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1 Introduction

The Morrey spaces Mλ
p were introduced by C. Morrey in 1938 (see [4]). They are used in the theory

of partial differential equations, in functional analysis, and in other areas of mathematics. They are
defined as follows.

Definition 1. Let Ω ⊂ Rn be a Lebesgue measurable set, 0 < p ≤ ∞, 0 ≤ λ ≤ n

p
. The Morrey

space Mλ
p (Ω), is the space of all functions f Lebesgue measurable on Ω for which

‖f‖Mλ
p (Ω) = sup

x∈Ω,r>0
r−λ‖f‖Lp(B(x,r)

⋂
Ω) <∞. (1.1)

If λ = 0, then
M0

p (Ω) = Lp(Ω). (1.2)

If λ =
n

p
, then

M
n
p
p (Ω) = L∞(Ω). (1.3)

If p =∞, then (1.2) coincides with (1.3). If λ < 0 or λ > n
p
, then the space Mλ

p (Ω) consists only
of functions f equivalent to 0 on Ω.

Definition 2. The left multidimensional fractional Riemann-Liouville integral operator Iαa+ of order
α = (α1, ..., αn), 0 < αi < 1, i = 1, ..., n, a = (a1, a2, ..., an) ∈ Rn, is defined as follows

(
Iαa+f

)
(x) =

1∏n
i=1 Γ(αi)

∫ xn

an

...

∫ x1

a1

(
n∏
i=1

(xi − ti)αi−1

)
f(t1, ..., tn)dt1...dtn

for all x = (x1, ..., xn) ∈ Rn such that xi > ai, i = 1, .., n, where Γ is the Euler Gamma function.
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The right multidimensional fractional Riemann-Liouville integral operator of order
α = (α1, ..., αn), αi > 0, is defined similarly:

(
Iαb−f

)
(x) =

1∏n
i=1 Γ(αi)

∫ bn

xn

...

∫ b1

x1

n∏
i=1

(ti − xi)αi−1f(t1...tn)dt1...dtn

for all x ∈ Rn such that xi < bi, i = 1, ..., n.

In [6] the following theorem was proved.

Theorem 1.1. Let n = 1, 1 < p, q < ∞, 1
p
< α < 1 and 0 ≤ λ, µ ≤ 1, 0 ≤ λ ≤ 1

p
, 0 ≤ µ ≤ 1

q
,

0 < T <∞. Then Iα0+ is bounded from Mλ
p (0, T ) to Mµ

q (0, T ).

The objective of the present paper is to generalize the results for the multidimensional Riemann-
Liouville integral operator for Mλ

p (Ω), where Ω = Q(a; b) = {x ∈ Rn, ai < xi < bi, i = 1, ..., n} with
1 < p < ∞, 0 < q < ∞ and to enlarge the range of the parameter α. Moreover, sharp estimates of
the norm of this operator via the diameter of Q(a, b) are obtained.

2 Main results

Let a ∈ Rn, b ∈ Rn, −∞ < ai < bi ≤ ∞, i = 1, ..., n andQ(a, b) = {x ∈ Rn, ai < xi < bi, i = 1, ..., n}.

Lemma 2.1. Let 0 < p ≤ ∞, 0 ≤ λ ≤ n
p
. Then

‖ f ‖Lp(Q(a,y))≤ |y − a|λ ‖ f ‖Mλ
p (Q(a,b)) (2.1)

for any parallelepiped Q(a, b) and for any y ∈ Q(a, b).

Proof. Let y ∈ Q(a, b) and 0 < ε < min{y1− a1, ...yn− an}, then a+ ε = (a1 + ε, ..., an + ε) ∈ Q(a, y)
and for any z ∈ Q(a, y)

|(a+ ε)− z| < diam Q(a, y) = |y − a|.
Therefore, Q(a, y) ⊂ B(a+ ε, |y − a|) and for any y ∈ Q(a, b)

‖ f ‖Mλ
p (Q(a,b))= sup

x∈Q(a,b),r>0

r−λ ‖ f ‖Lp(B(x,r)
⋂
Q(a,b))

≥ r−λ ‖ f ‖
Lp

(
B(x,r)

⋂
Q(a,b)

) ∣∣∣
x=a+ε,r=|y−a|

= |y − a|−λ ‖ f ‖Lp(Q(a,y)
⋂
Q(a,b)

= |y − a|−λ ‖ f ‖Lp(Q(a,y)) .

Consequently, (2.1) follows.

