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Abstract. We consider a coefficient inverse problem for a parabolic equation in a degenerate angular
domain when the moving part of the boundary changes linearly. We show that the inverse problem
for the homogeneous heat equation with homogeneous boundary conditions has a nontrivial solution
up to a constant factor consistent with an additional condition. The boundedness of this solution
and this additional condition is proved. Moreover, the solution of the considered inverse problem is
found in an explicit form and it is proved that the required coefficient is determined uniquely. It
is shown that the obtained nontrivial solution of the inverse problem has no singularities and the
additional condition also has no singularities.

DOI: https://doi.org/10.32523/2077-9879-2021-12-2-25-38

1 Introduction

Despite the fact that the theory of inverse problems has been developed for not so long, inverse
problems are used in many areas of science. Now a lot of attention is paid to the study of inverse
problems arising in geophysics, to the study of inverse problems associated with the analysis of
electrophysiological processes occurring in the human body, etc.

The inverse problems of the type that we consider in the article were investigated in papers
[17]-[18] (see also literature therein). In those papers it was assumed that the movable boundaries
move according to the Hölder condition, that the domain is not degenerate and the time interval
is bounded. The uniqueness and existence of a solution of the inverse problem where the required
coefficient is a continuous function were established and numerical solutions were obtained.

The peculiarity of our study is that we consider the inverse problem for the heat equation in a
degenerate angular domain. For the sake of simplicity and for the purpose of showing the effect of
degeneration of the domain, we consider the problem, where, firstly, the moving part of the boundary
changes linearly; secondly, the boundary value problem is completely homogeneous; thirdly, the time
interval is bounded. It is known that when a domain degenerates at some points, the methods
of separation of variables and integral transformations are generally not applicable to this type of
problems. In this paper, to prove the existence of a nontrivial solution for the original problem we
use the methods and results of our earlier works [1]-[4], [8], [14], [15] where solutions are found with
the help of the theory of thermal potentials and the Volterra integral equations of the second kind.

We also note works [7] and [9] devoted to the study of the heat conduction problems in degenerate
domains. In paper [16] a theorem on the unique solvability of the non-homogeneous boundary value
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problem in weighted Hölder spaces was obtained. We also refer to publications [5], [10]-[13] of other
authors that are close to the contents of this paper.

The work consists of 7 sections. The first section is Introduction. In Section 2, we formulate the
original inverse problem. In Section 3, we present auxiliary problem and a solution to this auxiliary
problem. In Section 4 we show the boundedness of the additional condition and of the solution of
an equivalent form of the auxiliary problem. Section 5 is devoted to the asymptotic behaviour of the
additional condition. In Section 6, we formulate the main result. Finally, conclusions are made in
Section 7.

2 Statement of the original inverse problem

We consider an inverse problem of finding a coefficient λ(t) and a function u(x, t) in the domain
GT = {(x, t)| 0 < x <

√
kt, 0 < t < T}, k > 0, T < +∞, for the following heat equation:

ut(x, t) = uxx(x, t)− λ(t)u(x, t), (x, t) ∈ GT , (2.1)

with the homogeneous boundary conditions

u(x, t)|x=0 = 0, u(x, t)|x=
√
kt = 0, 0 < t < T, (2.2)

subject to the overspecification

u(µ(t), t) = E(t), E(t) ≥ δ > 0, 0 < t < T, (2.3)

where 0 < µ(t) <
√
kt, µ(0) = 0, 0 < µ′(0) <

√
k, µ(t) ∈ C1(0, T ) and E(t) ∈ L∞(0, T ) are given

functions.

3 Auxiliary problems

3.1 First auxiliary problem

We transform original inverse problem (2.1)–(2.3) by replacing the independent variables and domain{
t̄ = k t, x̄ =

√
k x, GTk = {(x̄, t̄)|0 < x̄ < t̄, 0 < t̄ < Tk = k T},

ū(x̄, t̄) = u(x, t)|x=x̄/
√
k, t=t̄/k, λ̄(t̄) = 1

k
λ(t̄/k).

