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Abstract. The generalized Bessel potentials are constructed using convolutions of the generalized
Bessel–McDonald kernels with functions belonging to a basic rearrangement invariant space. Under
assumptions ensuring the embedding of potentials into the space of bounded continuous functions,
differential properties of potentials are described by using the k-th order modulus of continuity in
the uniform norm. In the paper, estimates are given for the k-th order modulus of continuity in the
uniform norm in the case of the generalized Bessel potentials constructed over the basic weighted
Lorentz space.
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1 Introduction

The paper is organized as follows. In Section 1 we give basic definitions of the potential theory. Main
properties of kernels are considered and basic spaces for potentials are described. Section 2 contains
some auxiliary results. Estimates for ‖u‖C are presented for potentials, and properties of moduli of
continuity are discussed. The main results of the paper are presented in Section 3. In Theorem 3.1
we establish estimates of the modulus of continuity in the uniform norm ωkC(u; τ) in the case of the
basic weighted Lorentz space, where k ∈ N, ωkC(u; τ) is the modulus of continuity for generalized
Bessel potentials u.

2 Basic definitions

Let v > 0 be a measurable function on R+. The Lorentz space Λp(v) is the space of all measurable
functions on Rn with finite (quasi) norms (see [1])

‖f‖Λp(v) =


(∫∞

0
f ∗(t)pv(t) dt

) 1
p
; 0 < p <∞;

esssup
t∈R+

{
f ∗(t)v(t)

}
; p =∞.

(2.1)

Here f ∗: R+ → [0,∞] is the decreasing rearrangement of a function f : Rn → R, i.e f ∗ is a nonnegative
decreasing right-continuous function on R+ = (0,∞) which is equimeasurable with f :

µn {x ∈ Rn : |f(x)| > y} = µ1 {t ∈ R+ : f ∗(t) > y} , y ∈ R+, (2.2)
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where µn is the n-dimensional Lebesgue measure. We assume that 0 < V (t) :=
∫ t

0
v(τ)d(τ) < ∞,

t ∈ R+, and

sup
t∈R+

[V (2t)

V (t)

]
<∞, (2.3)

the so-called ∆2-condition. Under these assumptions E(Rn) = Λp(v) is a (quasi) Banach space,
which gives an important example of a rearrangement invariant space (shortly: RIS), because of the
property:

g∗ ≤ f ∗, f ∈ E(Rn)⇒ g ∈ E(Rn), ‖g‖E ≤ ‖f‖E.

(see C.Bennett and R. Sharpley [1]). Moreover, E ′ = E ′(Rn) is the associated RIS for E(Rn) , i.e.
E ′ is RIS with the norm:

‖g‖E′ = sup

{∫
Rn

|fg| dµn : f ∈ E, ‖f‖E ≤ 1

}
. (2.4)

For 1 < p <∞ the description of the associated space for E(Rn) = Λp(v) was obtained by E. Sawyer
[7]. Namely,

‖g‖E′ = sup
0≤h↓

∫∞
0
g
∗
(τ)h(τ) dτ(∫∞

0
h(τ)pv(τ) dτ

) 1
p

≈
(∫ ∞

0

((∫ ξ

0

g∗(τ)dτ

)p′
v(ξ)dξ

V (ξ)p′

) 1
p′

. (2.5)

We will use this description in Section 4. Here the symbol ≈ means that the ratio of left- and right-
hand sides is between positive constants depending only on p (and not on v or g).

Remark 1. Note that, for E(Rn) = Λp(v),

E ′(Rn) 6= {0} ⇔ ∃ T > 0 :

∫ T

0

tp
′
v(t)dt

V (t)p′
<∞. (2.6)

Indeed, for D ⊂ Rn, µn(D) = T , we have g(x) = χD(x) ∈ E ′(Rn), because
g∗(τ) = χ(0,T )(τ) and ∫ ξ

0

g∗(τ)dτ =

{
ξ, 0 < ξ ≤ T,

T, ξ > T ;

(
‖g‖E′

)p′ ≤ c1

∫ ∞
0

(∫ ξ

0

g∗(τ)dτ

)p′
v(ξ)dξ

V (ξ)p′
= c1

∫ T

0

ξp
′
v(ξ)dξ

V (ξ)p′
+ c1T

p′
∫ ∞
T

v(ξ)dξ

V (ξ)p′
<∞.

