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1 Introduction

The rank [9] for families of theories, similar to the Morley rank, can be considered as a measure of
complexity for these families. Thus increasing the rank by extensions of families we produce more
rich families obtaining families with the infinite rank that can be considered “rich enough”. This
measure of complexity is related to definability and interpretability [1], [3], [5], [6].

In the present paper, for families of all theories of an arbitrary given language, we describe ranks
and degrees, partially answering the question in [9]. In particular, we characterize (non-)totally
transcendental families. Thus, we describe rich families with respect to the rank. Besides, we apply
these characterizations for the families of all theories of given languages, with models of a given finite
or infinite cardinality.

Throughout we consider families T of complete first-order theories of a language Σ = Σ(T ). For
a sentence ϕ we denote by Tϕ the set {T ∈ T | ϕ ∈ T}.

Definition 1. [9]. Let T be a family of theories and T be a theory, T /∈ T . The theory T is called
T -approximated, or approximated by T , or T -approximable, or a pseudo-T -theory, if for any sentence
ϕ ∈ T there is T ′ ∈ T such that ϕ ∈ T ′.

If T is T -approximated then T is called an approximating family for T , theories T ′ ∈ T are
approximations for T , and T is an accumulation point for T .

An approximating family T is called e-minimal if for any sentence ϕ ∈ Σ(T ), Tϕ is finite or T¬ϕ
is finite.

It was shown in [11] that any e-minimal family T has unique accumulation point T with respect
to neighbourhoods Tϕ, and T ∪ {T} is also called e-minimal.

Following [9] we define the rank RS(·) for the families of theories, similar to Morley rank [4], [8],
and a hierarchy with respect to these ranks in the following way.

For the empty family T we put the rank RS(T ) = −1, for finite nonempty families T we put
RS(T ) = 0, and RS(T ) ≥ 1 for infinite families T .

For a family T and an ordinal α = β + 1 we put RS(T ) ≥ α if there are pairwise inconsistent
Σ(T )-sentences ϕn, n ∈ ω, such that RS(Tϕn) ≥ β, n ∈ ω.
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If α is a limit ordinal, then RS(T ) ≥ α if RS(T ) ≥ β for any β < α.
We set RS(T ) = α if RS(T ) ≥ α and RS(T ) 6≥ α + 1.
If RS(T ) ≥ α for any α, we put RS(T ) =∞.
A family T is called e-totally transcendental, or totally transcendental, if RS(T ) is an ordinal.

Proposition 1.1. [9]. If an infinite family T does not have e-minimal subfamilies Tϕ then T is not
totally transcendental.

If T is totally transcendental, with RS(T ) = α ≥ 0, we define the degree ds(T ) of T as the
maximal number of pairwise inconsistent sentences ϕi such that RS(Tϕi) = α.

Recall the definition of the Cantor–Bendixson rank. It is defined on the elements of a topological
space X by induction: CBX(p) ≥ 0 for all p ∈ X; CBX(p) ≥ α if and only if for any β < α, p is an
accumulation point of the points of CBX-rank at least β. CBX(p) = α if and only if both CBX(p) ≥ α
and CBX(p) � α+1 hold; if such an ordinal α does not exist then CBX(p) =∞. Isolated points of X
are precisely those having rank 0, points of rank 1 are those which are isolated in the subspace of all
non-isolated points, and so on. For a non-empty C ⊆ X we define CBX(C) = sup{CBX(p) | p ∈ C};
in this way CBX(X) is defined and CBX({p}) = CBX(p) holds. If X is compact and C is closed in
X then the sup is achieved: CBX(C) is the maximum value of CBX(p) for p ∈ C; there are finitely
many points of maximal rank in C and the number of such points is the CBX-degree of C, denoted
by nX(C).

If X is countable and compact then CBX(X) is a countable ordinal and every closed subset has
ordinal-valued rank and finite CBX-degree nX(X) ∈ ω \ {0}.

For any ordinal α the set {p ∈ X | CBX(p) ≥ α} is called the α-th CB-derivative Xα of X.
Elements p ∈ X with CBX(p) =∞ form the perfect kernel X∞ of X.
Clearly, Xα ⊇ Xα+1, for any α ∈ Ord, where Ord is the class of all ordinals, and X∞ =

⋂
α∈Ord

Xα.