(3.1)

Further, for inverse problem (2.1)–(2.3) we obtain the following inverse problem of finding the coef-
ficient λ̄(t̄) and the function ū(x̄, t̄) in the domain GTk :

ūt̄(x̄, t̄) = ūx̄x̄(x̄, t̄)− λ̄(t̄)ū(x̄, t̄), (x̄, t̄) ∈ GTk , (3.2)

with the homogeneous boundary conditions

ū(x̄, t̄)|x̄=0 = 0, ū(x̄, t̄)|x̄=t̄ = 0, (3.3)

subject to the overspecification

ū(µ̄(t̄), t̄) = Ē(t̄), Ē(t̄) ≥ δ > 0, 0 < t̄ < Tk, (3.4)

where µ̄(t̄) =
√
kµ(t)|t=t̄/k, 0 < µ̄(t̄) < t̄ and Ē(t̄) = E(t)|t=t̄/k.
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3.2 Second auxiliary problem

In accordance to problem (3.2)–(3.4) we will set an auxiliary inverse problem of finding the coefficient
λ̄1(t̄) and the function v(x̄, t̄) in the domain G∞ = {(x̄, t̄)| 0 < x̄ < t̄, t̄ > 0}:

vt̄(x̄, t̄) = vx̄x̄(x̄, t̄)− λ̄1(t̄)v(x̄, t̄), (x̄, t̄) ∈ G∞, (3.5)

with the homogeneous boundary conditions

v(x̄, t̄)|x̄=0 = 0, v(x̄, t̄)|x̄=t̄ = 0, t̄ > 0, (3.6)

subject to the overspecification
v(µ̃(t̄), t̄) = Ẽ(t̄), t̄ > 0, (3.7)

Ẽ(t̄) =

{
Ē(t̄), 0 < t̄ < Tk,

E1(t̄), Tk ≤ t̄ <∞,
(3.8)

where E1(t̄) ≥ δ > 0 is an arbitrary bounded function and

µ̃(t̄) =

{
µ̄(t̄), 0 < t̄ < Tk,

µ1(t̄), Tk ≤ t̄ <∞,
(3.9)

where µ1(t̄) is an arbitrary continuous function satisfying the condition 0 < µ̃(t̄) < t̄, t̄ > 0.

Remark 1. By solving in G∞ problem (3.5)–(3.9) and restricting its solution to the domain GTk ,
we can find a solution {ū(x̄, t̄), λ̄(t̄); (x̄, t̄) ∈ GTk} of inverse problem (3.2)–(3.4).

3.3 Equivalent problem

In problem (3.5)–(3.9) we replace the required function v(x̄, t̄) by the following function

w(x̄, t̄) = λ̂1(t̄)v(x̄, t̄), where λ̂1(t̄) = exp

{∫ t̄

0

λ̄1(s)ds

}
. (3.10)

Then inverse problem (3.5)–(3.9) reduces to the following problem for the homogeneous heat equation:

wt̄(x̄, t̄) = wx̄x̄(x̄, t̄), (x̄, t̄) ∈ G∞, (3.11)

with the homogeneous boundary conditions

w(x̄, t̄)|x̄=0 = 0, w(x̄, t̄)|x̄=t̄ = 0, t̄ > 0, (3.12)

subject to the overspecification

w(µ̃(t̄), t̄) = λ̂1(t̄)Ẽ(t̄), Ẽ(t̄) ≥ δ > 0, t̄ > 0. (3.13)
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3.4 On a nontrivial solution of homogeneous boundary value problem
(3.11)–(3.12)

It follows from our previous results [1], [2], [3], [4], [8] that homogeneous boundary value problem
(3.11)–(3.12) along with a trivial solution has a nontrivial solution up to a constant factor defined
by the following formulas:

w(x̄, t̄) =
1

4
√
π

∫ t̄

0

x̄

(t̄− τ)3/2
exp

{
− x̄2

4(t̄− τ)

}
ν(τ)dτ

+
1

4
√
π

∫ t̄

0

x̄− τ
(t̄− τ)3/2

exp

{
−(x̄− τ)2

4(t̄− τ)

}
ϕ(τ)dτ, (3.14)

ν(t̄) =
1

2
√
π

∫ t̄

0

τ

(t̄− τ)3/2
exp

{
− τ 2

4(t̄− τ)

}
ϕ(τ)dτ, (3.15)

where the function ϕ(t̄) is defined according to the formulas:

ϕ(t̄) = Cϕ0(t̄), C = const 6= 0, (3.16)

ϕ0(t̄) =
1√
t̄

exp

{
− t̄

4

}
+

√
π

2

[
1 + erf

(√
t̄

2

)]
, (3.17)

where erf(x) is the error function. Moreover, the function ϕ(t̄) belongs to the following class:

θ(t̄)ϕ(t̄) ∈ L∞(R+), i.e. ϕ(t̄) ∈ L∞(R+; θ(t̄)), (3.18)

where

θ(t̄) =

{ √
t̄ exp {t̄/4} , if 0 < t̄ ≤ T1,

1, if T1 < t̄ < +∞,
(3.19)

and T1 does not necessarily coincide with T .
Substituting ν(t̄), defined by (3.15) in (3.14), we obtain

w(x̄, t̄) = w+(x̄, t̄) + w−(x̄, t̄), (x̄, t̄) ∈ G∞, (3.20)

where

w+(x̄, t̄) =
1

4
√
π

∫ t̄

0

x̄+ τ

(t̄− τ)3/2
exp

{
−(x̄+ τ)2

4(t̄− τ)

}
ϕ(τ)dτ, (3.21)

w−(x̄, t̄) =
1

4
√
π

∫ t̄

0

x̄− τ
(t̄− τ)3/2

exp

{
−(x̄− τ)2

4(t̄− τ)

}
ϕ(τ)dτ. (3.22)

3.5 Solution of inverse problem (3.2)–(3.4)

From (3.16) and (3.20)–(3.22) we obtain for the solution w(x̄, t̄) of homogeneous boundary value
problem (3.11)–(3.12) the following representation:

w(x̄, t̄) = Cw0(x̄, t̄),

where
w0(x̄, t̄) = w0+(x̄, t̄) + w0−(x̄, t̄), (x̄, t̄) ∈ G∞, (3.23)
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and

w0+(x̄, t̄) =
1

4
√
π

∫ t̄

0

x̄+ τ

(t̄− τ)3/2
exp

{
−(x̄+ τ)2

4(t̄− τ)

}
ϕ0(τ)dτ, (3.24)

w0−(x̄, t̄) =
1

4
√
π

∫ t̄

0

x̄− τ
(t̄− τ)3/2

exp

{
−(x̄− τ)2

4(t̄− τ)

}
ϕ0(τ)dτ. (3.25)

Further, using representation (3.23)–(3.25) for condition (3.13), we get:

w0(µ̃(t̄), t̄) = w0+(µ̃(t̄), t̄) + w0−(µ̃(t̄), t̄)

=
1

4
√
π

∫ t̄

0

µ̃(t̄) + τ

(t̄− τ)3/2
exp

{
−(µ̃(t̄) + τ)2

4(t̄− τ)

}
ϕ0(τ)dτ

+
1

4
√
π

∫ t̄

0

µ̃(t̄)− τ
(t̄− τ)3/2

exp

{
−(µ̃(t̄)− τ)2

4(t̄− τ)

}
ϕ0(τ)dτ = λ̂10(t̄)Ẽ(t̄), t̄ ∈ (0,∞), (3.26)

where λ̂10(t̄) = λ̂1(t̄)/C.
From (3.10), (3.13), (3.26) and w(x̄, t̄) = Cw0(x̄, t̄) we find the required coefficient

λ̄1(t̄) =
d ln (λ̂1(t̄))

d t̄
=

(λ̂1(t̄))′

λ̂1(t̄)
=

(Cλ̂10(t̄))′

Cλ̂10(t̄)
= λ̄10(t̄), (3.27)

where we have used the equality(
w(µ̃(t̄), t̄)

Ẽ(t̄)

)′
:
w(µ̃(t̄), t̄)

Ẽ(t̄)
=

(
w0(µ̃(t̄), t̄)

Ẽ(t̄)

)′
:
w0(µ̃(t̄), t̄)

Ẽ(t̄)
, t̄ ∈ (0,∞), (3.28)

Thus, from (3.23)–(3.25), (3.26)–(3.28) we obtain the following theorem.

Theorem 3.1. Inverse problem (3.2)–(3.4) has the following solution {ū(x̄, t̄), λ̄(t̄)}: the coefficient
λ̄(t̄) = λ̄0(t̄) is determined uniquely by formula (3.27)–(3.28) by restricting it to the finite interval
(0, Tk) and the solution ū(x̄, t̄) is found by means of restricting the function:

v(x̄, t̄) = Cv0(x̄, t̄), where v0(x̄, t̄) = [λ̂10(t̄)]−1w0(x̄, t̄), (x̄, t̄) ∈ G∞, C = const, (3.29)

to the bounded triangle GTk and w0(x̄, t̄) is defined by formula (3.23).