Here, ∫ ∞
T

v(ξ)dξ

V (ξ)p′
=
V (ξ)1−p′

1− p′

∣∣∣∣∞
ξ=T

≤ V (T )1−p′

p′ − 1
<∞.

On the other hand, if ∃ g ∈ E ′(Rn), g 6= 0 then there exists c > 0 and T ∈ R+ such that g∗(τ) ≥
c, τ ∈ (0, T ). Then

∞ > (‖g‖E′)p
′ ≥ c2

∫ T

0

(∫ ξ

0

g∗(τ)dτ

)p′
v(ξ)dξ

V (ξ)p′
≥ c2c

p′
∫ T

0

ξp
′
v(ξ)dξ

V (ξ)p′
.

Everywhere in this paper we assume that condition (2.6) is satisfied.
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The potential space HG
E ≡ HG

E (Rn) for E(Rn) = Λp(v) is defined as the set of convolutions of the
potential kernel G with all functions belonging to the basic RIS E(Rn):

HG
E (Rn) =

{
u = G ∗ f : f ∈ E(Rn)

}
. (2.7)

We define
‖u‖HG

E
= inf

{
‖f‖E : f ∈ E(Rn), G ∗ f = u

}
. (2.8)

We assume that the kernel G in representation (2.8) is admissible, i.e

G ∈ L1(Rn) + E ′(Rn).

Here the convolution G ∗ f is defined as the integral

(G ∗ f)(x) =

∫
Rn

G(x− y)f(y) d(y).

For R ∈ R+ we introduce the class of monotone functions In(R) as follows. A function Φ:
(0, R)→ R+ belongs to In(R) if Φ satisfies the following conditions:

1. Φ is decreasing and continuous on (0, R),

2. there is a constant c ∈ R+, such that

r∫
0

Φ(ρ)ρn−1 dρ <∞, r ∈ (0, R). (2.9)

The properties of kernels are discussed in Definitions 1–3 below.

Remark 2. Let A(x), B(x) be positive functions on the set D ⊂ Rn. We write

A(x) ∼= B(x), x ∈ D if there exists a constant c ≥ 1 such that c−1 ≤ A(x)

B(x)
≤ c,∀x ∈ D.

Definition 1. Let Φ ∈ In(R). We write that G ∈ SR(Φ), if

G(x) ∼= Φ(|x|), x ∈ BR = {x ∈ Rn : |x| < R}, R ∈ R+. (2.10)

Definition 2. Let Φ ∈ In(R), X(Rn) be a RIS. We write that G ∈ SR(Φ;X), if

G(x) = G0
R(x) +G1

R(x);

G0
R(x) = G(x)χBR(x); G1

R(x) = G(x)χBcR(x), (2.11)

G0
R(x) ∼= Φ(|x|), x ∈ BR; G1

R(x) ∈ X(Rn). (2.12)

Definition 3. Potentials u ∈ HG
E (Rn) with E(Rn) = Λp(v) are called the generalized Bessel poten-

tials, if for some R ∈ R+

Φ ∈ In(R), G ∈ SR(Φ; L1 ∩ E ′),
∫
Rn

Gdµn 6= 0. (2.13)
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Remark 3. Note that the classical Bessel–McDonald the kernels have the form

Gα(x) = c(α, n)ρ−γKγ(ρ), ρ = |x| ∈ R+, α ∈ (0, n); γ =
n− α

2
,

where Kγ is the McDonald function, see [6]. The well-known properties of these kernels state that

Gα(x) ∼= Φ(|x|), 0 < |x| < R; Φ(ρ) = ρα−n ∈ In(R); Gα(x) ∼= |x|−γ−
1
2 e−|x|, |x| > R.

