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convergence of these operators by using the concept of the K-functional and modulus of continuity,
also give a convergence theorem for the Lipschitz continuous functions.

DOI: https://doi.org/10.32523/2077-9879-2021-12-2-39-51

1 Introduction

Approximation theory deals with approximation of functions by simpler functions or more easily
calculated functions. Broadly it is divided into theoretical and constructive approximation. Inspired
by the binomial probability distribution, in 1912 S.N. Bernstein [4] was the first to construct a
sequence of positive linear operators to provide a constructive proof of the prominent Weierstrass
approximation theorem [34] using the probabilistic approach.

In order to obtain more flexibility, Stancu [32] applied another technique for choosing nodes.
He observed that the distance between two successive nodes and between the zero and first node
and similarly between the last and first goes to zero as m → ∞. After these observation Stancu
introduced the following positive linear operators

(
P (γ,δ)
m f

)
(u) =

m∑
k=0

(
m

k

)
uk(1− u)m−kf

(
k + γ

m+ δ

)
, (1.1)

converging to a continuous function f uniformly on [0,1] for each real γ, δ such that 0 ≤ γ ≤ δ.
A. Lupaş [17] introduced the linear positive operators at the International Dortmund Meeting

held in Witten (Germany, March, 1995) as follows:

Lm(f ;u) = (1− a)mu
∞∑
`=0

(mu)`a
`

`!
f

(
`

m

)
, u ≥ 0, (1.2)

where (mu)` is the rising factorial defined as:

(mu)0 = 1, (mu)` = mu(mu+ 1)(mu+ 2) · · · (mu+ `− 1), ` ≥ 0,
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with 0 < a < 1 and f : [0,∞) → R. If Lm(u) = u, then one can prove that a = 1
2
. Thus operators

(1.2) become

Lm(f ;u) = 2−mu
∞∑
`=0

(mu)`
`!2`

f

(
`

m

)
, u ≥ 0, (1.3)

The q-analogue of Lupaş operators (1.3) is defined in [33] as:

Lp,qm (f ;u) = 2−[m]qu

∞∑
`=0

([m]qu)`
[`]q!2`

f

(
[`]q
[m]q

)
, u ≥ 0. (1.4)

Where, for any fixed real number q > 0, the q-integer [m]q, for m ∈ N (set of natural numbers) is
defined as

[m]q :=

{
(1−qm)
(1−q) , q 6= 1

m, q = 1,

and ([m]qu)` is the rising factorial defined as:

([m]qu)0 = 1,

([m]qu)` = ([m]qu)([m]qu+ 1)([m]qu+ 2) · · · ([m]qu+ `− 1), ` ≥ 0.

Recently, Mursaleen et al. ([25], [26]) introduced (p, q)-calculus in approximation theory and con-
structed a post quantum analogue of Bernstein operators. On the other hand Khan and Lobiyal
defined a (p, q)- analogue of Lupaş-Bernstein operators in [12] and showed its application to com-
puter aided geometric design (CAGD) for the construction of Beizer curves and surfaces. For related
literature, one can refer to papers [1]-[3], [5, 8, 9, 11, 13, 14, 18, 19], [20]-[24], [27]-[31] based on q
and (p, q) integers in approximation theory and CAGD.

Motivated by the above mentioned work, in this article, we introduce positive linear Lupaş-Stancu
operators based on (p, q)-integers as follows:

Lγ,δm,p,q(f ;u) = 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!2`

f

(
p`−m[`]p,q + γ

[m]p,q + δ

)
, u ≥ 0. (1.5)

where f : [0,∞)→ R, 0 < q < p ≤ 1 with 0 ≤ γ ≤ δ and for any m ∈ N.
The sequence of (p, q)-Lupaş-Stancu operators constructed in (1.5) however does not preserve the

test functions t and t2. Hence one cannot guarantee approximation via these operators. Therefore,
we construct the modified (p, q)- Lupaş-Stancu operators as follows.

Let 0 < q < p ≤ 1 with 0 ≤ γ ≤ δ and m ∈ N. For f : [0,∞)→ R, we define the (p, q)-analogue
of Lupaş-Stancu operators as:

Lγ,δm,p,q(f ;u) = 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!a`

f

(
[`]p,q + γ

[m]p,q + δ

)
, u ≥ 0. (1.6)

Obviously, when p = 1 and γ = δ = 0 operator (1.6) reduces to operator (1.4).
Before proceeding further, let us mention some basic definitions and notations of (p, q)-calculus.

