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of vector fields specified by Lyapunov’s system with respect to space independent variables and
a multiperiodic system with respect to time variables is considered. We study the problem of the
existence and uniqueness of a multiperiodic solution of a quasilinear system and we use methods of the
theory of multiperiodic solutions of linear systems. The research partially reflects the multiperiodic
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and the problem of multiperiodic solutions are given. They are proved by the method of contraction
mappings defined on spaces of smooth functions.
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1 Introduction

Many oscillatory phenomena, such as sound, light, electromagnetic, gas, and hydromechanical phe-
nomena are described by systems of partial differential equations. In this regard, the research on
solutions of such systems with oscillatory properties belongs to applied aspects of the theory of
ordinary and partial differential equations. Existence conditions of periodic solutions of partial dif-
ferential equations of the first order with the differentiation operator in the directions of a vector
field on a torus were established in [1]. Note that the differential operator of work [1] is similar to
the differentiation operator with respect to time variables considered in this paper. We note some
similarity of the research methods used in [3] with the methods of this paper. It is explained by the
fact that the Poincare-Lyapunov and Hamilton-Jacobi methods are the general basis of the methods
for studying such problems.

Comparing the investigations in papers [1, 3] with this work, one should note the common gen-
eral direction associated with partial differential equations of the first order describing oscillatory
processes and some generality of used methods and operators, but the problems investigated are
completely different.

The foundations of methods which are used in this paper were laid in [4, 9, 11, 17]. Some results
on multiperiodic solutions of systems of equations obtained by the development of the methods
of those works are given in [2, 5–14], which were further developed in [15, 16]. In these works,
the forces causing systems oscillations were multiperiodic with known periods. Consequently, the
authors were looking for solutions with pre-known periods. In the case of autonomous systems, we
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do not have such a possibility, but it is possible to reveal multiperiodic structures of solutions of
problems accompanying the considered system (e.g. the characteristic equations in time and space
variables, corresponding linear systems, etc.), which allows one to determine multiperiodic solutions
of the original system.

In this paper, we consider a quasilinear system of equations with the differentiation operator in
the directions of vector fields, where the characteristic systems of the differentiation operators with
respect to time and space variables are independent. Moreover, the differentiation with respect to
space variables is carried out in the directions determined by Lyapunov’s system. We studied the
problem of the existence of multiperiodic solutions of an analogous autonomous system in our previ-
ous works. In this paper, some input data are affected by perturbations depending on time variables.
Obviously, multiperiodic solutions of the system are compositions of periodic components with ra-
tionally incommensurable periods. Along with multiperiodic components, non-periodic components
can also enter a solution of the initial problem. The structure of a solution with selected periodic
components is called its multiperiodic structure. The determination of the multiperiodic structure of
a solution of the considered system fully reveals the oscillatory nature of the phenomenon described
by the system of the initial problem.

In the case of a non-autonomous system, the frequencies of the required multiperiodic oscillations
are mainly determined by the system itself. Therefore, the frequencies and their numbers are known
in advance.

In the autonomous case, the main difficulty of the problem under consideration is the uncertainty
of the frequencies of periodic oscillations, which are components of multiperiodic oscillations deter-
mined by a given system. This difficulty was overcome by using the fact that the characteristic vector
field satisfies the conditions of Lyapunov’s system.

2 Integral representation of multiperiodic solutions of a linear system.
Statement of the main problem

Let, for r > 0 and s ∈ N, Bs
r denote an open ball in Rs centered at the origin and let a vector-function

x = (x1, . . . , xn) depending on (τ, t)-time and ζ = (ζ1, . . . , ζl)-space variables with the components
ζj = (ξj, ηj) , j = 1, l characterize the oscillatory process described by the system of equations

Dx = Ax+ f(τ, t, ζ, x) (2.1)

with the differentiation operator

D =
∂

∂τ
+

〈
a,
∂

∂t

〉
+

〈
νIζ + g,

∂

∂ζ

〉
. (2.2)

Here τ ∈ R, t = (t1, . . . , tm) ∈ Rm, ζj = (ξj, ηj) ∈ B2
δ , j = 1, l, ζ = (ζ1, . . . , ζl) ∈ B2l

δ ,

δ > 0;
∂

∂t
=

(
∂

∂t1
, . . . ,

∂

∂tm

)
,

∂

∂ζ
=

(
∂

∂ζ1

, . . . ,
∂

∂ζl

)
,

∂

∂ζj
=

(
∂

∂ξj
,
∂

∂ηj

)
are vec-

tor differentiation operators; ν = (ν1, . . . , νl) is a constant vector, νI = diag(ν1I2, . . . , νlI2)
is the matrix with the symplectic unit I2 of the second order, a = (a1(τ, t), . . . , am(τ, t))
= a(τ, t) and g = (g1(τ), . . . , gl(τ)) = g(τ) are vector-functions, 〈 , 〉 denotes the scalar prod-
uct of vectors, A is a constant n-matrix, f = f(τ, t, ζ, x) is an n-vector-function of variables
(τ, t, ζ, x) ∈ R× Rm ×B2l