In view of the embedding L1 ∩L∞ ⊂ L1 ∩ E ′, where E(Rn) = Λp(v), our scheme includes the Bessel
potentials.

Definition 4. Let C(Rn) be the space of all bounded and uniformly continuous functions with the
norm

‖u‖C = sup
x∈Rn
|u(x)|. (2.14)

For u ∈ C(Rn) the modulus of continuity of order k ∈ N is defined as:

ωkC(u; τ) = sup
{∥∥∆k

hu
∥∥
C

: |h| ≤ τ
}
, τ ∈ R+. (2.15)

Here ∆k
hu(x) is the k-th difference with the step h ∈ Rn at the point x ∈ Rn. Let us note that for

u ∈ C(Rn),

ωkC(u; τ)→ 0 (τ → +0). (2.16)

3 Auxiliary statements

The following results were proved in [3].

Theorem 3.1. Let G ∈ L1(Rn), G 6= 0, ϕ(τ) = G∗(τ), τ ∈ R+, and a function f : Rn → R be such
that for some T ∈ R+.

T∫
0

ϕ(τ)f ∗(τ) dτ <∞. (3.1)

1. For the convolution
u(x) =

∫
Rn

G(x− y)f(y) dy, x ∈ Rn, (3.2)

the following estimate holds

sup
x∈Rn

∣∣u(x)
∣∣ ≤ c0

T∫
0

ϕ(τ)f ∗(τ) dτ, (3.3)

where

c0 = 1 +

( ∞∫
T

ϕ(τ) dτ

)( T∫
0

ϕ(τ) dτ

)−1

. (3.4)

2. Let, in addition G ∈ Ck(Rn\0), k ∈ N, and for

Gk(x) :=
∑
|α|=k

∣∣DαG(x)
∣∣, x ∈ Rn, (3.5)
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for some c1, the following estimate takes place

|Gk(x)| ≤ c1Ψk(|x|), x ∈ Rn, (3.6)

where the function

0 ≤ ϕk(τ) := Ψk

(( τ
Vn

) 1
n

)
↓ on R+, (3.7)

(Vn is the volume of unit ball in Rn) is such that the following relations hold

ϕk(τ) ≤ τ−k/nϕ(τ), τ ∈ (0, T ] (3.8)

∞∫
T

ϕk(τ) dτ <∞. (3.9)

Then convolution (3.2) is continuous on R+ and for t ∈ (0, T ]

ωkC

(
u; t

1
n

)
≤ c2

T∫
0

[
τ−

k
n

τ−
k
n + t−

k
n

]
ϕ(τ)f ∗(τ) dτ. (3.10)

Here c2 = c1c̃d, where

d = 1 +
2

Tϕk(T )

( ∞∫
T

ϕk(τ) dτ

)
, (3.11)

c1 is the constant from condition (3.6), and c̃ = c̃(k, n) ∈ R+ depends only on k and n.

Remark 4. Under the assumptions of Theorem 3.1 let G ∈ L1(Rn) ∩ E ′(Rn) for E(Rn) = Λp(v),
see (2.1)–(2.6), and f ∈ E(Rn). Then, inequality (3.3) shows that convolution (3.2) is uniformly
bounded. Moreover, formula (3.10) shows that ωkC

(
u; t

1
n

)
→ 0 as t→ +0. which implies that

u ∈ C(Rn).

Lemma 3.1. Let the following inequality be valid:

T∫
t

τ−
k
nϕ(τ) dτ ≤ B0 t

1− k
nϕ(t), t ∈ (0, T ), (3.12)

where B0 ∈ R+ is independent of t. In addition, let the assumptions of Theorem 3.1 be fulfilled.
Then

ωkC

(
u; t

1
n

)
≤ c3

t∫
0

ϕ(τ)f ∗(τ) dτ, t ∈ (0, T ], (3.13)

where c3 = (1 +B0)c2, and c2 is the constant from (3.10).