Let p > 0, q > 0. For any nonnegative integers ` and m, m ≥ ` ≥ 0, the (p, q)-integer,
(p, q)-binomial are defined, as
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[j]p,q = pj−1 + pj−2q + pj−3q2 + ...+ pqj−2 + qj−1 =



pj−qj
p−q , if p 6= q 6= 1,

j pj−1, if p = q 6= 1,

[j]q, if p = 1,
j, if p = q = 1.

where [j]q denotes the q-integers and m = 0, 1, 2, · · · .

The formula for (p, q)-binomial expansion is as follows:

(au+ bv)mp,q :=
m∑
`=0

p
(m−`)(m−`−1)

2 q
`(`−1)

2

[
m
`

]
p,q

am−`b`um−`v`,

where (p, q)-binomial coefficients are defined by[
m
`

]
p,q

=
[m]p,q!

[`]p,q![m− `]p,q!
.

The goals of this paper are to construct a new class of Lupaş operators based on the post quan-
tum analogue and also to estimate the rate of convergence of these new operators to the unit operator.

The rest of the paper is organized as follows. In Section 2, we calculate moments and central
moments for the operators which are required for our main results. In Section 3, we prove a Korovkin
type approximation theorem and estimate the rate of convergence of operator (1.6) to the unit
operator. Finally in Section 4, we prove a weighted approximation theorem for operator (1.6).

2 Some auxiliary results

Lemma 2.1. Let 0 < q < p ≤ 1, 0 ≤ γ ≤ δ and m ∈ N. We have

(i) Lγ,δm,p,q(1;u) = 1,

(ii) Lγ,δm,p,q(t;u) = [m]p,q
[m]p,q+δ

u+ γ
[m]p,q+δ

,

(iii) Lγ,δm,p,q(t2;u) = [m]p,q

([m]p,q+δ)2(2−p)([m]p,qu+1)u+ (2γ+q)[m]p,q
([m]p,q+δ)2 u+

[m]2p,q
([m]2p,q+δ)

2 qu
2 + γ2

([m]p,q+δ)2 .

Proof. We have

(i)

Lγ,δm,p,q(1;u) = 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!2`

= 1.
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(ii)

Lγ,δm,p,q(t;u) = 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!2`

[`]p,q + γ

[m]p,q + δ

= 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!2`

[`]p,q
[m]p,q + δ

+ 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!2`

γ

[m]p,q + δ

= 2−[m]p,qu

∞∑
`=1

([m]p,qu)([m]p,qu+ 1)`−1

[`]p,q[`− 1]p,q!2`
[`]p,q

[m]p,q + δ

+ 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!2`

γ

[m]p,q + δ

=
[m]p,q

[m]p,q + δ
u2−[m]p,qu−1

∞∑
`=0

([m]p,qu+ 1)`
[`]p,q!2`

+
γ

[m]p,q + δ

=
[m]p,q

[m]p,q + δ
u+

γ

[m]p,q + δ
.

(iii)

Lγ,δm,p,q(t2;u) = 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!2`

([`]p,q + γ)2

([m]p,q + δ)2

= 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!2`

[`]2p,q + γ2 + 2`γ

([m]p,q + δ)2

= 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!2`

[`]2p,q
([m]p,q + δ)2

+ 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!2`

γ2

([m]p,q + δ)2

+ 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!2`

2`γ

([m]p,q + δ)2

≡ I1 + I2 + I3.

After calculating I1, I2 and I3, we get

Lγ,δm,p,q(t2;u)

=
[m]p,q

([m]p,q + δ)2(2− p)([m]p,qu+1)
u+

(2γ + q)[m]p,q
([m]p,q + δ)2

u+
[m]p,q

([m]2p,q + δ)2
qu2 +

γ2

([m]p,q + δ)2
.