Theorem 2.1. Let 1 < p ≤ ∞, 0 < q ≤ ∞, 0 ≤ λ ≤ n
p
, 0 ≤ µ ≤ n

q
, 1
p
< αi < 1, i = 1, ..., n. Then

there exists C1 > 0 such that

‖ Iαa+f ‖Mµ
q (Q(a,b))≤ C1 | b− a |ν‖ f ‖Mλ

p (Q(a,b)), (2.2)

where
ν = λ+ α1 + ...+ αn −

n

p
+
n

q
− µ, (2.3)

for all finite parallelepipeds Q(a, b) and for all f ∈Mλ
p (Q(a, b)) and the exponent ν cannot be replaced

by any other one.
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Proof. Step 1. We suppose that f ∈Mλ
p (Q(a, b)) and y ∈ B(x, r)

⋂
Q(a, b) 6= ∅, i = 1, ..., n.

By Hölder’s inequality we get∣∣∣Iαa+f(y)
∣∣∣ =

1
n∏
i=1

Γ(αi)

∣∣∣∣∫ yn

an

...

∫ y1

a1

(y1 − t1)α1−1...(yn − tn)αn−1f(t1, ..., tn)dt1...dtn

∣∣∣∣

≤ 1
n∏
i=1

Γ(αi)
‖ f ‖

Lp(Q(a,y))

 yn∫
an

...

y1∫
a1

(y1 − t1)(α1−1) p
p−1 ...(yn − tn)(αn−1) p

p−1dt1...dtn


p−1
p

=
1

n∏
i=1

Γ(αi)
‖ f ‖Lp(Q(a,y))

n∏
i=1

(
αip− 1

p− 1

) 1
p
−1

(yi − ai)αi−
1
p .

Thus ∣∣∣(Iαa+)(y)
∣∣∣ ≤ C2 ‖ f ‖Lp(Q(a,y))

n∏
i=1

(yi − ai)αi−
1
p ,

where

C2 =
1∏n

i=1 Γ(αi)

n∏
i=1

(
αip− 1

p− 1

) 1
p
−1

.

By (2.1), we obtain∣∣∣(Iαa+f)(y)
∣∣∣ ≤ C2 | y − a |λ̃‖ f ‖Mλ

p (Q(a,b))≤ C2 | b− a |λ̃‖ f ‖Mλ
p (Q(a,b)),

where λ̃ = λ+ α1 + ...+ αn − n
p
.

Thus ∥∥Iαa+f∥∥Lq(B(x,r)
⋂
Q(a,b))

≤ C2 | b− a |λ̃‖ 1 ‖Lq(B(x,r)
⋂
Q(a,b))‖ f ‖Mλ

p (Q(a,b)) .

We have

‖ 1 ‖Lq(B(x,r)
⋂
Q(a,b))≤

{
v

1
q
n r

n
q if 0 < r < |b− a|,

|b− a|
n
q if r ≥ |b− a|,

where vn is the volume of the unit ball in Rn.
Next, we distinguish two cases:
1) If r < |b− a|, then

r−µ ‖ Iαa+f ‖Lq(B(x,r)
⋂
Q(a,b) ≤ C2C3 | b− a |λ̃ r−µ+n

q ‖ f ‖Mλ
pQ(a,b)

≤ C2C3 | b− a |λ̃ |b− a|
n
q
−µ ‖ f ‖Mλ

pQ(a,b)

= C2C3|b− a|λ̃+n
q
−µ ‖ f ‖Mλ

pQ(a,b),

where C3 = max(vn, 1)
1
q .

Hence

sup
x∈Q(a,b), 0<r<|b−a|

r−µ
∥∥Iαa+f∥∥Lq(B(x,r)

⋂
(Q(a,b))

≤ C1|b− a|λ̃+n
q
−µ ‖ f ‖Mλ

p (Q(a,b)), (2.4)
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where C1 = C2C3.
2) If r ≥ |b− a|, then

r−µ
∥∥Iαa+f∥∥Lq(B(x,r)

⋂
Q(a,b))

≤ C2|b− a|λ̃r−µ ‖ f ‖Mλ
p (Q(a,b))

≤ C2 | b− a |λ̃+n
q
−µ‖ f ‖Mλ

p (Q(a,b)) .