δ ×B
n

∆.
Assume that the following conditions are satisfied.
a) The vector-function a(τ, t) has the property of (θ, ω)-periodicity and smoothness with respect

to (τ, t) ∈ R× Rm of order (0, e) = (0, 1, . . . , 1):

a(τ + θ, t+ qω) = a(τ, t) ∈ C(0,e)
τ,t (R× Rm) , q ∈ Zm, (2.3)
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where Zm is the set of all integer vectors q = (q1, . . . , qm), qω = (q1ω1, . . . , qmωm);
ω0 = θ, ω1, . . . , ωm are positive rationally incommensurable periods.

b) The vector coordinates ν1, . . . , νl are positive rationally incommensurable constants, therefore,
numbers αj = 2πν−1

j , j = 1, l are also incommensurable and fulfilled

qiαi + qjαj 6= 0, q2
i + q2

j 6= 0, qi, qj ∈ Z,
(
i, j = 0, l

)
. (2.4)

c) The vector-function g (τ) = (g1(τ), . . . , gl(τ)) with the components

gj (τ) = (ϕj(τ), ψj(τ)), j = 1, l

is θ-periodic and continuous, i.e.
g(τ + θ) = g(τ) ∈ C (R) , (2.5)

moreover, constants θ and αj, j = 1, l also rationally incommensurable:

q0θ + qjαj 6= 0, q2
0 + q2

j 6= 0, j = 1, l; q0, qj ∈ Z. (2.6)

Under assumptions (2.3)–(2.6) on the basis of the vector fields

dt

dτ
= a(τ, t), (2.7)

dζ

dτ
= νIζ + g(τ), (2.8)

the characteristics
t = λ

(
τ, τ 0, t0

)
, (2.9)

ζ = Z
(
τ − τ 0

) [
ζ0 − z

(
τ 0
)]

+ z (τ) (2.10)

are determined, where (τ 0, t0, ζ0) ∈ R × Rm × R2l, Z (τ) = diag [Z1(τ), . . . , Zl(τ)], z (τ) =

(z1(τ), . . . , zl(τ)), Zj(τ) =

(
cos νjτ − sin νjτ
sin νjτ cos νjτ

)
, zj(τ + θ) = zj(τ),

zj(τ) =
[
Z−1
j (τ + θ)− Z−1

j (τ)
]−1

τ+θ∫
τ

Z−1
j (s)gj(s) ds, j = 1, l.

Based on relations (2.9) and (2.10), we define the first integrals of vector fields (2.7) and (2.8) in
the form

t0 = λ
(
τ 0, τ, t

)
, (2.11)

ζ0 = Z
(
τ 0 − τ

)
[ζ − z (τ)] + z

(
τ 0
)
≡ µ

(
τ 0, τ, ζ

)
, (2.12)

where the following properties hold:

Dλ (τ 0, τ, t) = 0, λ (τ 0, τ 0, t) = t,

λ (τ ′, τ ′′, λ (τ ′′, τ, t)) = λ (τ ′, τ, t) ,

λ (τ 0 + θ, τ + θ, t+ qω) = λ (τ 0, τ, t) + qω;

(2.13)
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Dµ (τ 0, τ, ζ) = 0, µ (τ 0, τ 0, ζ) = ζ,

µ (τ ′, τ ′′, µ (τ ′′, τ, ζ)) = µ (τ ′, τ, ζ) ,

µ (τ 0 + θ, τ + θ, ζ) = µ (τ 0, τ, ζ) .

(2.14)

Also, note that the matrices Zj(τ + αj) = Zj(τ), j = 1, l are periodic with the incommensurable
periods αj, j = 1, l. Consequently, the matrix Z(τ) is quasiperiodic with the frequency basis ν =
(ν1, . . . , νl), which is represented by the multiperiodic blocks Zj(τ) with the period vector α =
(α1, . . . , αl):

Z (τ̂ + qα) = diag [Z1 (τ1 + q1α1) , . . . , Zl (τl + qlαl)]

= diag [Z1 (τ1) , . . . , Zl (τl)] = Z (τ̂) , q ∈ Rl, τ̂ = (τ1, . . . , τl) ∈ R× . . .× R = Rl.

In conclusion, we note that by virtue of relations (2.11)–(2.14) with an arbitrary smooth
vector-function u0 (t, ζ) ∈ C

(e,ẽ)
t,ζ

(
Rm × R2l

)
, we can determine the zero u (τ 0, τ, t, ζ) =

u0 (λ (τ 0, τ, t) , µ (τ 0, τ, ζ)) of the operator D: Du (τ 0, τ, t, ζ) = 0, where e and ẽ are m and 2l-vectors
with the unit coordinates.