Corollary 2.1. Using Lemma 2.1, we get the following formulas for moments.
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Lγ,δm,p,q(t− u;u) = 0

Lγ,δm,p,q((t− u)2;u) =
(

1
(2−p)([m]p,qu+1) + 2γ + q

) [m]p,q
([m]p,q+δ)2u+

[m]2p,q
([m]2p,q+δ)

2 qu
2 + γ2

([m]p,q+δ)2

− 2[m]p,q
([m]p,q+δ)

u2 + 2γ
([m]p,q+δ)

u+ u2 ≡ σm(u).

3 Main results

Theorem 3.1. Let f ∈ CB[0,∞) and qm ∈ (0, 1), pm ∈ (qm, 1] be such that qm → 1, pm → 1 as
m→∞. Then for each u ∈ [0,∞) we have

lim
n→∞

Lγ,δm,pm,qm(f ;u) = f(u).

Proof. By Korovkin’s theorem it is enough to show that

lim
m→∞

Lγ,δm,pm,qm(tm;u) = um, m = 0, 1, 2.

By Lemma 2.1, it is clear that

lim
m→∞

Lγ,δm,pm,qm(1;u) = 1

lim
m→∞

Lγ,δm,pm,qm(1;u) = u

and

lim
m→∞

Lγ,δm,pm,qm(t2;u) = lim
m→∞

[
[m]p,q

([m]p,q + δ)2(2− p)([m]p,qu+1)
u

+
(2γ + q)[m]p,q
([m]p,q + δ)2

u+
[m]2p,q

([m]2p,q + δ)2
qu2 +

γ2

([m]p,q + δ)2

]
= u2.

Next, in order to prove the convergence of Lγ,δm,p,q(f ;u), we give the following definitions of the
K-functional and modulus of smoothness. Let CB[0,∞) be the space of all real-valued continuous
and bounded functions f defined on the interval [0,∞). The norm ‖ · ‖ on the space CB[0,∞) is
given by

‖ f ‖= sup
0≤u<∞

| f(x) | .

The K-functional is defined as

K2(f, δ) = inf
s∈W 2
{‖ f − s ‖ +δ ‖ s′′ ‖},

where σ > 0 and W 2 = {s ∈ CB[0,∞) : s
′
, s
′′ ∈ CB[0,∞)}.

Then as in ([6], p. 177, Theorem 2.4), there exists an absolute constant C > 0 such that

K2(f, σ) ≤ Cω2(f,
√
σ). (3.1)
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The second order modulus of smoothness of f ∈ CB[0,∞) is as follows

ω2(f,
√
σ) = sup

0<h≤
√
σ

sup
u∈[0,∞)

| f(u+ 2h)− 2f(u+ h) + f(u) | .

The usual modulus of continuity of f ∈ CB[0,∞) is defined by

ω(f, σ) = sup
0<h≤δ

sup
u∈[0,∞)

| f(u+ h)− f(u) | .

Theorem 3.2. Let f ∈ CB[0,∞), p, q ∈ (0, 1) be such that 0 < q < p ≤ 1. Then for every u ∈ [0,∞)
we have

| Lγ,δm,p,q(f ;u)− f(u) |≤ Cω2(f ;σm(u)),

where C > 0 is an absolute constant and σm(u) is defined in Corollary 2.1

Proof. Let s ∈ W2. Then from Taylor’s expansion, we get

s(t) = s(u) + s′(u)(t− u) +

∫ t

u

(t− u)s′′(u)du, t ∈ [0,D], D > 0.

Now by Corollary 2.1, we have

Lγ,δm,p,q(s;u) = s(u) + Lγ,δm,p,q
(∫ t

u

(t− u)s′′(u)du;u

)
.

|Lγ,δm,p,q(s;u)− s(u)| ≤ Lγ,δm,p,q
(∣∣∣∣∫ t

u

| (t− u) | | s′′(u) | du;u

∣∣∣∣)
≤ Lγ,δm,p,q

(
(t− u)2;u

)
‖ s′′ ‖,

hence we get

|Lγ,δm,p,q(s;u)− s(u)|

≤ ‖ s′′ ‖
(( 1

(2− p)([m]p,qu+1)
+ 2γ + q

) [m]p,q
([m]p,q + δ)2

u

+
[m]2p,q

([m]2p,q + δ)2
qu2 +

γ2

([m]p,q + δ)2
− 2[m]p,q

([m]p,q + δ)
u2

+
2γ

([m]p,q + δ)
u+ u2

)
.