Remark 2. According to formulas (3.23)–(3.25) the solution w0(x̄, t̄) is a nonnegative function. It
should be noted that the function Ẽ(t̄) in (3.13) is also a nonnegative function, since the left-hand
side of equality (3.26) is nonnegative and the coefficient λ̂10(t̄) is a nonnegative function.

In the following section we will show the boundedness of solution (3.23)–(3.25) of boundary value
problem (3.11)–(3.12) and of condition (3.26) taking into account that the function ϕ0(t̄) defined by
(3.17) belongs to class (3.18)–(3.19).

4 Estimates

4.1 Estimate of solution (3.23)–(3.25)

Let the function ϕ0(t̄) defined by (3.17) belong to class (3.18)–(3.19). The following statement is
true.

Theorem 4.1. The solution of problem (3.11)–(3.12) is bounded on G∞.
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The proof of Theorem 4.1 will follow from Lemmas 4.1–4.2.

Lemma 4.1. Let 0 < t̄ < T1 and C = ‖θ(t̄)ϕ0(t̄)‖L∞(0,T1). Then the following estimate holds

w0(x̄, t̄) = w0+(x̄, t̄) + w0−(x̄, t̄) =
1

4
√
π

∫ t̄

0

x̄+ τ

(t̄− τ)3/2
exp

{
−(x̄+ τ)2

4(t̄− τ)

}
ϕ0(τ)dτ

+
1

4
√
π

∫ t̄

0

x̄− τ
(t̄− τ)3/2

exp

{
−(x̄− τ)2

4(t̄− τ)

}
ϕ0(τ)dτ ≤ C

√
π

4
. (4.1)

Proof.

w0+(x̄, t̄) =
1

4
√
π

∫ t̄

0

x̄+ τ

(t̄− τ)3/2
exp

{
−(x̄+ τ)2

4(t̄− τ)

}
ϕ0(τ)dτ

≤ C

4
√
π

∫ t̄

0

x̄+ τ√
τ(t̄− τ)3/2

exp

{
−(x̄+ τ)2

4(t̄− τ)
− τ

4

}
dτ ≡ CI1+(x̄, t̄),

w0−(x̄, t̄) =
1

4
√
π

∫ t̄

0

x̄− τ
(t̄− τ)3/2

exp

{
−(x̄− τ)2

4(t̄− τ)

}
ϕ0(τ)dτ

≤ C

4
√
π

∫ t̄

0

x̄− τ√
τ(t̄− τ)3/2

exp

{
−(x̄− τ)2

4(t̄− τ)
− τ

4

}
dτ ≡ CI1−(x̄, t̄).

We transform the kernels in integrals I1+(x̄, t̄) and I1−(x̄, t̄). We have

x̄+ τ√
τ(t̄− τ)3/2

=
x̄+ t̄− (t̄− τ)√
τ(t̄− τ)3/2

=
x̄+ t̄√

τ(t̄− τ)3/2
− 1√

τ(t̄− τ)
,

x̄− τ√
τ(t̄− τ)3/2

=
x̄− t̄+ (t̄− τ)√
τ(t̄− τ)3/2

=
x̄− t̄√

τ(t̄− τ)3/2
+

1√
τ(t̄− τ)

,

−(x̄± τ)2

4(t̄− τ)
= − [x̄± t̄∓ (t̄− τ)]2

4(t̄− τ)
= − (x̄± t̄)2

4(t̄− τ)
+
±2x̄+ t̄

4
+
τ

4
,

therefore

I1+(x̄, t̄) ≤ 1

4
√
π

exp

{
2x̄+ t̄

4

}∫ t̄

0

x̄+ t̄√
τ(t̄− τ)3/2

exp

{
− (x̄+ t̄)2

4(t̄− τ)

}
dτ

+
1

4
√
π

∫ t̄

0

1√
τ(t̄− τ)

exp

{
−(x̄+ τ)2

4(t̄− τ)
− τ

4

}
dτ ≡ I1

1+(x̄, t̄) + I2
1+(x̄, t̄), (4.2)

