dν(y)

) 1
p

u(x) dµ(x)

]p
,

i.e.
RM(v + w) ≥ RM(v) +RM(w).

The proof of the other four inequalities can be done in a similar manner so we omit the details.

Corollary 3.1. The functionals M0,M1, RM and MM are non-decreasing.

Proof. This is a consequence of Theorem 3.1 and Theorem 3.2. For instance for the proof about MM

we apply inequality (3.1) with

a(x) =

(∫
Y

fp(x, y)α(z, y)v(y) dν(y)

) 1
p

and b(x) =

(∫
Y

fp(x, y)α(z, y)w(y) dν(y)

) 1
p

.
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4 Refinements of the continuous forms of the Popoviciu and the Bellman
inequalities

When discrete Hölder type inequalities for non-positive weights were researched a reversed type of
the inequality was discovered. It is known as the Popoviciu inequality and has the following form:

w0c1c2 −
n∑
i=1

wifigi ≥

(
w0c

p
1 −

n∑
i=1

wif
p
i

) 1
p
(
w0c

q
2 −

n∑
i=1

wig
q
i

) 1
q

,

where w0, c1, c2 > 0, p, q > 1 with
1

p
+

1

q
= 1, wi, fi, gi ≥ 0, i = 1, 2, . . . , n, are real numbers such that

w0c
p
1 −

n∑
i=1

wif
p
i > 0, w0c

q
2 −

n∑
i=1

wig
q
i > 0.

More about this type of inequalities can be found in [10, p.125]. Very recently, we proved a
continuous version of the Popoviciu inequality (see [9]). The continuous form of the Popoviciu
inequality was given as the following result.

Theorem 4.1. Let u(x) and v(y) be weight functions on the measure spaces (X,µ) and (Y, ν),
respectively,

∫
X
u(x)dµ(x) = 1. Let f(x, y) be a positive measurable function on X × Y , v0 ≥ 0, and

assume that f0(x) is a function on X such that
v0f0(x) >

∫
Y
f(x, y)v(y) dν(y), for all x ∈ X. Then the following refinement of the continuous form

of Popoviciu’s inequality holds:

exp

(∫
X

log
(
v0f0(x)

)
u(x) dµ(x)

)

−
∫
Y

exp

(∫
X

log f(x, y)u(x) dµ(x)

)
v(y) dν(y)

≥ exp

[∫
X

log

(
v0f0(x)−

∫
Y

f(x, y)v(y) dν(y)

)
u(x) dµ(x)

]
. (4.1)

Example. Let u(x) = v(y) = 1, v0 = 1, X = X1∪X2, X1∩X2 = ∅ with
∫
X1

dµ(x) =
1

p
,

∫
X2

dµ(x) =

1

q
, where

1

p
+

1

q
= 1; f0(x) = cp1, f(x, y) = fpi (y) for each x ∈ X1 and f0(x) = cq2, f(x, y) = gqi (y)

for each x ∈ X2. Then we rediscover the unweighted Popoviciu inequality for integrals involving two
functions:

c1c2 − ‖fg‖1 ≥ (cp1 − ‖fp‖p)
1
p (cq2 − ‖gq‖q)

1
q . (4.2)

Our first main result in this Section is the following generalization of Theorem 4.1.

Theorem 4.2. Let the assumptions of Theorem 4.1 hold. Moreover, let α(z, y) be a non-negative

integrable function on Z × Y such that
∫
Z

α(z, y) dz = 1 for y ∈ Y, where (Z, dz) is a σ−finite
measure space. Then the following refinement of the continuous form of the Popoviciu inequality
(4.1) holds:

exp

(∫
X

log
(
v0f0(x)

)
u(x) dx

)
−
∫
Y

(
exp

(∫
X

log(f(x, y))u(x) dx

))
v(y) dν(y)



Refinement of continuous forms of classical inequalities 69

≥ exp

(∫
X

log
(
v0f0(x)

)
u(x) dx

)
−
∫
Z

[
exp

∫
X

log

(∫
Y

f(x, y)α(z, y)v(y) dν(y)

)
u(x) dx

]
dz

≥ exp

[∫
X

log

(
v0f0(x)−

∫
Y

f(x, y)v(y) dν(y)

)
u(x) dx

]
≥ 0. (4.3)

Proof. Let us denote

CH(v0) := exp

(∫
X

log
(
v0f0(x)

)
u(x) dµ(x)

)
,

KH(v0, v) := exp

[∫
X

log

(
v0f0(x)−

∫
Y

f(x, y)v(y) dν(y)

)
u(x) dµ(x)

]
.

Using these abbreviations continuous Popoviciu inequality (4.1) has the form:

CH(v0)− LH(v) ≥ KH(v0, v).