4 Main result

We preserve the notations of Sections 2 and 3.
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Theorem 4.1. Let E(Rn) = Λp(v) be the Lorentz space, see (2.1)–(2.6), and HG
E (Rn) be the space

of generalized Bessel potentials, see (2.13),

ϕ(τ) = Φ((
τ

Vn
)

1
n ), τ ∈ (0, T ); T = VnR

n; ϕ(τ) = G∗(τ); τ > T, (4.1)

Moreover, we assume that estimate (3.12) holds, the kernel G satisfies the assumptions of Theo-
rem 3.1, and

sup
t∈(0,T ]

{
1

V (t)
1
p

∫ t

0

ϕ(τ)dτ

}
<∞, 0 < p ≤ 1; (4.2)

(∫ T

0

(∫ t

0

ϕ(τ)dτ

)p′
v(t)dt

V (t)p′

) 1
p′

<∞, 1 < p <∞, p′ =
p

p− 1
. (4.3)

Then the following statements hold:
1) u ∈ C(Rn);
2) If 0 < p ≤ 1, then there exists c3 ∈ R+ such that for 0 < t < T

ωkC

(
u; t

1
n

)
≤ c3w

(
t

1
n

)
‖u‖HG

Λp(v)
, (4.4)

where

w
(
t

1
n

)
= sup

ξ∈(0,t)

{
1

V (ξ)
1
p

∫ ξ

0

ϕ(τ)dτ

}
. (4.5)

3) If 1 < p <∞, then there exists c4 ∈ R+ such that for 0 < t ≤ T

ωkC

(
u; t

1
n

)
≤ c4A(t)‖u‖HG

Λp(v)
, (4.6)

where

A(t) =

[∫ t

0

(∫ ξ

0

ϕ(τ)dτ

)p′
v(ξ)dξ

V (ξ)p′
+

(∫ t

0

ϕ(τ)dτ

)p′
V (t)−

p′
p

] 1
p′

. (4.7)

Proof. 1) We have by Theorem 3.1 (see Remark 4) the inclusion

HG
E (Rn) ⊂ C(Rn).

Under the assumptions of Theorem 4.1 we have equivalence (2.10), so that

G∗(τ) ∼= ϕ(τ), 0 < τ ≤ T = VnR
n.

Together with equality ϕ(τ) = G∗(τ), τ > T , we obtain

ϕ(τ) ∼= G∗(τ), τ ∈ R+. (4.8)

Thus, application of Theorem 3.1 and Remark 4 to a function u ∈ HG
E (Rn), E(Rn) = Λp(v), gives:

u ∈ C(Rn) and formulas (3.2)–(3.13) hold. Here u = G ∗ f, f ∈ Λp(v). Now, we use the equality∫ t

0

ϕ(τ)f ∗(τ) dτ =

{∫ t
0
ϕ(τ)f ∗(τ) dτ

‖f‖Λp(v)

}
‖f‖Λp(v).

Then, by (3.13), for 0 < t < T

ωkC

(
u; t

1
n

)
≤ c3 sup

ρ∈Λp(v)

{∫ t
0
ϕ(τ)ρ∗(τ) dτ

‖ρ‖Λp(v)

}
‖f‖Λp(v). (4.9)
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We denote
ρ∗ = h ∈ LP (v); ‖ρ‖Λp(v) =

(∫ ∞
0

hpvdτ
) 1
p
; 0 ≤ h ↓;

and obtain

Ft ≡ sup
ρ∈Λp(v)

{∫ t
0
ϕ(τ)ρ∗(τ) dτ

‖ρ‖Λp(v)

}
= sup

0≤h↓

{∫ t
0
ϕ(τ)h(τ) dτ

(
∫∞

0
hpvdτ)

1
p

}
. (4.10)

Here the numerator does not depend on the values h(τ) for τ ∈ (t,∞). Therefore, “sup” is realized
on functions h, such that h(τ) = 0 for τ ∈ (t,∞). It means that

sup
ρ∈Λp(v)

{∫ t
0
ϕ(τ)ρ∗(τ) dτ

‖ρ‖Λpv

}
= sup

0≤h↓

∫ t
0
ϕ(τ)h(τ) dτ

(
∫ t

0
hpvdτ)

1
p

≡ B(t). (4.11)

2) Let 0 < p ≤ 1. To calculate B(t) we apply the result of [2]. Namely,

B(t) ≡ sup
ξ∈(0,t)

{ ∫ t
0
ϕ(τ)dτ

(
∫ ξ

0
v(τ)dτ)

1
p

}
= w

(
t

1
n

)
.