I1−(x̄, t̄) ≤ 1

4
√
π

exp

{
−2x̄+ t̄

4

}∫ t̄

0

x̄− t̄√
τ(t̄− τ)3/2

exp

{
− (x̄− t̄)2

4(t̄− τ)

}
dτ

+
1

4
√
π

∫ t̄

0

1√
τ(t̄− τ)

exp

{
−(x̄− τ)2

4(t̄− τ)
− τ

4

}
dτ ≡ I1

1−(x̄, t̄) + I2
1−(x̄, t̄). (4.3)

First, we calculate integrals I1
1+(x̄, t̄) and I1

1−(x̄, t̄). In order to do this we introduce the following
substitutions 2z+ = (x̄+ t̄)(t̄− τ)−1/2, z2

1+ = z2
+− (x̄+ t̄)2(4t̄)−1 and 2z− = (t̄− x̄)(t̄− τ)−1/2, z2

1− =
z2
− − (t̄− x̄)2(4t̄)−1. Then we obtain

I1
1+(x̄, t̄) =

2 exp{− x̄2

4t̄
}

√
πt̄

∫ ∞
0

exp{−z2
1+}dz1+ =

exp{− x̄2

4t̄
}

√
t̄

,
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I1
1−(x̄, t̄) = −

2 exp{− x̄2

4t̄
}

√
πt̄

∫ ∞
0

exp{−z2
1−}dz1− = −

exp{− x̄2

4t̄
}

√
t̄

.

From these relations by (3.23)–(3.25) we have

I1
1+(x̄, t̄) + I1

1−(x̄, t̄) = 0. (4.4)

For the second integrals I2
1+(x̄, t̄) and I2

1−(x̄, t̄) in formulas (4.2) and (4.3) we have:

I2
1±(x̄, t̄) =

1

4
√
π

∫ t̄

0

1√
τ(t̄− τ)

exp

{
−(x̄± τ)2

4(t̄− τ)
− τ

4

}
dτ

≤ 1

4
√
π

∫ t̄

0

1√
τ(t̄− τ)

dτ =

√
π

4
.

Lemma 4.2. Let T1 < t̄ <∞ and C = ‖θ(t̄)ϕ0(t̄)‖L∞(T1,∞). Then the following estimate holds

w0±(x̄, t̄) =
1

4
√
π

∫ t̄

0

x̄± τ
(t̄− τ)3/2

exp

{
−(x̄± τ)2

4(t̄− τ)

}
ϕ0(τ)dτ ≤ C. (4.5)

Proof. As in the proof of Lemma 4.1, using similar transformations of the independent variables, we
obtain

w0±(x̄, t̄) ≤ C

4
√
π

∫ t̄

0

|x̄± τ |
(t̄− τ)3/2

exp

{
−(x̄± τ)2

4(t̄− τ)

}
dτ

≤ C

4
√
π

exp

{
x̄± t̄

2

}∫ t̄

0

|x̄± t̄|
(t̄− τ)3/2

exp

{
− (x̄± t̄)2

4(t̄− τ)
− t̄− τ

4

}
dτ

+
C

4
√
π

exp

{
x̄± t̄

2

}∫ t̄

0

1√
t̄− τ

exp

{
− (x̄± t̄)2

4(t̄− τ)
− t̄− τ

4

}
dτ

≡ C
[
I1

2±(x̄, t̄) + I2
2±(x̄, t̄)

]
. (4.6)

Using the substitution 2z± = |x̄± t̄|(t̄− τ)−1/2, for the first integral we get:

I1
2±(x̄, t̄) =

1√
π

exp

{
x̄± t̄

2

}∫ ∞
|x̄±t̄|√

t̄

exp

{
−z2 − (x̄± t̄)2

16z2

}
dz

≤ 1√
π

exp

{
x̄± t̄

2

}∫ ∞
0

exp

{
−z2 − (x̄± t̄)2

16z2

}
dz =

1

2
. (4.7)

Here we used the well-known equality ([6], formula 3.325)∫ ∞
0

exp
{
−µx2 − η

x2

}
dx =

1

2

√
π
√
µ

exp {−2
√
µη} . (4.8)

For the second integral I2
2±(x̄, t̄) we have

I2
2±(x̄, t̄) =

1

4
√
π

exp

{
x̄± t̄

2

}∫ t̄

0

1√
t̄− τ

exp

{
− (x̄± t̄)2

4(t̄− τ)
− t̄− τ

4

}
dτ

=

(
z± =

2
√
t̄− τ
|x̄± t̄|

)
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=
|x̄± t̄|
4
√
π

exp

{
x̄± t̄

2

}∫ 2
√
t̄

|x̄±t̄|

0

exp

{
−(x̄± t̄)2

16
z2
± −

1

z2
±

}
dz±

≤ |x̄± t̄|
4
√
π

exp

{
x̄± t̄

2

}∫ ∞
0

exp

{
−(x̄± t̄)2

16
z2
± −

1

z2
±

}
dz± =

1

2
, (4.9)

where in (4.7) equality (4.8) was used.