It is easy to verify that the initial problem for the linear system

Dx = Ax (2.15)

with the initial condition
x|τ=τ0 = u (t, ζ) ∈ C(e,ẽ)

t,ζ

(
Rm × R2l

)
(2.16)

is determined by the formula

x
(
τ 0, τ, t, ζ

)
= X

(
τ − τ 0

)
u
(
λ
(
τ 0, τ, t

)
, µ
(
τ 0, τ, ζ

))
, (2.17)

where X(τ) is the matricant of system (2.15): DX(τ) = AX(τ), X(0) = E is the identity matrix.
We note that the condition

det [X (θ)− E] 6= 0 (2.18)

is necessary for system (2.15) to have only zero (θ, ω)-periodic with respect to (τ, t) solution.
It can be proved that if condition (2.18) is satisfied, then problem (2.15)–(2.16) has a nonzero

(θ, ω)-periodic solution (2.17) if and only if the fundamental system

u
(
λ
(
τ 0, τ 0 + θ, t, µ

(
τ 0, τ 0 + θ, ζ

)))
= [E −X(θ)]−1 [u (λ (τ 0, τ 0 + θ, t

)
, µ
(
τ 0, τ 0 + θ, ζ

))
− u (t, ζ)

] (2.19)

has a ω-periodic with respect to t nontrivial smooth solution u (t, ζ).
Therefore, if, along with condition (2.18), system (2.19) has only zero solution in the class of

functions
u (t+ qω, ζ) = u (t, ζ) ∈ C(e,ẽ)

t,ζ

(
Rm × R2l

)
, (2.20)

then system (2.15) does not have (θ, ω)-periodic solutions, except for the zero one.
Now we consider the inhomogeneous system

Dx = Ax+ f (τ, t, ζ) (2.21)

with the vector-function

f (τ + θ, t+ qω, ζ) = f (τ, t, ζ) ∈ C(0,e,ẽ)
τ,t,ζ

(
R× Rm × R2l

)
, q ∈ Zm. (2.22)
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Suppose that under condition (2.18), system (2.19) has only zero solution from class (2.20). In
other words, system (2.15) has only zero (θ, ω)-periodic with respect to (τ, t) solution.

Further, in order to write out an integral representation of the (θ, ω)-periodic solution of sys-
tem (2.21), we use vector-function (2.22) along with the characteristics (s, λ(s, τ, t), µ(s, τ, ζ)),
(s, λ(s, τ + θ, t), µ(s, τ + θ, ζ)) and the following vector-function

fθ (s, λ(s, τ, t), µ(s, τ, ζ)) =


f (s, λ(s, τ, t), µ(s, τ, ζ)) , τ ≤ s ≤ 0,

f (s, λ(s, τ + θ, t), µ(s, τ + θ, ζ)) ,

0 < s ≤ τ + θ.

(2.23)

Then under the above conditions, the (θ, ω)-periodic solution x∗(τ, t, ζ) of system (2.21) has the
following integral representation

x∗(τ, t, ζ) =
[
X−1(τ + θ)−X−1(τ)

]−1

τ+θ∫
τ

X−1(s)fθ(s, λ(s, τ, t), µ(s, τ, ζ)) ds, (2.24)

where fθ (s, λ(s, τ, t), µ(s, τ, ζ)) has form (2.23).
Note that vector-function (2.24) is a (θ, ω)-periodic solution of system (2.21) which can be verified

by direct calculations. The uniqueness follows from the fact that homogeneous system (2.15) has
only zero (θ, ω)-periodic solution.

Now we state the main goal of this paper : investigation of the problem of the existence of a
unique (θ, ω)-periodic with respect to (τ, t) solution of quasilinear system (2.1) based on the above
information on multiperiodic solutions of linear system (2.21).

3 Multiperiodic solution of a quasilinear system with the differentiation
operator D

We consider quasilinear system (2.1) under the following assumptions.
10. All assumptions with respect to the input data of linear part of system (2.1) remain valid.
20. A vector-function f(τ, t, ζ, x) satisfies the condition

f (τ + θ, t+ qω, ζ, x) = f (τ, t, ζ, x) ∈ C(0,e,ẽ,ê)
τ,t,ζ,x

(
R× Rm ×B2l

δ ×B
n

∆

)
, (3.1)

where e, ẽ, ê are the vectors with the unit components of dimensions m, 2l, n, respectively.
30. Linear system (2.15) has no (θ, ω)-periodic solutions except zero.
Let θ, ω, δ, γ > 0. We introduce the space Sθ,ωδ,γ of all n-vector-functions x(τ, t, ζ) which are

(θ, ω)-periodic with respect to (τ, t) ∈ R× Rm, continuously differentiable with respect to (τ, t, ζ) ∈
R×Rm ×B2l

δ , continuous with the partial derivatives of order one on the closure R×Rm ×B2l