It is noticed in [9] that any e-totally transcendental family T defines a superatomic Boolean
algebra B(T ) with RS(T ) = CBB(T )(B(T )), ds(T ) = nB(T )(B(T )), i.e., the pair (RS(T ), ds(T ))
consists of Cantor–Bendixson invariants for B(T ) [2]. The algebra B(T ) is the sentence algebra, i.e.,
the Lindenbaum–Tarski algebra, and the invariants CBB(T )(B(T )), nB(T )(B(T )) can be obtained on
a base of classification for sentence algebras [7].

By the definition for any e-totally transcendental family T each theory T ∈ T obtains the CB-
rank CBT (T ) starting with T -isolated points T0, of CBT (T0) = 0. We will denote the values CBT (T )
by RST (T ) as the rank for the point T in the topological space on the E-closure ClE(T ) [9] of T
which is defined with respect to Σ(T )-sentences.

Definition 2. [9]. Let α be an ordinal. A family T of rank α is called α-minimal if for any sentence
ϕ ∈ Σ(T ), RS(Tϕ) < α or RS(T¬ϕ) < α.

Proposition 1.2. [9]. (1) A family T is 0-minimal if and only if T is a singleton.
(2) A family T is 1-minimal if and only if T is e-minimal.
(3) For any ordinal α a family T is α-minimal if and only if RS(T ) = α and ds(T ) = 1.

Proposition 1.3. [9]. For any family T , RS(T ) = α, with ds(T ) = n, if and only if T is represented
as a disjoint union of subfamilies Tϕ1 , . . . , Tϕn, for some pairwise inconsistent sentences ϕ1, . . . , ϕn,
such that each Tϕi is α-minimal.

2 Ranks for families of theories depending of given languages

Let Σ be a language. If Σ is relational, i.e., it does not contain functional symbols, then we denote
by TΣ the family of all theories of the language Σ. If Σ contains functional symbols f then TΣ is the
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family of all theories of the language Σ′, which is obtained by replacements of all n-ary symbols f
with (n+ 1)-ary predicate symbols Rf interpreted by Rf = {(ā, b) | f(ā) = b}.

Theorem 2.1. For any language Σ the family TΣ is e-minimal if and only if Σ = ∅ or Σ consists of
one constant symbol.

Proof. If Σ = ∅ or Σ consists of one constant symbol then TΣ is countable and consists of theories
Tn with n-element models, n ∈ ω \ {0}, and of the theory T∞ with infinite models. The theories Tn
are finitely axiomatizable by the sentences witnessing the cardinalities of models and T∞ is a unique
accumulation point for TΣ. Thus, TΣ is e-minimal.

Now we assume that Σ 6= ∅ and it is not exhausted by one constant symbol. Below we consider
all possible cases.

If Σ has a relational symbol P, then TΣ is divided into infinite definable parts: with empty P and
with nonempty P . Therefore, there is a sentence ϕ with infinite (TΣ)ϕ and infinite (TΣ)¬ϕ. Hence,
TΣ is not e-minimal.

If Σ has at least two constant symbols c1 and c2, then the family TΣ is divided into two infinite
parts: with c1 = c2 and with c1 6= c2. It implies that again TΣ is not e-minimal.

Finally, if Σ contains an n-ary functional symbol f , n ≥ 1, then TΣ is divided into two infinite
parts: with identical f for each element a: f(a, . . . , a) = a, and with f(a, . . . , a) 6= a for some a. It
means that again TΣ is not e-minimal.

By Propositions 1.2 and 1.3 each theory T in e-minimal TΣ has RSTΣ(T ) ≤ 1, with a unique
theory having the RS-rank 1. Here, following Theorem 2.1, RSTΣ(T ) = 1 if and only if T has infinite
models.

Proposition 2.1. If Σ is a language of 0-ary predicates, then either RS(TΣ) = 1 with ds(TΣ) = 2n,
if Σ consists of n ∈ ω symbols, or RS(TΣ) =∞, if Σ has infinitely many symbols.

Proof. If Σ consists of n ∈ ω 0-ary predicates P1, . . . , Pn, then TΣ has 2n accumulation points Ti such
that each Ti has infinite models and (P1, . . . , Pn) has values (δ1, . . . , δn) ∈ {0, 1}n.

If Σ consists of infinitely many 0-ary predicates Pi, then there is an infinite 2-tree [8] formed
by independent values for Pi in {0, 1}, witnessing that there are no e-minimal subfamilies Tϕ and
producing RS(TΣ) =∞ by Proposition 1.1.

By Proposition 2.1 a totally transcendental family TΣ, for a language Σ of n 0-ary predicates, has
2n theories of RS-rank 1, each of which has infinite models.