By (1.6), we have

|Lγ,δm,p,q(f ;u)| ≤ 2−[m]p,qu

∞∑
`=0

([m]p,qu)`
[`]p,q!2`

∣∣∣∣f ( [`]p,q + γ

[m]p,q + δ

) ∣∣∣∣≤‖ f ‖ .
Thus, we have

|Lγ,δm,p,q(f ;u)| ≤ | Lγ,δm,p,q ((f − s);u)− (f − s)(u) | +|Lγ,δm,p,q(s;u)− s(u)|.
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After substituting all values, we get

|Lγ,δm,p,q(f ;u)− f(u)| ≤ ‖ f − s ‖ + ‖ s′′ ‖
(( 1

(2− p)([m]p,qu+1)
+ 2γ + q

) [m]p,q
([m]p,q + δ)2

u

+
[m]2p,q

([m]2p,q + δ)2
qu2 +

γ2

([m]p,q + δ)2
− 2[m]p,q

([m]p,q + δ)
u2

+
2γ

([m]p,q + δ)
u+ u2

)
.

By taking the infimum in the right hand side over all s ∈ W2, we get

|Lγ,δm,p,q(f ;u)− f(u)| ≤ CK2

(
f, σ2

m(u)
)
.

By using the property (3.1) of the K-functional, we have

|Lγ,δm,p,q(f ;u)− f(u)| ≤ Cω2 (f, σm(u)) .

Theorem 3.3. Let 0 < α ≤ 1 and E be any bounded subset of the interval [0,∞). If f ∈ CB[0,∞)
is locally Lip(α), i.e., the condition

|f(v)− f(u)| ≤  L|v − u|α, v ∈ E and u ∈ [0,∞) (3.2)

holds, then, for each u ∈ [0,∞), we have

|Lγ,δm,p,q(f ;u)− f(u)| ≤  L
{
σm(u)

α
2 + 2(d(u,E))α

}
, u ∈ [0,∞)

where  L is a constant depending on α and f and d(u;E) is the distance between u and E defined by
d(u,E) = inf {|t− u|; t ∈ E} and σm(u) is defined in Corollary 2.1

Proof. Let E be the closure of E in [0,∞). Then, there exists a point t0 ∈ E such that d(u,E) =
|u− t0|. Using the triangle inequality, we have

|f(t)− f(u)| ≤ |f(t)− f(t0)|+ |f(t0)− f(u)|.

By using (3.2) we get,

|Lγ,δm,p,q(f ;u)− f(u)|
≤ Lγ,δm,p,q (|f(t)− f(t0)|;u) + Lγ,δm,p,q (|f(u)− f(t0)|;u)

≤  L
{
Lγ,δm,p,q (|t− t0|α;u) + (|u− t0|α;u) + |u− t0|α

}
≤  L

{
Lγ,δm,p,q (|t− u|α;u) + 2|u− t0|α

}
.

By choosing p = 2
α
and q = 2

2−α , we get 1
p

+ 1
q

= 1. Then by using Hölder’s inequality we get

|Lγ,δm,p,q(f ;u)− f(u)| ≤  L
{
Lγ,δm,p,q (|t− u|αp;u)

1
p [Lγ,δm,p,q(1q;u)]

1
q + 2(d(u,E))α

}
≤  L

{
Lγ,δm,p,q

(
((t− u)2;u)

)α
2 + 2(d(u,E))α

}
≤  L

{
σm(u)

α
2 + 2(d(u,E))α

}
.
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Now, let

ω̃α(f ;u) = sup
t6=u,t∈(0,∞)

|f(t)− f(u)|
|t− u|α

, u ∈ [0,∞) and α ∈ (0, 1], (3.3)

given by Lenze [16]. Then we get the following result.

Theorem 3.4. Let f ∈ CB[0,∞) and α ∈ (0, 1]. Then, for all u ∈ [0,∞), we have

|Lγ,δm,p,q(f ;u)− f(u)| ≤ ω̃α(f ;u)
(
σm(u)

)α
2
,

where σm(u) is defined in Corollary 2.1.

Proof. We know that

|Lγ,δm,p,q(f ;u)− f(u)| ≤ Lγ,δm,p,q(|f(t)− f(u)|;u).