δ and
such that ‖x‖ < γ, where

‖x‖ = ‖x‖◦ +
m∑
j=0

∥∥∥∥ ∂x∂tj
∥∥∥∥
◦

+
l∑

k=1

(∥∥∥∥ ∂x∂ξk
∥∥∥∥
◦

+

∥∥∥∥ ∂x∂ηk
∥∥∥∥
◦

)

is the norm of n-vector-functions x(τ, t, ζ) of variables τ = t0, t = (t1, . . . , tm),
ζ = (ζ1, . . . , ζl) = ((ξ1, η1), . . . , (ξl, ηl)), where ‖x‖◦ = sup|x(τ, t, ζ)|, the supremum is taken with
respect to (τ, t, ζ) ∈ R× Rm ×B2l

δ and | · | is the Euclidean norm in Rn.
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We consider the integral operators T, P ′k, P ′′k , Qj, R with the kernel K = K(τ, s) of the form

(Tx)(τ, t, ζ) =

τ+θ∫
τ

K(τ, s)fθ(s, λ(s, τ, t), µ(s, τ, ζ), x(s, λ(s, τ, t), µ(s, τ, ζ))) ds, (3.2)

K(τ, s) =
[
X−1(τ + θ)−X−1(τ)

]−1
X−1(s), (3.3)

(P ′kx)(τ, t, ζ) =

τ+θ∫
τ

K(τ, s)

[
∂fθ
∂ζ

+
∂fθ
∂x
· ∂x
∂ζ

]
∂ζ

∂ζk
· ∂µk(s, τ, ζk)

∂ξk
ds, (3.4)

(P ′′k x)(τ, t, ζ) =

τ+θ∫
τ

K(τ, s)

[
∂fθ
∂ζ

+
∂fθ
∂x
· ∂x
∂ζ

]
∂ζ

∂ζk
· ∂µk(s, τ, ζk)

∂ηk
ds, (3.5)

(Qjx)(τ, t, ζ) =

τ+θ∫
τ

K(τ, s)

[
∂fθ
∂tj

+
∂fθ
∂x
· ∂x
∂t

]
∂λ(s, τ, t)

∂tj
ds, (3.6)

(Rx)(τ, t, ζ) = f(τ, t, ζ, x) +

τ+θ∫
τ

K(τ, s)

[
∂fθ
∂ζ

+
∂fθ
∂x
· ∂x
∂ζ

]
∂µ(s, τ, ζ)

∂τ
ds

+A(Tx)(τ, t, ζ) +

τ+θ∫
τ

K(τ, s)

[
∂fθ
∂t

+
∂fθ
∂x
· ∂x
∂t

]
∂λ(s, τ, t)

∂t
ds,

(3.7)

in the space Sθ,ωδ,γ . Here in the Jacobi matrices
∂x

∂t
,
∂x

∂σ
,
∂σ

∂σk
,
∂fθ
∂x

and partial derivatives
∂fθ
∂ξk

,
∂fθ
∂ηk

,
∂fθ
∂tj

in square brackets the variables τ, t, ζ are respectively replaced by s, λ(s, τ, t), µ(s, τ, ζ) = (µ1, . . . , µl),
where µk = µk(s, τ, σk), σk = (ξk, ηk), k = 1, l; the vector-function fθ is constructed similarly to
formula (2.23) based on the given vector-function f .

Note that P ′kx, P ′′k x,Qjx and Rx are obtained from Tx by differentiating it with respect to ξk, ηk, tj
and τ , respectively.

Integral operators (3.2)–(3.7) depend on the scalar argument τ and the vector ar-
guments ζk = (ξk, ηk), ζ = (ζ1, . . . , ζl) = ((ξ1, η1), . . . , (ξl, ηl)), t = (t1, . . . , tm),

x = (x1, . . . , xn), p = (p1, . . . , pk), pk =
∂x

∂ξk
, q = (q1, . . . , qk), qk =

∂x

∂ηk
, k = 1, l,

r = (r1, . . . , rj), rj =
∂x

∂tj
, j = 1,m. Moreover, dependence on p, q, r is linear.

We have following estimates for λ(s, τ, t),
∂λ(s, τ, t)

∂τ
,
∂λ(s, τ, t)

∂tj

|λ(s, τ, t)− t| ≤ ‖a‖◦|τ − s|,∣∣∣∣∂λ(s, τ, t)

∂τ

∣∣∣∣ ≤ ‖a‖◦ exp

[∥∥∥∥∂a∂t
∥∥∥∥
◦
|τ − s|

]
,

∣∣∣∣∂λ(s, τ, t)

∂tj

∣∣∣∣ ≤ exp

[∥∥∥∥∂a∂t
∥∥∥∥
◦
|τ − s|

]
, j = 1,m

(3.8)
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from the equations of characteristics of the operator D. They are based on the theorems on differ-
entiability with respect to the initial data.