From (4.9)–(4.11) we obtain for u ∈ HG
E (Rn), t ∈ (0, T ],

ωkC

(
u; t

1
n

)
≤ c3w

(
t

1
n

)
‖f‖Λp(v), 0 < p ≤ 1.

Here f ∈ Λp(v) is any function such that G ∗ f = u for a given u ∈ HG
E (Rn). Now, we take “inf” over

the set of such functions f ∈ Λp(v) for a given u ∈ HG
E (Rn), and obtain

ωkC

(
u; t

1
n

)
≤ c3w

(
t

1
n

)
‖u‖HG

E
, E = Λp(v). (4.12)

This is estimate (4.4) with constant c3 from (3.13).
3) Let 1 < p <∞. We put in equality (4.10)

ϕt(τ) = ϕ(τ)χ(0,t)(τ); 0 ≤ ϕt(τ) ↓ ⇒ ϕ∗t (τ) = ϕt(τ).

Then

Ft = sup
0≤h↓

{∫∞
0
ϕt(τ)h(τ) dτ

(
∫∞

0
hpvdτ)

1
p

}
= sup

0≤h↓

{∫ t
0
ϕ∗t (τ)h(τ) dτ

(
∫∞

0
hpvdτ)

1
p

}
.

Now, we apply formula (2.5) with g(τ) = ϕt(τ), τ ∈ R+, and obtain

Ft = ‖ϕt‖E′ ∼=
(∫ ∞

0

(∫ ξ

0

ϕt(τ)dτ

)p′
v(ξ)dξ

V (ξ)p′

) 1
p′

. (4.13)

We note that∫ ξ

0

ϕt(τ)dτ =

∫ ξ

0

ϕ(τ)dτ, ξ ∈ (0, t);

∫ ξ

0

ϕt(τ)dτ =

∫ t

0

ϕ(τ)dτ, ξ ≥ t.

We put these equalities in (4.13) and see that Ft ∼= A(t), 0 < t ≤ T . Therefore, from (4.9)
and (4.10) it follows

ωkC

(
u; t

1
n

)
≤ c3Ft ‖f‖Λp(v) ≤ c4A(t) ‖f‖Λp(v), t ∈ (0, T ].

Analogously to (4.12) we obtain from here that for t ∈ (0, T ].

ωkC

(
u; t

1
n

)
≤ c4A(t) ‖u‖HG

E
, E = Λp(v). (4.14)

This completes the proof of Theorem 4.1.
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Corollary 4.1. Let us concretize the answers in classical cases: for the classical space of potentials
we put

ϕ(t) = t
α
n
−1, 0 < α < n, (4.15)

see Remark 3; for the classical Lorentz space we have E(Rn) = Λp(v) with v(t) = tβ. In these
case the condition of nontriviality E ′(Rn) 6= {0}, see (2.6) will be as follows: −1 < β ≤ p − 1 for
0 < p ≤ 1; −1 < β < p− 1 for p > 1.
In all formulas ∫ t

0

ϕ(τ)dτ =
n

α
.t
α
n , t ∈ (0, T ); (4.16)

and condition (3.12) will be as follows: 0 < α < k As the answer we obtain

w
(
t

1
n

)
=

(β + 1)n

α
.t
α
n
−β−1,

α

n
≥ β + 1, 0 < p ≤ 1; (4.17)

A(t) ∼= t
α
n
−β+1

p ; α
n
≥ β+1

p
, 1 < p <∞ .
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