From equation (3.3), we have

|Lγ,δm,p,q(f ;u)− f(u)| ≤ ω̃α(f ;u)Lγ,δm,p,q(|t− u|α;u).

From Hölder’s inequality with p = 2
α
and q = 2

2−α , we have

|Lγ,δm,p,q(f ;u)− f(u)| ≤ ω̃α(f ;u)
(
Lγ,δm,p,q(|t− u|2;u)

)α
2 ,

which proves the desired result.

4 Weighted approximation by Lγ,δm,p,q

In this section we shall discuss weighted approximation theorems for the operators Lγ,δm,p,q on the
interval [0,∞). Let ρ(u) = 1 + u2 be a weight function; Bρ[0,∞) be the weighted space defined by

Bρ[0,∞) = {f : [0,∞)→ R
∣∣|f(u)| ≤ Kfρ(u), u ≥ 0},

where Kf is a constant which depends only on f . Bρ[0,∞) is a normed linear space equipped with
the norm

‖ f ‖ρ= sup
u∈[0,∞)

|f(u)|
ρ(u)

.

Also, we define the following subspaces of Bρ[0,∞) as

Cρ[0,∞) = {f ∈ Bρ[0,∞) : f is continuous on [0,∞)},

C∗ρ [0,∞) =

{
f ∈ Cρ[0,∞) : lim

u→∞

f(u)

ρ(u)
= Kf

}
,

where Kf is a constant depending on f and

Uρ[0,∞) = {f ∈ Cρ[0,∞) :
f(u)

ρ(u)
is uniformly continuous on [0,∞)}.

Obviously,
C∗ρ [0,∞) ⊂ Uρ[0,∞) ⊂ Cρ[0,∞) ⊂ Bρ[0,∞).
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Theorem 4.1 (cf. [15]). Let (Am) be a sequence of linear positive operators from Cρ[0,∞) to
Bρ[0,∞) satisfying

lim
m→∞

‖ Amki − ki ‖ρ= 0, i = 0, 1, 2,

where ki = xi, i = 0, 1, 2 are the test functions.
Then for any function f ∈ C∗ρ [0,∞)

lim
m→∞

‖ Amf − f ‖ρ= 0.

Theorem 4.2. Let (qm) and (pm) be two sequences such that 0 < qm < pm ≤ 1 for all m which
converge to 1. Then for each function f ∈ C∗ρ [0,∞), we get

lim
m→∞

‖ Lγ,δm,pm,qmf − f ‖ρ= 0.

Proof. By Theorem 4.1, it is enough to show that

lim
m→∞

‖ Lγ,δm,pm,qmki − ki ‖ρ = 0, i = 0, 1, 2. (4.1)

By Lemma 2.1 (i) and (ii), it is clear that

‖ Lγ,δm,pm,qm(1;u)− 1 ‖ρ = 0

‖ Lγ,δm,pm,qm(t;u)− u ‖ρ

= sup
u∈[0,∞)

(
[m]p,q

[m]p,q+δ
− 1
)
u

1 + u2
+

γ

[m]p,q + δ

≤
(

[m]p,q
[m]p,q + δ

− 1

)
+

γ

[m]p,q + δ
.

and by Lemma 2.1 (iii), we have

‖ Lγ,δm,pm,qm(t2;u)− u2 ‖ρ

= sup
u∈[0,∞)

(
[m]p,q

([m]p,q+δ)2(2−pm)([m]p,qu+1) + (2γ+qm)[m]p,q
([m]p,q+δ)2

)
u+

( [m]2p,q
([m]2p,q+δ)

2 qm − 1
)
u2

1 + u2

+
γ2

([m]p,q + δ)2

≤
(

[m]p,q
([m]p,q + δ)2(2− pm)([m]p,qu+1)

+
(2γ + qm)[m]p,q

([m]p,q + δ)2
+

[m]2p,q
([m]2p,q + δ)2

qm − 1

)
+

γ2

([m]p,q + δ)2
.

The last inequality means that (4.1) holds for i = 2. By Theorem 4.1, the proof is completed.