Also we have similar estimates for µk(s, τ, ζk)

|µk(s, τ, ζk)− zk(s)| ≤ |Zk(s− τ)| · |ζk − zk(τ)|,∣∣∣∣∂µk(s, τ, ζk)∂τ

∣∣∣∣ ≤ |Zk(s− τ)| · | − νkI2ζk − gk(τ)|,

∣∣∣∣∂µk(s, τ, ζk)∂ξk

∣∣∣∣ ≤ |Zk(s− τ)| · |e′|,

∣∣∣∣∂µk(s, τ, ζk)∂ηk

∣∣∣∣ ≤ |Zk(s− τ)| · |e′′|,

(3.9)

where |e′| = |e′′| = 1.

Assume that µ(s, τ, ζ) = (µ1(s, τ, ζ1), . . . , µl(s, τ, ζl)). Suppose that µk = (µ′k, µ
′′
k) and zk =

(z′k, z
′′
k), then we have the following coordinate representations of the formµ′k(s, τ, ξk, ηk)− z′k(s)

µ′′k(s, τ, ξk, ηk)− z′′k(s)

=

[ξk − z′k(τ)] cos νk(s− τ)− [ηk − z′′k(τ)] sin νk(s− τ)

[ξk − z′k(τ)] sin νk(s− τ) + [ηk − z′′k(τ)] cos νk(s− τ)

 ,
∂

∂τ
µ′k(s, τ, ξk, ηk)

∂

∂τ
µ′′k(s, τ, ξk, ηk)

=

[νkηk − ϕk(τ)] cos νk(s− τ) + [νkξk + ψk(τ)] sin νk(s− τ)

[νkηk − ϕk(τ)] sin νk(s− τ)− [νkξk + ψk(τ)] cos νk(s− τ)

 ,


∂

∂ξk
µ′k(s, τ, ξk, ηk)

∂

∂ξk
µ′′k(s, τ, ξk, ηk)

=

cos νk(s− τ)

sin νk(s− τ)

 ,


∂

∂ηk
µ′k(s, τ, ξk, ηk)

∂

∂ηk
µ′′k(s, τ, ξk, ηk)

=

− sin νk(s− τ)

cos νk(s− τ)

 .

Further, we consider the matrix
∂x

∂ζ
=

[
∂xj
∂ξk

,
∂xj
∂ηk

]
j=1,n
k=1,l

=

[
∂x

∂ξk
,
∂x

∂ηk

]
k=1,l

whose columns are

vectors pk =
∂x

∂ξk
, qk =

∂x

∂ηk
, k = 1, l. Moreover,

∣∣∣∣∂x∂ζ
∣∣∣∣ ≤ l∑

k=1

(∣∣∣∣ ∂x∂ξk
∣∣∣∣+

∣∣∣∣ ∂x∂ηk
∣∣∣∣) =

l∑
k=1

(|pk|+ |qk|).

Similarly, we have ∣∣∣∣∂x∂t
∣∣∣∣ ≤ m∑

j=1

∣∣∣∣ ∂x∂tj
∣∣∣∣ =

m∑
j=1

|rj|.
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The matrix
∂ζ

∂ζk
=

[
∂ζj
∂ξk

,
∂ζj
∂ηk

]
j=1,l

is a (l× 2)-dimensional matrix, where the k-th row consists of

the units, the rest of its elements are zeros, since ζj = (ξj, ηj), j = 1, j. It is obvious that
∣∣∣∣ ∂ζ∂ζk

∣∣∣∣ ≤ √2.

It is easy to obtain the estimates∣∣∣∣∂µk(s, τ, ζk)∂ξk

∣∣∣∣ ≤ √2,

∣∣∣∣∂µk(s, τ, ζk)∂ηk

∣∣∣∣ ≤ √2,

∣∣∣∣∂µ(s, τ, ζ)

∂τ

∣∣∣∣ ≤ √2l,k = 1, l

(3.10)

from the above representations and estimates (3.9).
Further, by virtue of condition (3.1) on twice continuous differentiability, we have the following

estimates for the differences and their corollaries

1) |fθ(τ, t, ζ, x)− fθ(τ, t, ζ, y)| ≤ c1|x− y|,

2)

∣∣∣∣∂fθ(τ, t, ζ, x)

∂ζ
− ∂fθ(τ, t, ζ, y)

∂ζ

∣∣∣∣ ≤ c2|x− y|,

3)

∣∣∣∣∂fθ(τ, t, ζ, x)

∂tj
− ∂fθ(τ, t, ζ, y)

∂tj

∣∣∣∣ ≤ c3|x− y|, j = 1,m,

4)

∣∣∣∣∂fθ(τ, t, ζ, x)

∂x
− ∂fθ(τ, t, ζ, y)

∂x

∣∣∣∣ ≤ c4|x− y|,

5)

∣∣∣∣∂fθ(τ, t, ζ, x)

∂x

∂x

∂ζ
− ∂fθ(τ, t, ζ, y)

∂x

∂y

∂ζ

∣∣∣∣ ≤ ∣∣∣∣∂fθ(τ, t, ζ, x)