Thus,
sup

x∈Q(a,b), |b−a|≤r
r−µ

∥∥Iαa+f∥∥Lq(B(x,r)
⋂
Q(a,b))

≤ C2|b− a|λ̃+n
q
−µ ‖ f ‖Mλ

pQ(a,b) . (2.5)

Consequently, by (2.4) and (2.5), we obtain inequality (2.2) because∥∥Iαa+f∥∥Mµ
q (Q(a,b))

= max

{
sup

x∈Q(a,b),0<r<|b−a|
r−µ ‖ f ‖Lq(B(x,r)

⋂
Q(a,b)), sup

x∈Q(a,b),r≥|b−a|
r−µ ‖ f ‖Lq(B(x,r)

⋂
Q(a,b))

}
.

Step 2. Next, assume that the operator Iαa+ is bounded from Mλ
p (Q(a, b)) to Mµ

q (Q(a, b)), that is
for some C4 > 0 ∥∥Iαa+f∥∥Mµ

q (Q(a,b))
≤ C4 ‖ f ‖Mλ

p (Q(a,b)) (2.6)

for all f ∈Mλ
p (Q(a, b)).

Let here f = 1 and b1 − a1 = b2 − a2 = ... = bn − an. Then

‖ 1 ‖Mλ
pQ(a,b)= sup

x∈Q(a,b), r>0

r−λ ‖ 1 ‖Lp(Q(a,b)
⋂
B(x,r))

= sup
x∈Q(a,b), r>0

r−λ
∣∣∣B(x, r)

⋂
Q(a, b)

∣∣∣ 1p
≤ max

{
sup

x∈Q(a,b),0<r<|b−a|
r−λ
∣∣∣B(x, r)

∣∣∣ 1p , sup
x∈Q(a,b), r≥|b−a|

r−λ
∣∣∣Q(a, b)

∣∣∣ 1p}

= max

{
v

1
p
n sup

0<r≤|b−a|
r−λ+n

p , |b− a|−λ+n
p

}
= C5 |b− a|−λ+n

p ,

where C5 = max

{
v

1
p
n , 1

}
. Moreover,

∥∥Iαa+(1)
∥∥
Mµ
q Q(a,b)

=
1∏n

i=1 Γ(αi)
sup

x∈Q(a,b), r>0

r−µ

∥∥∥∥∥
n∏
i=1

(yi − ai)αi
αi

∥∥∥∥∥
Lq(Q(a,b)

⋂
B(x,r))

≥ 1∏n
i=1 αiΓ(αi)

r−µ

∥∥∥∥∥
n∏
i=1

(yi − ai)αi
∥∥∥∥∥
Lq(Q(a,b)

⋂
B(x,r))

∣∣∣∣∣
x=a+ε,r=|b−a|

=
1∏n

i=1 αiΓ(αi)
|b− a|−µ

∥∥∥∥∥
n∏
i=1

(yi − ai)αi
∥∥∥∥∥
Lq(Q(a,b)

⋂
B(a+ε,|b−a|))

,

where 0 < ε < min{b1 − a1, ..., bn − an}.
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By the proof of Lemma 2.1, we have Q(a, b) ⊂ B(a+ ε, |b− a|).
Therefore ∥∥∥∥∥

n∏
i=1

(yi − ai)αi
∥∥∥∥∥
Lq(Q(a,b)

⋂
B(a+ε,|b−a|))

=

∥∥∥∥∥
n∏
i=1

(yi − ai)αi
∥∥∥∥∥
Lq(Q(a,b))

=
n∏
i=1

1

(αiq + 1)
1
q

(bi − ai)αi+
1
q =

n∏
i=1

1

(αiq + 1)
1
q

(
|b− a|√

n

)α1+...+αn+n
q

= C6|b− a|α1+...+αn+n
q ,

where C6 =
∏n

i=1
1

(αiq+1)
1
q

(
1√
n

)α1+...+αn+n
q . Thus

∥∥Iαa+1
∥∥
Mµ
q (Q(a,b))

≥ C7|b− a|α1+...+αn+n
q
−µ,

where

C7 = C6

n∏
i=1

1

αiΓ(αi)
.

By (2.5), it follows that
C7|b− a|α1+...+αn+n

q
−µ ≤ C4C5|b− a|−λ+n

p ,

hence
C4 ≥

C7

C5

|b− a|ν .

Remark 1. Similarly one can obtain the results for the right multidimensional Riemann-Liouville
fractional integral operator of order α = (α1, ..., αn), i = 1, ...n, 1

p
< αi < 1.