Theorem 4.3. Let qm ∈ (0, 1), pm ∈ (q, 1] such that qm → 1, pm → 1 as m→∞. Let f ∈ C∗ρ [0,∞),
and ωd+1(f ;σ) be its modulus of continuity defined on finite interval [0, d+ 1] ⊂ [0,∞), d > 0. Then,
for m ≥ 1 we have

‖Lγ,δm,pm,qm(f ;u)− f(u)‖C[0,d] ≤ 6Mf (1 + d2)σm(u) + 2ωd+1(f ;
√
σm(u)),

where Mf is a constant which depends on f , σm(u) is defined in Corollary 2.1.
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Proof. From ([10], p. 378), for u ∈ [0, d] and t ≤ d+ 1, we have

|f(t)− f(u)| ≤ 6Mf (1 + d2)(t− u)2 +

(
1 +
|t− u|
σ

)
ωd+1(f ;σ).

Applying Lγ,δm,p,q to both sides, we have

|Lγ,δm,p,q(f ;u)− f(u)| ≤ 6Mf (1 + d2)Lγ,δm,p,q((t− u)2;u) +

(
1 +
Lγ,δm,p,q(|t− u|;u)

σ

)
ωd+1(f ;σ).

Applying Cauchy-Schwartz inequality, for u ∈ [0, d] we get

|Lγ,δm,p,q(f ;u)− f(u)| ≤ Lγ,δm,p,q (|(f ;u)− f(u)|;u)

≤ 6Mf (1 + d2)Lγ,δm,p,q((t− u)2;u)

+ ωd+1(f ;σ)

(
1 +

1

σ
Lγ,δm,p,q

(
(t− u)2;u

) 1
2

)
.

Thus, from Corollary 2.1, for u ∈ [0, d], we get

|Lγ,δm,p,q(f ;u)− f(u)| ≤ 6Mf (1 + d2)σm(u) + ωd+1(f ; δ)

(
1 +

√
σm(u)

σ

)
.

By choosing σ =
√
σm(u), we get the required result.

Now, we prove a theorem on approximation of all functions in C∗ρ [0,∞). Results of such type are
given in [7] for locally integrable functions.

Theorem 4.4. Let 0 < qm < pm ≤ 1 such that qm → 1, pm → 1 as m→∞. Then for each function
f ∈ C∗ρ [0,∞), and α > 1

lim
m→∞

sup
u∈[0,∞)

| Lγ,δm,pm,qm(f ;u)− f(u) |
(1 + u2)α

= 0.

Proof. Let for any fixed u0 > 0,

sup
u∈[0,∞)

| Lγ,δm,pm,qm(f ;u)− f(u) |
(1 + u2)α

≤ sup
u≤u0

| Lγ,δm,pm,qm(f ;u)− f(u) |
(1 + u2)α

+ sup
u≥u0

| Lγ,δm,pm,qm(f ;u)− f(u) |
(1 + u2)α

≤ ‖ Lγ,δm,pm,qm(f)− f ‖C[0,u0] + ‖ f ‖ρ sup
u≥u0

| Lγ,δm,pm,qm(1 + t2;u) |
(1 + u2)α

+ sup
u≥u0

| f(u) |
(1 + u2)α

. (4.2)

Since, | f(u) |≤Mf (1 + u2) we have,

sup
u≥u0

| f(u) |
(1 + u2)α

≤ sup
u≥u0

Mf

(1 + u2)α−1
≤ Mf

(1 + u2)α−1
.

Let ε > 0, and let us choose u0 such that

Mf

(1 + u0
2)α−1

<
ε

3
(4.3)
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and in view of Lemma 2.1 we get

‖ f ‖ρ = lim
m→∞

| Lγ,δm,pm,qm(1 + t2;u) |
(1 + u2)α

= ‖ f ‖ρ
1 + u2

(1 + u2)α

≤ ‖ f ‖ρ
(1 + u2)α−1

≤ ‖ f ‖ρ
(1 + u0

2)α−1
≤ ε

3
.

By using Theorem 4.3, the first term of inequality (4.2) becomes

‖ Lγ,δm,pm,qm(f)− f ‖C[0,u0]<
ε

3
. (4.4)

Hence we get the required proof by combining (4.3)-(4.4)

sup
u∈[0,∞)

| Lγ,δm,pm,qm(f ;u)− f(u) |
(1 + u2)α

= 0.
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