∂x
− ∂fθ(τ, t, ζ, y)

∂x

∣∣∣∣ · ∣∣∣∣∂x∂ζ
∣∣∣∣

+

∣∣∣∣∂fθ(τ, t, ζ, y)

∂x

∣∣∣∣ · ∣∣∣∣∂x∂ζ − ∂y

∂ζ

∣∣∣∣,
6)

∣∣∣∣∂fθ(τ, t, ζ, x)

∂x

∂x

∂t
− ∂fθ(τ, t, ζ, y)

∂x

∂y

∂t

∣∣∣∣ ≤ ∣∣∣∣∂fθ(τ, t, ζ, x)

∂x
− ∂fθ(τ, t, ζ, y)

∂x

∣∣∣∣ · ∣∣∣∣∂x∂t
∣∣∣∣

+

∣∣∣∣∂fθ(τ, t, ζ, y)

∂x

∣∣∣∣ · ∣∣∣∣∂x∂t − ∂y

∂t

∣∣∣∣,
7) |fθ(τ, t, ζ, x)| ≤ |fθ(τ, t, ζ, 0)|+ |fθ(τ, t, ζ, x)− fθ(τ, t, ζ, 0)| ≤ χ1 + c1|x|,

8)

∣∣∣∣∂fθ(τ, t, ζ, x)

∂ζ

∣∣∣∣ ≤ ∣∣∣∣∂fθ(τ, t, ζ, 0)

∂ζ

∣∣∣∣+

∣∣∣∣∂fθ(τ, t, ζ, x)

∂ζ
− ∂fθ(τ, t, ζ, 0)

∂ζ

∣∣∣∣ ≤ χ2 + c2|x|,

9)

∣∣∣∣∂fθ(τ, t, ζ, x)

∂tj

∣∣∣∣ ≤ ∣∣∣∣∂fθ(τ, t, ζ, 0)

∂tj

∣∣∣∣+

∣∣∣∣∂fθ(τ, t, ζ, x)

∂tj
− ∂fθ(τ, t, ζ, 0)

∂tj

∣∣∣∣ ≤ χ3 + c3|x|,

j = 1,m,

10)

∣∣∣∣∂fθ(τ, t, ζ, x)

∂x

∣∣∣∣ ≤ ∣∣∣∣∂fθ(τ, t, ζ, 0)

∂x

∣∣∣∣+

∣∣∣∣∂fθ(τ, t, ζ, x)

∂x
− ∂fθ(τ, t, ζ, 0)

∂x

∣∣∣∣ ≤ χ4 + c4|x|,

11)

∣∣∣∣∂fθ(τ, t, ζ, x)

∂x

∂x

∂ζ
− ∂fθ(τ, t, ζ, y)

∂x

∂y

∂ζ

∣∣∣∣ ≤ c4|x− y|
l∑

k=1

(|pk|+ |qk|)
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+ (χ4 + c4γ)
l∑

k=1

(|pk − p̃k|+ |qk − q̃k|), where p̃k =
∂y

∂ξk
, q̃k =

∂y

∂ηk
, k = 1, l,

12)

∣∣∣∣∂fθ(τ, t, ζ, x)

∂x

∂x

∂t
− ∂fθ(τ, t, ζ, y)

∂x

∂y

∂t

∣∣∣∣ ≤ c4|x− y|
m∑
j=1

|rj|+ (χ4 + c4γ)
m∑
j=1

|rj − r̃j|,

where r̃j =
∂y

∂tj
, j = 1,m. Here c1, c2, c3, c4 are the positive Lipschitz constants of

the vector and matrix functions fθ,
∂fθ
∂ζ

,
∂fθ
∂tj

, j = 1,m,
∂fθ
∂x

; χ1, χ2, χ3, χ4 > 0 are the maximums of

the functions |fθ|,
∣∣∣∣∂fθ∂ζ

∣∣∣∣ , ∣∣∣∣∂fθ∂tj

∣∣∣∣, j = 1,m,
∣∣∣∣∂fθ∂x

∣∣∣∣ with respect to (τ, t, ζ, 0). (For χ3 the maximum is

also with respect to j = 1,m.)
Obviously, the integral operator T◦ of the form

(T◦x)(τ, t, ζ) =

τ+θ∫
τ

K(τ, s)x(s, λ(s, τ, t), µ(s, τ, ζ)) ds (3.11)

with kernel (3.3) is linear, maps the space Sθ,ωδ,γ into itself and is bounded by

‖T◦x‖◦ = κ‖x‖◦, (3.12)

where

κ = sup
0≤τ≤θ

τ+θ∫
τ

|K(τ, s)| ds.