Proposition 2.2. If Σ is a language of 0-ary and unary predicates, with at least one unary symbol
P , then either RS(TΣ) = 2k with ds(TΣ) = 2m, if Σ consists of k ∈ ω unary symbols and m ∈ ω 0-ary
predicates, or RS(TΣ) =∞, if Σ has infinitely many symbols.

Proof. If Σ contains k ∈ ω unary symbols Pi then universes can be divided into 2k parts by Pi such
that cardinalities of these parts can vary from 0 to infinity. So varying finite cardinalities of the
parts we obtain infinitely many pairwise inconsistent sentences allowing to vary cardinalities of other
parts. Continuing the process for remaining parts we have 2n steps forming RS(TΣ) = 2k. Having
m ∈ ω 0-ary predicates Qj, sentences witnessing RS(TΣ) = 2k are implied by 2m pairwise inconsistent
sentences describing values for Qj. Thus, ds(TΣ) = 2m.

If Σ contains infinitely many predicate symbols, 0-ary and unary, we construct an infinite 2-tree
of sentences formed by independent values of predicates. Hence, RS(TΣ) = ∞ using Proposition
1.1.
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In view of Proposition 2.2 there are 2m theories T in TΣ having the maximal RSTΣ(T ) = 2k. Each
such T has only infinite parts with respect to the predicates Pi. Notice also that RSTΣ(T ) = s ≤ 2k

if and only if T has models with exactly s infinite parts.

Proposition 2.3. If Σ is a language of constant symbols then either RS(TΣ) = 1 with ds(TΣ) = P (n),
where P (n) is the number for partitions of n-element sets, if Σ consists of n ∈ ω symbols, or
RS(TΣ) =∞, if Σ has infinitely many symbols.

Proof. If Σ consists of constant symbols c1, . . . , cn then we can write in sentences that these constants
can arbitrarily coincide or not coincide. The sentences (ci ≈ cj)

δ, δ ∈ {0, 1}, define partitions of the
set C = {c1, . . . , cn}. The number P (n) of these partitions [10, Section 5.4] defines all possibilities
for ds(TΣ). Since all Σ-sentences are reduced to the descriptions ϕ of these partitions as well as to
the descriptions ψ of cardinalities of the sets C = M \ C, where M are models of theories in TΣ, we
have RS(TΣ) = 1, witnessed by ψ, and ds(TΣ) = P (n), witnessed by ϕ.

If Σ contains infinitely many constant symbols, we construct an infinite 2-tree of sentences formed
by independent (in)equalities of constants. Hence, RS(TΣ) =∞ using Proposition 1.1.

By Proposition 2.3, for RS(TΣ) = 1 there are P (n) theories T in TΣ with RSTΣ(T ) = 1. Each
such T is characterized by existence of infinite models.

Proposition 2.4. If Σ is a language of 0-ary and unary predicates, and constant symbols, then either
RS(TΣ) is finite, if Σ consists of finitely many symbols, or RS(TΣ) = ∞, if Σ has infinitely many
symbols.

Proof. If Σ is finite then we can increase RS(TΣ) till 2k using unary predicates P1, . . . , Pk repeating
arguments for Proposition 2.2. The degree ds(TΣ) is bounded by finitely many possibilities for values
of 0-ary predicates and for partitions of constants combining Propositions 2.2 and 2.3.

If Σ has infinitely many symbols then it has either infinitely many 0-ary predicates, or unary pred-
icates, or constant symbols. Anyway it is possible to construct an infinite 2-tree, as for Propositions
2.2 and 2.3, guaranteeing that RS(TΣ) =∞.

As above, RS-ranks for theories T in a totally transcendental family TΣ in Proposition 2.4 are
characterized by the number of infinite Pi-parts in models of T .

Proposition 2.5. If Σ is a language containing an m-ary predicate symbol, for m ≥ 2, or an n-ary
functional symbol, for n ≥ 1, then RS(TΣ) =∞.

Proof. Using the arguments for the propositions above it suffices to show that having a binary
predicate symbol Q or a unary functional symbol f it is possible to define infinitely many independent
definable subsets Xn, n ∈ ω, of universes M for models of theories in TΣ. It is possible to code
these sets Xn, even by acyclic directed graphs (i.e., by directed graphs without paths connecting a
vertex with itself), by the existence of paths from some elements a without preimages to elements
b ∈ Xn such that the (a, b)-path has the length n. Coding the sets Xn we can form an infinite
2-tree for elements in Y =

⋃
n∈ω

Xn such that some sentences divide Y into continuum many parts by

(non)existence of paths having the lengths n. The existence of this 2-tree implies that RS(TΣ) =∞
using Proposition 1.1.