From estimates (4.1) and (4.5) established in Lemmas 4.1–4.2 we obtain the assertion of Theorem
4.1.

4.2 Estimate of integrals in (3.26)

In this subsection, we will show that the integrals in the left-hand side of formula (3.26) are bounded,
taking into account that function ϕ0(t̄) defined by (3.17) belongs to class (3.18)–(3.19).

Theorem 4.2. The integrals in (3.26) are bounded functions on the semi-axis R+.

The proof of Theorem 4.2 will follow from Lemmas 4.3–4.4.

Lemma 4.3. Let 0 < t̄ < T1 and C = ‖θ(t)ϕ0(t̄)‖L∞(0,T1). Then the following estimate holds

w0±(µ̃(t̄), t̄) =
1

4
√
π

∫ t̄

0

µ̃(t̄)± τ
(t̄− τ)3/2

exp

{
−(µ̃(t̄)± τ)2

4(t̄− τ)

}
ϕ0(τ)dτ ≤ C

√
π

4
. (4.10)

Lemma 4.4. Let T1 < t̄ <∞ and C = ‖θ(t̄)ϕ0(t̄)‖L∞(T1,∞). Then the following estimate holds

w0±(µ̃(t̄), t̄) =
1

4
√
π

∫ t̄

0

µ̃(t̄)± τ
(t̄− τ)3/2

exp

{
−(µ̃(t̄)± τ)2

4(t̄− τ)

}
ϕ0(τ)dτ ≤ C. (4.11)

Proofs of Lemmas 4.3–4.4 can be obtained similarly to the proofs of Lemmas 4.1–4.2 by replacing
x̄ with µ(t̄).

5 Asymptotics of integrals in the left-hand side of formula (3.26) as t̄→ 0+

In Theorem 4.2 we have established the boundedness of the integrals in the left-hand side of formula
(3.26) for t̄ ∈ R+. In this section, we want to give an answer to the question: what is the asymptotic
behaviour of the integrals as t̄ → 0+? This is important for determining the classes of functions to
which belong the solutions {ū(x̄, t̄), (x̄, t̄) ∈ GTk ; λ̄(t̄), t̄ ∈ (0, Tk)} of inverse problem (3.2)–(3.4).

Lemma 5.1. In the case, in which the asymptotics of the function µ̃(t̄) is comparable with the
function t̄/2, the integrals in formula (3.26) tend to constants as t̄→ 0+.

Proof. For this purpose, we will split each integral in (3.26) into three integrals taking into account
formula (3.17):

w1
0+(t̄/2, t̄) =

1

4
√
π

∫ t̄

0

t̄/2 + τ√
τ(t̄− τ)3/2

exp

{
−(t̄/2 + τ)2

4(t̄− τ)
− τ

4

}
dτ, (5.1)

w2
0+(t̄/2, t̄) =

1

8

∫ t̄

0

t̄/2 + τ

(t̄− τ)3/2
exp

{
−(t̄/2 + τ)2

4(t̄− τ)

}
dτ, (5.2)

w3
0+(t̄/2, t̄) =

1

4
√
π

∫ t̄

0

t̄/2 + τ

(t̄− τ)3/2
exp

{
−(t̄/2 + τ)2

4(t̄− τ)

}
erf

(√
τ

2

)
dτ, (5.3)
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w1
0−(t̄/2, t̄) =

1

4
√
π

∫ t̄

0

t̄/2− τ√
τ(t̄− τ)3/2

exp

{
−(t̄/2− τ)2

4(t̄− τ)
− τ

4

}
dτ, (5.4)

w2
0−(t̄/2, t̄) =

1

8

∫ t̄

0

t̄/2− τ
(t̄− τ)3/2

exp

{
−(t̄/2− τ)2

4(t̄− τ)