In paper [9] the authors investigated the functionals

P1(v0, v) := CH(v0)− LH(v)−KH(v0, v),

P2(v0, v) := CH(v0))−RH(v)−KH(v0, v),

where LH and RH are defined above in Theorem 2.3, and proved that, under the assumptions of
Theorem 4.1, the above defined functionals have the following properties:

P1(v0, v) ≥ P2(v0, v) ≥ 0,

P1(v0 + w0, v + w) ≤ P1(v0, v) + P1(w0, w), (4.4)

P2(v0 + w0, v + w) ≤ P2(v0, v) + P2(w0, w). (4.5)

Let us define the functional P3 by:

P3 = P3(v0, v) := CH(v0)−KH(v0, v)−MH(v).

Since the refinement of Hölder inequality (1.2) holds we have that

−LH(v) ≥ −MH(v) ≥ −RH(v)

and, hence,

CH(v0)−KH(v0, v)− LH(v) ≥ CH(v0)−KH(v0, v)−MH(v)

≥ CH(v0)−KH(v0, v)−RH(v),

so we can conclude that:
P1(v0, v) ≥ P3(v0, v) ≥ P2(v0, v) ≥ 0.

Particularly, from the above inequalities we get that

CH(v0)− LH(v) ≥ CH(v0)−MH(v) ≥ KH(v0, v),

so (4.3) is proved.
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In the next remark we will point out the fact that in this case our result is new even for the case
with only two functions involved.

Remark 4. The continuous version in the case of two functions f and g can be written shortly like

c1c2 − ‖fg‖1 ≥ c1c2 −
∫
Z

‖α
1
p (z, .)f(.)‖p‖α

1
q (z, .)g(.)‖q dz

≥ (cp1 − ‖f‖pp)
1
p · (cq2 − ‖g‖qq)

1
q

and we can see that this is a refinement of inequality (4.2).
Moreover, as in the part c) of Corollary 2.1 for α, 0 ≤ α(y) ≤ 1 on Y we get that

c1c2 − ‖fg‖

≥ c1c2 −
(
‖α

1
pf‖p · ‖α

1
q g‖q + (‖(1− α)

1
pf‖p · ‖(1− α)

1
q g‖q

)
≥

(
cp1 − ‖f‖pp

) 1
p ·
(
cq2 − ‖g‖qq

) 1
q
,

where 0 ≤ α(y) ≤ 1, y ∈ Y ,
1

p
+

1

q
= 1, p, q > 1.

Theorem 4.3. If v0, w0 are positive real numbers and v, w weights such that the integrals in CH , KH

and P3 exist, then CH is a linear function, and

KH(v0 + w0, v + w) ≥ KH(v0, v) +KH(w0, w),

P3(v0 + w0, v + w) ≤ P3(v0, v) + P3(w0, w).

Proof. The statement about CH is obvious so let us prove the inequality for the functional KH . By
using (2.6) with

a(x) := v0f
p
0 (x)−

∫
Y

fp(x, y)v(y) dν(y)

and
b(x) := w0f

p
0 (x)−

∫
Y

fp(x, y)w(y) dν(y)

the inequality for KH follows from it. The inequality for P3 follows easily from the already proved
properties of CH ,MH and KH so we omit the details.

In the rest of this section we discuss a refinement of the continuous Bellman inequality.
The original (discrete) form of the Bellman inequality for two sequences reads: if p ≥

1, c1, c2, w0, wi, ai, bi, i = 1, 2, . . . , n are positive numbers and w0c
p
1 −

∑n
i=1wia

p
i > 0 and w0c

p
2 −∑n

i=1wib
p
i > 0, then(
w0c

p
1 −

n∑
i=1

wia
p
i

) 1
p

+

(
w0c

p
2 −

n∑
i=1

wib
p
i

) 1
p

≤

(
w0(c1 + c2)p −

n∑
i=1

wi(ai + bi)
p

) 1
p

.

There exist also integral and functional forms of these inequalities (see [10, p.126]). A continuous
version of the Bellman inequality was proved in [9] and it was given as the following theorem:
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Theorem 4.4. Let f0(x), v0, u(x), v(y), X, Y, µ, ν be defined as in Theorem 4.1. Then, for p ≥ 1,(∫
X

[
v0f

p
0 (x)−

∫
Y

fp(x, y)v(y) dν(y)

] 1
p

u(x) dµ(x)

)p

≤ v0

[∫
X

f0(x)u(x) dµ(x)

]p
−
∫
Y

[∫
X

f(x, y)u(x) dµ(x)

]p
v(y) dν(y) (4.6)

whenever f0(x) >
∫
Y
f(x, y)v(y) dν(y), for all x ∈ X.