Now we estimate operators (3.2)–(3.7) by using inequalities 1)-12) and (3.8)–(3.12). For x ∈ Sθ,ωδ,γ∣∣(Tx)(τ, t, ζ)
∣∣≤ κ

(
χ1 + c1‖x‖◦

)
,

∣∣(P ′kx)(τ, t, ζ)
∣∣≤ κ

[
χ2 + c2‖x‖◦ +

(
χ4 + c4‖x‖◦

) l∑
k=1

(
‖pk‖◦ − ‖qk‖◦

)]
·
√

2 ·
√

2,

∣∣(P ′′k x)(τ, t, ζ)
∣∣≤ κ

[
χ2 + c2‖x‖◦ +

(
χ4 + c4‖x‖◦

) l∑
k=1

(
‖pk‖◦ − ‖qk‖◦

)]
·
√

2 ·
√

2,∣∣(Qjx)(τ, t, ζ)
∣∣≤ κ

[
χ3 + c3‖x‖◦ +

(
χ4 + c4‖x‖◦

) m∑
j=1

‖rj‖◦
]
·e2‖ ∂a∂t‖◦θ,

∣∣(Rx)(τ, t, ζ)
∣∣≤ κ

[
χ2 + c2‖x‖◦ +

(
χ4 + c4‖x‖◦

) l∑
k=1

(
‖pk‖◦ − ‖qk‖◦

)]
·
√

2l

+ κ
[
χ3 + c3‖x‖◦ +

(
χ4 + c4‖x‖◦

) m∑
j=1

‖rj‖◦
]
·e2‖ ∂a∂t‖◦θ + |A|κ

(
χ1 + c1‖x‖◦

)
+
(
χ1 + c1‖x‖◦

)
for |s| ≤ θ, |τ | ≤ θ.

Let max {χ1, χ2, χ3, χ4} = χ, max {c1, c2, c3, c4} = c. Then we obtain the following estimates via
γ:

‖(Tx)‖◦ ≤ κ(χ+ cγ)(1 + γ);

‖(P ′kx)‖◦ ≤ 4lκ(χ+ cγ)(1 + γ), k = 1, l;
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‖(P ′′k x)‖◦ ≤ 4lκ(χ+ cγ)(1 + γ), k = 1, l;

‖(Qjx)‖◦ ≤ mεκ(χ+ cγ)(1 + γ), j = 1,m, ε = exp

[
2

∥∥∥∥∂a∂t
∥∥∥∥
◦
θ

]
;

‖(Rx)‖◦ ≤
[
1 + κ|A|+mεκ(1 + γ) + (2l)3/2κ(1 + γ)

]
(χ+ cγ)

≤
(
1 + κ|A|+mεκ+ (2l)3/2κ

)
(χ+ cγ)(1 + γ).

Then we have

‖Tx‖ = ‖(Tx)‖◦ +
l∑

k=1

(‖(P ′kx)‖◦ + ‖(P ′′k x)‖◦) +
m∑
j=1

‖(Qjx)‖◦

+‖(Rx)‖◦ ≤
(
κ+ 8l2κ+m2εκ+ 1 + κ|A|+mεκ

+(2l)3/2κ
)
(1 + γ)(χ+ cγ) = c∗(χ+ cγ) ≤ γ,

(3.13)

for sufficiently small χ and c, where

c∗ =
(
κ+ 8l2κ+m2εκ+ 1 + κ|A|+mεκ+ (2l)3/2κ

)
(1 + γ).

So, for sufficiently small χ and c the operator T maps the space Sθ,ωδ,γ into itself.
Next, we estimate the differences in the values of operators (3.2)–(3.7) at different points x, y ∈

Sθ,ωδ,γ by using 1)-12) and (3.8)–(3.12):