}
dτ, (5.5)

w3
0−(t̄/2, t̄) =

1

4
√
π

∫ t̄

0

t̄/2− τ
(t̄− τ)3/2

exp

{
−(t̄/2− τ)2

4(t̄− τ)

}
erf

(√
τ

2

)
dτ. (5.6)

In the integrals w1
0+(t̄/2, t̄) and w1

0−(t̄/2, t̄), making the transformations

t̄

2
+ t̄− (t̄− τ) =

3

2
t̄− (t̄− τ), (5.7)

t̄

2
− t̄+ (t̄− τ) = −1

2
t̄+ (t̄− τ), (5.8)

we obtain

w1
0+(t̄/2, t̄) =

3t̄ exp
{
t̄
2

}
8
√
π

t̄∫
0

1√
τ(t̄− τ)3/2

exp

{
− 9t̄2

16(t̄− τ)

}

− 1

4
√
π

∫ t̄

0

1√
τ(t̄− τ)

exp

{
−(t̄/2 + τ)2

4(t̄− τ)
− τ

4

}
dτ = w11

0+(t̄/2, t̄)− w12
0+(t̄/2, t̄),

w1
0−(t̄/2, t̄) = − t̄

8
√
π

t̄∫
0

1√
τ(t̄− τ)3/2

exp

{
− t̄2

16(t̄− τ)

}

+
1

4
√
π

∫ t̄

0

1√
τ(t̄− τ)

exp

{
−(t̄/2− τ)2

4(t̄− τ)
− τ

4

}
dτ = −w11

0−(t̄/2, t̄) + w12
0−(t̄/2, t̄). (5.9)

In the integral w11
0+(t̄/2, t̄) using the substitutions

z =
3t̄

4
√
t̄− τ

, z1 =

√
z2 − 9t̄

16

we obtain:

w11
0+(t̄/2, t̄) =

exp
{
− t̄

16

}
2
√
t̄

. (5.10)

In the integral w11
0−(t̄/2, t̄) using the following substitutions

z =
t̄

4
√
t̄− τ

, z1 =

√
z2 − t̄

16
,

we get:

w11
0−(t̄/2, t̄) =

exp
{
− t̄

16

}
2
√
t̄

. (5.11)

By relations (5.10) and (5.11) we have

w11
0+(t̄/2, t̄)− w11

0−(t̄/2, t̄) = 0.

Further
−w12

0+(t̄/2, t̄) + w12
0−(t̄/2, t̄)
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=
1

4
√
π

∫ t̄

0

1√
τ(t̄− τ)

exp
{
−τ

4

}
exp

{
− (t̄− 2τ)2

16(t̄− τ)

}(
1− exp

{
− t̄τ

2(t̄− τ)

})
dτ.

It is easy to notice that when t̄ tends to zero, the last expression also tends to zero.
For integrals w2

0+(t̄/2, t̄), w3
0+(t̄/2, t̄), w2

0−(t̄/2, t̄), w3
0−(t̄/2, t̄) it is enough to consider integrals

w2
0+(t̄/2, t̄) and w2

0−(t̄/2, t̄), since singularities of integrals w3
0+(t̄/2, t̄) and w3

0−(t̄/2, t̄) will not ex-
ceed singularities of integrals w2

0+(t̄/2, t̄) and w2
0−(t̄/2, t̄).

In integral (5.2) by using transformation (5.7) we obtain:

w2
0+(t̄/2, t̄) =

3t̄ exp
{
t̄
2

}
16

t̄∫
0

1

(t̄− τ)3/2
exp

{
− 9t̄2

16(t̄− τ)
+
τ

4

}

−
exp

{
t̄
2

}
8

∫ t̄

0

1√
t̄− τ

exp

{
− 9t̄2

16(t̄− τ)
+
τ

4

}
dτ =

(
z =

3t̄

4
√
t̄− τ

)

=
exp

{
3t̄
4

}
2

∞∫
3
√
t̄

4

exp

{
−z2 − 9t̄2

64z2

}
dz

−
3t̄ exp

{
3t̄
4

}
16

∞∫
3
√
t̄

4

1

z2
exp

{
−z2 − 9t̄2

64z2

}
dz = w21

0+(t̄/2, t̄)− w22
0+(t̄/2, t̄). (5.12)

In the second integral in formula (5.12) replacing z1 = z−1, we get:

w21
0+(t̄/2, t̄)− w22

0+(t̄/2, t̄) =
exp

{
3t̄
4

}
2

∞∫
3
√
t̄

4

exp

{
−z2 − 9t̄2

64z2

}
dz

−
3t̄ exp

{
3t̄
4

}
16

4

3
√
t̄∫

0

exp

{
−9t̄2

64
z2 − 1

z2

}
dz.