In the same paper [10] the following functionals were considered:

B1(v0, v) := CM(v0)− LM(v)−KM(v0, v)

B2(v0, v) := CM(v0)−RM(v)−KM(v0, v)

where we used the notations:

CM(v0) := v0

[∫
X

f0(x)u(x) dµ(x)

]p
KM(v0, v) :=

(∫
X

[
v0f

p
0 (x)−

∫
Y

fp(x, y)v(y) dν(y)

] 1
p

u(x) dµ(x)

)p

and the abbreviations LM(v) and RM(v) are defined in Section 3. The following properties of those
functionals were proved in [9]:

B1(v0, v) ≥ B2(v0, v) ≥ 0,

B1(v0 + w0, v + w) ≤ B1(v0, v) +B1(w0, w),

B2(v0 + w0, v + w) ≤ B2(v0, v) +B2(w0, w).

We are now ready to present the following refinement of inequality (4.6):

Theorem 4.5. Let the assumptions of Theorem 4.4 hold. Let α(z, y) be a non-negative integrable

function on Z × Y such that
∫
Z

α(z, y) dz = 1 for y ∈ Y and where (Z, dz) is a σ−finite measure

space. Then the following refinement of the continuous Bellman inequality holds for p ≥ 1:

v0

[∫
X

f0(x)u(x) dµ(x)

]p
−
∫
Y

(∫
X

f(x, y)u(x) dµ(x)

)p
v(y) dν(y)

≥ v0

[∫
X

f0(x)u(x)u(x) dµ(x)

]p
−

∫
Z

[∫
X

(∫
Y

α(z, y)fp(x, y)v(y) dν(y)

)1/p

u(x) dµ(x)

]p
dz

≥

(∫
X

[
v0f

p
0 (x)−

∫
Y

fp(x, y)v(y) dν(y)

] 1
p

u(x) dµ(x)

)p

. (4.7)

Proof. Let us define the functional B3 by

B3 = B3(v0, v) := CM(v0)−MM(v)−KM(v0, v).

Adding CM(v0)−KM(v0, v) to the each term in the refinement of Minkowski inequality

−LM(v) ≥ −MM(v) ≥ −RM(v)
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we find that
B1(v0, v) ≥ B3(v0, v) ≥ B2(v0, v) ≥ 0.

Particularly, from the above inequalities we obtain that

CM(v0)− LM(v) ≥ CM(v0)−MM(v) ≥ KM(v0, v),

i.e. that (4.7) holds.

In our next remark we point out the fact that our results is new also in the classical case with
only two functions involved.

Remark 5. In the case of two functions f and g we get the following "continuous" refinement of
the unweighted Bellman inequality:

(c1 + c2)p − ‖f + g‖pp ≥ (c1 + c2)p −
∫
Z

[
‖α

1
p (z, .)f(.)‖p + ‖α

1
p (z, .)g(.)‖p

]p
dz

≥
[
(cp1 − ‖f‖pp)

1
p + (cp2 − ‖g‖pp)

1
p

]p
.

Besides the continuous form, it is instructive to see how that inequality looks like in an integral
form

In particular when instead of integral over Z we have only two summands this inequality reads:

(c1 + c2)p − ‖f + g‖pp

≥ (c1 + c2)p −
(
‖α

1
pf‖p + ‖α

1
p g‖p

)p
+
(
‖(1− α)

1
pf‖p + ‖(1− α)

1
p g‖p

)p
≥
[
(cp1 − ‖f‖pp)

1
p + (cp2 − ‖g‖pp)

1
p

]p
,

where 0 ≤ α(y) ≤ 1.

Theorem 4.6. If v0, w0 are positive numbers and v, w weights such that the integrals in CM , KM

and B3 exist, then CM is a linear function, and

KM(v0 + w0, v + w) ≥ KM(v0, v) +KM(w0, w)

B3(v0 + w0, v + w) ≤ B3(v0, v) +B3(w0, w).

Proof. The proof of the linearity of CM is obvious, so let us prove the stated inequality for the
functional KM . By inserting

a(x) :=

[
v0f

p
0 (x)−

∫
Y

fp(x, y)v(y) dν(y)

] 1
p

b(x) :=

[
w0f

p
0 (x)−

∫
Y

fp(x, y)w(y) dν(y)

] 1
p

into (3.1) we get that

ap(x) + bp(x) = (v0 + w0)fp0 (x)−
∫
Y

fp(x, y)(v(y) + w(y)) dν(y)

and the inequality for KM follows from (3.1). The stated inequality concerning B3 follows from the
above-mentioned properties of CM and KM and the superadditivity of MM .
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[6] E.G. Kwon, Extension of Hölder’s inequality (I). Bull. Austral. Math. Soc. 51 (1995), 369–375.

[7] E.H. Lieb, M. Loss, Analysis. Graduate Studies in Mathematics, vol. 14, American Mathematical Society, 2001.

[8] L.I. Nikolova, L.-E. Persson, Some properties of Xp spaces, Teubner Texte zur Matematik, 120 (1991), 174–185.
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