Lemma 2.2. Let 0 < p <∞, 0 ≤ µ < λ ≤ n
p
. Then

‖ f ‖Mµ
p (Q(a,b))≤ |b− a|λ−µ ‖ f ‖Mλ

p (Q(a,b)) (2.7)

for any finite parallelepiped Q(a,b) and for any f ∈Mλ
p (Q(a, b)).

Proof. By applying inequality (2.1), we have

r−µ ‖ f ‖Lp(B(x,r)
⋂
Q(a,b))≤ r−µ ‖ f ‖Lp(Q(a,b))≤ r−µ|b− a|λ ‖ f ‖Mλ

p (Q(a,b)) .

sup
r≥|b−a|

rλ−µr−λ ‖ f ‖Lp(B(x,r)
⋂
Q(a,b))≤| b− a |λ−µ sup

r≥|b−a|
r−λ ‖ f ‖Lp(B(x,r)

⋂
Q(a,b))

=| b− a |λ−µ‖ f ‖Mλ
p (Q(a,b)),

then
‖ f ‖Mµ

p (Q(a,b))

= max

{
sup

r≥|b−a|
r−µ ‖ f ‖Lp(B(x,r)

⋂
Q(a,b)), sup

r<|b−a|
r−µ ‖ f ‖Lp(B(x,r)

⋂
Q(a,b))

}

= max

{
sup

r≥|b−a|
r−λ−µrλ ‖ f ‖Lp(B(x,r)

⋂
Q(a,b)), sup

r<|b−a|
r−µ ‖ f ‖Lp(B(x,r)

⋂
Q(a,b))

}
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≤ max

{
| b− a |λ−µ sup

r≥|b−a|
r−λ ‖ f ‖Lp(B(x,r)

⋂
Q(a,b)), |b− a|λ−µ sup

r<|b−a|
r−λ ‖ f ‖Lp(B(x,r)

⋂
Q(a,b))

}

= max
{
|b− a|λ−µ ‖ f ‖Mλ

p (Q(a,b)), |b− a|λ−µ ‖ f ‖Mλ
p (Q(a,b))

}
.

= |b− a|λ−µ ‖ f ‖Mµ
p (Q(a,b)) .

Lemma 2.3. Let 0 < p < q ≤ ∞, 0 ≤ λ ≤ n
p
. Then

‖ f ‖Mλ
p (Q(a,b))≤ |b− a|n( 1

p
− 1
q

) ‖ f ‖Mλ
q (Q(a,b)) (2.8)

for any finite parallelepiped Q(a, b) and any f ∈Mλ
p (Q(a, b)).

Proof. If 0 < p < q ≤ ∞, E is a Lebesgue measurable set, |E| <∞, then by Hölder’s inequality

‖ f ‖Lp(E)≤ |E|
1
p
− 1
q ‖ f ‖Lq(E) . (2.9)

By applying (2.9), we get
sup

x∈Q(a,b), r>0

r−λ ‖ f ‖Lp(B(x,r)
⋂
Q(a,b))

≤ |b− a|n( 1
p
− 1
q

) sup
x∈Q(a,b), r>0

r−λ ‖ f ‖Lq(B(x,r)
⋂
Q(a,b))

and inequality (2.8) follows.

We shall need the following variant of Young’s inequality for truncated convolutions (see [3] for
details).

Lemma 2.4. Let A,B ⊂ Rn be Lebesgue measurable sets,

1 ≤ p, ρ ≤ s ≤ ∞, 1

p
+

1

ρ
=

1

s
+ 1. (2.10)

If f ∈ Lp(B),
sup
t∈B
‖ ϕ ‖Lρ(A−t)<∞, sup

y∈A
‖ ϕ ‖Lρ(y−B)<∞,

then the integral
∫
B
ϕ(y − t)f(t)dt is finite for almost all y ∈ A and∥∥∥∥∫

B

ϕ(y − t)f(t)dt

∥∥∥∥
Ls(A)

≤ sup
t∈B
‖ ϕ ‖

ρ
s

Lρ(A−t) sup
y∈A
‖ ϕ ‖1− ρ

s

Lρ(y−B)‖ f ‖Lp(B) . (2.11)

Theorem 2.2. Let 1 ≤ p ≤ s ≤ ∞, 0 < q ≤ s, 1
p
− 1

s
< αi < 1, i = 1, ..., n, 0 ≤ λ ≤ n

p
,

0 ≤ µ ≤ n

q
− p(n− α1...− αn)

p+ s(p− 1)
, (2.12)

then there exists C8 > 0 such that∥∥Iαa+f∥∥Mµ
q (Q(a,b))