Remark 1. The arguments for Proposition 2.5 allow to restrict families TΣ with binary relational
symbols R to the families T{R},ag in graph languages {R}, of theories of acyclic graphs, and such that
RS(T{R},ag) =∞.

Summarizing arguments above we obtain the following theorem.
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Theorem 2.2. For any language Σ either RS(TΣ) is finite, if Σ consists of finitely many 0-ary and
unary predicates, and finitely many constant symbols, or RS(TΣ) =∞, otherwise.

Proof. If Σ consists of finitely many 0-ary and unary predicates, and constant symbols then RS(TΣ)
is finite by Proposition 2.4. Otherwise, RS(TΣ) =∞ by Propositions 2.4 and 2.5.

3 Application for families of theories depending on cardinalities of models

The technique for counting of the ranks RS(TΣ) can be applied to families TΣ,n of all theories in TΣ

having n-element models, n ∈ ω, as well as for families TΣ,∞ of all theories in TΣ having infinite
models.

Clearly, for any language Σ, TΣ =
⋃
n∈ω
TΣ,n∪TΣ,∞. Therefore, by the monotonicity of RS, we have

for any n ∈ ω:
RS(TΣ,n) ≤ RS(TΣ), (3.1)

RS(TΣ,∞) ≤ RS(TΣ). (3.2)

Using (3.1) and (3.2), the following theorems and their arguments allow to count the ranks RS(TΣ,n)
and RS(TΣ,∞) depending on Σ.

Theorem 3.1. For any language Σ either RS(TΣ,n) = 0, if Σ is finite or n = 1 and Σ has finitely
many predicate symbols, or RS(TΣ,n) =∞, otherwise.

Proof. If Σ is finite then TΣ,n is finite for any n ∈ ω, since there are finitely many isomorphism types
for n-element structures in the language Σ. If n = 1 and Σ has finitely many predicate symbols
then again there are finitely many isomorphism types for 1-element structures 〈A; Σ〉, since there are
finitely many possibilities for distributions of empty predicates, all nonempty predicates are complete,
all constants has same interpretations, and all functions are identical.

If Σ has infinitely many predicate symbols Pi, we can form an infinite 2-tree of sentences allowing
Pi independently be empty or complete. If Σ has infinitely many constant symbols ci, then, for n ≥ 2
and c0 6= c1, we again can form an infinite 2-tree of sentences allowing ci independently be equal to
c0 or c1. Finally, if Σ has infinitely many functional symbols fi, then, for n ≥ 2, we can form an
infinite 2-tree of sentences allowing fi be (non)identical. Each possibility above immediately implies
RS(TΣ,n) =∞.

Recall that for a predicate P ⊆ Am and for an operation f : An → A the values m and n are
the arities for P and f , respectively. These values are also arities for language symbols in Σ with
interpretations P and f , respectively.

Theorem 3.2. For any language Σ either RS(TΣ,∞) is finite, if Σ is finite and without predicate
symbols of arities m ≥ 2 as well as without functional symbols of arities n ≥ 1, or RS(TΣ,∞) = ∞,
otherwise.

Proof. Let Σ be finite and without predicate symbols of arities m ≥ 2 as well as without functional
symbols of arities n ≥ 1, i.e., Σ contains only finitely many 0-ary and unary predicate symbols as
well as finitely many constant symbols. Then applying Propositions 2.1–2.4 and inequality (3.2) we
have RS(TΣ,∞) < ω.

If Σ has predicate symbols of arities m ≥ 2 or functional symbols of arities n ≥ 1 then RS(TΣ,n) =
∞ repeating arguments for Proposition 2.5 and constructing a 2-tree of sentences.

If Σ is infinite then by the previous case it suffices to consider languages with either infinitely
many 0-ary predicates, or infinitely many unary predicates, or infinitely many constants. In these
cases we repeat arguments for Propositions 2.1–2.4 and construct 2-trees of sentences guaranteeing
RS(TΣ,n) =∞.
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Notice that, similarly to the remark after Proposition 2.4, RS-ranks for theories T in a totally
transcendental family TΣ,∞ are characterized by numbers of infinite parts, in models of T , with
respect to unary predicates.
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