Then

w2
0+(t̄/2, t̄) = w21

0+(t̄/2, t̄)− w22
0+(t̄/2, t̄) =

exp
{

3t̄
2

}√
π

4

(
1− erf

(
5
√
t̄

4

))
. (5.13)

In integral (5.5) by using transformation (5.8) we obtain:

w2
0−(t̄/2, t̄) = − t̄

16

t̄∫
0

1

(t̄− τ)3/2
exp

{
− t̄2

16(t̄− τ)
+
τ

4

}

+
1

8

∫ t̄

0

1√
t̄− τ

exp

{
− t̄2

16(t̄− τ)
+
τ

4

}
dτ =

(
z =

t̄

4
√
t̄− τ

)

= −
exp

{
t̄
4

}
2

∞∫
√
t̄

4

exp

{
−z2 − t̄2

64z2

}
dz
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+
t̄ exp

{
t̄
4

}
16

∞∫
√
t̄

4

1

z2
exp

{
−z2 − t̄2

64z2

}
dz = −w21

0−(t̄/2, t̄) + w22
0−(t̄/2, t̄). (5.14)

In the second integral in formula (5.14) replacing z1 = z−1, we get:

−w21
0−(t̄/2, t̄) + w22

0−(t̄/2, t̄) = −
exp

{
t̄
4

}
2

∞∫
√
t̄

4

exp

{
−z2 − t̄2

64z2

}
dz

−
t̄ exp

{
t̄
4

}
16

4√
t̄∫

0

exp

{
− t̄

2

64
z2 − 1

z2

}
dz.

Then
w2

0−(t̄/2, t̄) = −w21
0−(t̄/2, t̄) + w22

0−(t̄/2, t̄)

=
exp

{
t̄
2

}√
π

4

(
exp {t̄} − 1− exp {t̄} erf

(
5
√
t̄

4

)
+ erf

(
3
√
t̄

4

))
. (5.15)

Thus, taking into account the asymptotics of (5.13) and (5.15) we see, that the integrals in (3.26)
tend to constants.

Theorem 5.1. The solution {ū(x̄, t̄), λ(t̄)} of inverse problem (3.2)–(3.4) has no singularity as
t̄→ 0+.

Proof. According to the properties of the given function Ẽ(t̄) in overspecification (3.8) and also from
the statement of Lemma 5.1 and equality (3.26) we obtain that in case when the asymptotics of the
function µ̃(t̄) is comparable to the asymptotics of the function t̄/2, then asymptotic behaviour of
the function λ̂1(t̄) for small values of the variable t̄ does not depend of the variable t̄. Hence the
coefficient λ̄1(t̄) has no singularity as t̄→ 0+. Since

v(x̄, t̄) =
w(x̄, t̄)

λ̂1(t̄)

the solution of boundary value problem (3.2)–(3.4) also has no singularity. Indeed, it follows from
the statement of Theorem 4.1 that the solution w(x̄, t̄) of boundary value problem (3.11)–(3.12) has
no singularity.

6 Solution of original inverse problem (2.1)–(2.3)

For the solution {ū(x̄, t̄), λ̄(t̄)} of auxiliary inverse problem (3.2)–(3.4) which was found by using
Theorem 3.1 and by applying transformation (3.1) we get the solution {u(x, t), λ(t)} of original
inverse problem (2.1)–(2.3).

7 Conclusion

In this work we consider an inverse problem for the heat equation in a degenerate angular domain
when the moving part of the boundary changes linearly. We have shown that the inverse problem for
the homogeneous heat equation with completely homogeneous boundary conditions has a nontrivial
solution {u(x, t), λ(t)} consistent with the additional condition. Moreover, the solution of the con-
sidered inverse problem was found in an explicit form and it was proved that the required coefficient
is determined uniquely. It has also been shown that the obtained nontrivial solution {u(x, t), λ(t)}
of inverse problem (2.1)–(2.3) has no singularity as t→ 0+.
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