≤ C8 | b− a |ν‖ f ‖Mλ
p (Q(a,b)), (2.13)

where ν > 0 is defined by (2.3), for all finite parallelepipeds Q(a, b) and for all f ∈Mλ
p (Q(a, b)) and

the exponent ν cannot be replaced by any other one.
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Proof. Note that the right-hand side of inequality (2.12) is positive and that inequality (2.12) implies
that 0 ≤ µ < n

q
. Let the number ρ be defined by equality (2.10), then inequality (2.12) can be

rewritten as
0 ≤ µ ≤ n

q
− n

s
+
ρ

s

(
α1 + α2 + ...+ αn +

n

s
− n

p

)
. (2.14)

It is required to prove inequality (2.13). The proof of the fact that ν cannot be replaced by any other
one is the same as in Theorem 2.1. Let

ϕi(τi) =

{
ταi−1
i , 0 < τi < bi − ai,

0, otherwise,

i = 1, ..., n, ϕ(τ) = ϕ1(τ1)...ϕn(τn), τ ∈ Rn. Then for all y ∈ Q(a, b)

(
Iαa+f

)
(y) =

1∏n
i=1 Γ(αi)

∫ yn

an

...

∫ y1

a1

ϕ1(y1 − t1)...ϕn(yn − tn)f(t1, ..., tn)dt1...dtn

=
1∏n

i=1 Γ(αi)

∫
Q(a,y)

ϕ(y − t)f(t)dt.

=
1∏n

i=1 Γ(αi)

∫
Q(a,b)

ϕ(y − t)f(t)dt,

since ϕ(y − t) = 0 for t ∈ Q(a, b) \Q(a, y).
Let

K =

∥∥∥∥∫
Q(a,b)

ϕ(y − t)f(t)dt

∥∥∥∥
Ls(B(x,r)

⋂
Q(a,b))

.

By (2.10),

K ≤ sup
t∈Q(a,b)

‖ ϕ ‖
ρ
s

Lρ(B(x,r)
⋂
Q(a,b)−t) sup

y∈B(x,r)
⋂
Q(a,b)

‖ ϕ ‖1− ρ
s

Lρ(y−Q(a,b))‖ f ‖Lp(Q(a,b)) . (2.15)

‖ ϕ ‖Lρ(y−Q(a,b))≤‖ ϕ ‖Lρ(Rn)=‖ ϕ ‖Lρ(Q(0,b−a)),

sup
y∈B(x,r)

⋂
Q(a,b)

‖ ϕ ‖Lρ(y−Q(a,b))≤‖ ϕ ‖Lρ(Q(0,b−a)),

‖ ϕ ‖Lρ(Q(0,b−a))=

(∫ bn−an

0

...

∫ b1−a1

0

τ
(α1−1)ρ
1 ...τ (αn−1)ρ

n dτ1...dτn

) 1
ρ

=
n∏
i=1

(
(αi − 1)ρ+ 1

)− 1
ρ
(bi − ai)αi+

1
ρ
−1 ≤ C9|b− a|α1+...+αn+n

s
−n
p , (2.16)

where C9 =
∏n

i=1

(
(αi − 1)ρ+ 1

)− 1
ρ
.

1) If r ≥| b− a |,

‖ ϕ ‖Lρ(B(x,r)
⋂
Q(a,b)−t)≤‖ ϕ ‖Lρ(Rn)=‖ ϕ ‖Lρ(Q(0,b−a)) .

Consequently,
K ≤‖ ϕ ‖

ρ
s

Lρ(Q(0,b−a))‖ ϕ ‖
1− ρ

s

Lρ(Q(0,b−a))‖ f ‖Lp(Q(a,b))

=‖ ϕ ‖Lρ(Q(0,b−a))‖ f ‖Lp(Q(a,b))
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≤ C9|b− a|α1+...+αn+n
s
−n
p ‖ f ‖Lp(Q(a,b)) .

By inequality (2.1), we get

sup
x∈Q(a,b),r≥|b−a|

r−µK ≤ C9 | b− a |λ+α1+...+αn+n
s
−n
p
−µ‖ f ‖Mλ

p (Q(a,b)) . (2.17)

2) If 0 < r <| b− a |,

‖ ϕ ‖Lρ(B(x,r)
⋂
Q(a,b)−t)≤‖ ϕ ‖Lρ(B(x,r)−t)=‖ ϕ ‖Lρ(B(x−t,r))

≤‖ ϕ ‖Lρ(B(0,2r))≤‖ ϕ ‖Lρ(Q(0,2r)),

thus
‖ϕ‖Lρ(B(x,r)

⋂
Q(a,b)−t) ≤‖ ϕ ‖Lρ(Q(0,2r)),

‖ϕ‖
ρ
s

Lρ(Q(0,2r)) =

[∫ 2r

0

...

∫ 2r

0

ϕρn(τn)...ϕρ1(τ1)dτn...dτ1

] 1
s

≤

 2r∫
0

τ (αn−1)ρ
n dτn


1
s

...

 2r∫
0

τ
(α1−1)ρ
1 dτ1


1
s

= C
ρ
s
9

n∏
i=1

2
1
s

[(αi−1)ρ+1]r
1
s

[(αi−1)ρ+1] = C10r
1
s

((α1+...+αn)ρ−nρ+n), (2.18)

where

C10 = C
ρ
s
9

n∏
i=1

2
1
s

[(αi−1)ρ+1].

By applying (2.15) and (2.16), we obtain

r−µK ≤ C
1− ρ

s
9 C10|b− a|(1−

ρ
s

)(α1+...+αn+n
s
−n
p

)r
ρ
s

(α1+...+αn+n
s
−n
p

)−µ ‖ f ‖Lp(Q(a,b)), (2.19)

since ρ
s
(α1 + ...+ αn + n

s
− n

p
) ≥ µ, then

r−µK ≤ C10C
1− ρ

s
9 |b− a|(1−

ρ
s

)(α1+...+αn+n
s
−n
p

)+ ρ
s

(α1+...+αn+n
s
−n
p

)−µ,

by (2.1), we get
r−µK ≤ C

1− ρ
s

9 C10|b− a|α1+...+αn+n
s
−n
p

+λ−µ ‖ f ‖Mλ
p (Q(a,b)) .

Consequently,

sup
x∈Q(a,b), 0<r<|b−a|

r−µK ≤ C8 | b− a |λ+α1+...+αn+n
s
−n
p
−µ‖ f ‖Mλ

p (Q(a,b)), (2.20)

where C8 = C
1− ρ

s
9 C10.

Inequality (2.13) with q = s follows by (2.15) and (2.17):∥∥Iαa+f∥∥Mµ
s (Q(a,b))

≤ C8 | b− a |γ‖ f ‖Mλ
p (Q(a,b)), (2.21)

where γ = λ+ α1 + ...+ αn + n
s
− n

p
− µ.
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Next, let 0 < q < s ≤ ∞ and

L =

∥∥∥∥∫
Q(a,b)

ϕ(y − t)f(t)dt

∥∥∥∥
Lq(B(x,r)

⋂
Q(a,b))

.

By (2.9), we get
L ≤| B(x, r) ∩Q(a, b) |

1
q
− 1
s K. (2.22)

1) if r ≥ |b− a|, then (2.21) implies

r−µL ≤ |Q(a, b)|
1
q
− 1
s r−µK ≤ |b− a|n( 1

q
− 1
s

)r−µK, (2.23)

by (2.15), we have

sup
x∈Q(a,b),r≥|b−a|

r−µL ≤ C9|b− a|λ+α1+...+αn+n
q
−n
p
−µ ‖ f ‖Mλ

p (Q(a,b)) . (2.24)

2) If r < |b− a|, by (2.19), we obtain

r−µL ≤ v
1
q
− 1
s

n C
1− ρ

s
9 C10|b− a|(1−

ρ
s

)(α1+...+αn+n
s
−n
p

)rn( 1
q
− 1
s

)r
ρ
s

(α1+...+αn+n
s
−n
p

)−µ ‖ f ‖Lp(Q(a,b)) .

By (2.14)
n

q
− n

s
+
ρ

s
(α1 + α2 + ...+ αn +

n

s
− n

p
)− µ ≥ 0,

therefore
r−µL ≤ v

1
q
− 1
s

n C
1− ρ

s
9 C10|b− a|α1+...+αn+n

q
−n
p
−µ ‖ f ‖Lp(Q(a,b)),

by applying inequality (2.1), we get

sup
x∈Q(a,b),0<r<|b−a|

r−µL ≤ v
1
q
− 1
s

n C
1− ρ

s
9 C10|b− a|λ+α1+...+αn+n

q
−n
p
−µ ‖ f ‖Mλ

p (Q(a,b)) . (2.25)

Then inequality (2.13) follows for any 0 < q < s.
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