|(Tx)(τ, t, ζ)− (Ty)(τ, t, ζ)| ≤ κc1 ‖x− y‖◦,

|(P ′kx)(τ, t, ζ)− (P ′ky)(τ, t, ζ)| ≤ κ
[
c2‖x− y‖◦ + c4‖x− y‖◦

l∑
k=1

(
‖pk‖◦ + ‖qk‖◦

)
+
(
χ4 + c4‖y‖◦

)
·

l∑
k=1

(
‖pk − p̃k‖◦ + ‖qk − q̃k‖◦

)]
·
√

2 ·
√

2,

|(P ′′k x)(τ, t, ζ)− (P ′′k y)(τ, t, ζ)| ≤ κ
[
c2‖x− y‖◦ + c4‖x− y‖◦

l∑
k=1

(
‖pk‖◦ + ‖qk‖◦

)
+
(
χ4 + c4‖y‖◦

)
·

l∑
k=1

(
‖pk − p̃k‖◦ + ‖qk − q̃k‖◦

)]
·
√

2 ·
√

2,

|(Qjx)(τ, t, ζ)− (Qjy)(τ, t, ζ)| ≤ κ
[
c3‖x− y‖◦ + c4‖x− y‖◦

m∑
j=1

‖rj‖◦

+
(
χ4 + c4‖y‖◦

) m∑
j=1

‖rj − r̃j‖◦
]
·e2‖ ∂a∂t‖◦θ,

|(Rx)(τ, t, ζ)− (Ry)(τ, t, ζ)| ≤ c1‖x− y‖◦ + κ |A| · c1‖x− y‖◦ + κ
[
c2‖x− y‖◦

+c4‖x− y‖◦
l∑

k=1

(
‖pk‖◦ + ‖qk‖◦

)
+
(
χ4 + c4‖y‖◦

) l∑
k=1

(
‖pk − p̃k‖◦ + ‖qk − q̃k‖◦

)]√
2l

+κ
[
c3‖x− y‖◦ + c4‖x− y‖◦

m∑
j=1

‖rj‖◦ +
(
χ4 + c4‖y‖◦

) m∑
j=1

‖rj − r̃j‖◦
]
‖a‖◦e2‖ ∂a∂t‖◦θ.

Hence, we have

‖Tx− Ty‖◦ ≤ κc ‖x− y‖◦ ;
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‖P ′kx− P ′ky‖◦ ≤ 2κ
[(
c+ c2lγ

)
‖x− y‖◦ +

(
χ+ cγ

) l∑
k=1

(
‖pk − p̃k‖◦ + ‖qk − q̃k‖◦

)]
,

k = 1, l;

‖P ′′k x− P ′′k y‖◦ ≤ 2κ
[(
c+ c2lγ

)
‖x− y‖◦ +

(
χ+ cγ

) l∑
k=1

(
‖pk − p̃k‖◦ + ‖qk − q̃k‖◦

)]
,

k = 1, l;

‖Qjx−Qjy‖◦ ≤ κε
[(
c+ cmγ

)
‖x− y‖◦ +

(
χ+ cγ

) m∑
j=1

‖rj − r̃j‖◦
]
, j = 1,m;

‖Rx−Ry‖◦ ≤
[
c+ κc|A|+ κc

√
2l + κc(2l)3/2γ)

]
‖x− y‖◦

+ κ
√

2l
(
χ+ cγ

) l∑
k=1

(
‖pk − p̃k‖◦ + ‖qk − q̃k‖◦

)
+ κ‖a‖◦ε

(
c+ cmγ

)
‖x− y‖◦

+ κ‖a‖◦ε
(
χ+ cγ

) m∑
j=1

‖rj − r̃j‖◦.

Further, summing up these inequalities, we obtain

‖Tx− Ty‖◦ +
l∑

k=1

‖P ′kx− P ′ky‖◦ +
l∑

k=1

‖P ′′k x− P ′′k y‖◦ +
m∑
j=1

‖Qjx−Qjy‖◦ + ‖Rx−Ry‖◦

≤ c
[
κ+ 8lκ

(
1 + 2lγ

)
+κε

(
1 +mγ

)
+
(
1 + κ|A|+ κ

√
2l + κ(2l)3/2γ

)
+κ‖a‖◦ε

(
1 +mγ

)]
‖x− y‖◦ +

(
χ+ cγ

)[
8lκ+

√
2lκ
] l∑
k=1

(
‖pk − p̃k‖◦ + ‖qk − q̃k‖◦

)
+
(
χ+ cγ

)[
κεm+ κmε‖a‖◦

] m∑
j=1

‖rj − r̃j‖◦,

where pk =
∂x

∂ξk
, p̃k =

∂y

∂ξk
, qk =

∂x

∂ηk
, q̃k =

∂y

∂ηk
, rj =

∂x

∂tj
, r̃j =

∂y

∂tj
.

Hence, for sufficiently small values of χ and c, we have

‖Tx− Ty‖ = ‖Tx− Ty‖◦ +
l∑

k=1

‖P ′kx− P ′ky‖◦ +
l∑

k=1

‖P ′′k x− P ′′k y‖◦

+
m∑
j=1

‖Qjx−Qjy‖◦ + ‖Rx−Ry‖◦ ≤ (χ+ cγ)c0

[
‖x− y‖◦

+
l∑

k=1

(‖pk − p̃k‖◦ + ‖qk − q̃k‖◦) +
m∑
j=1

‖rj − r̃j‖◦
]
≤ (χ+ cγ)c0 ‖x− y‖ ,

(3.14)

where c0 = max
{[
κ + 8lκ(1 + 2lγ) + κε(1 + mγ) + (1 + κ|A| + κ

√
2l + κ(2l)3/2γ)

+ κ‖a‖◦ε(1 +mγ)
]
;
[
8lκ+

√
2lκ
]
;
[
κεm+ κmε‖a‖◦

]}
.

Under the conditions
c∗(χ+ cγ) ≤ γ, c0(χ+ cγ) < 1 (3.15)

by virtue of estimates (3.13) and (3.14), it is clear that operator (3.2) maps the
space Sθ,ωδ,γ into itself and is a contraction operator. The space Sθ,ωδ,γ is complete.
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Therefore, there exists a unique fixed point x∗(τ, t, ζ) ∈ Sθ,ωδ,γ of the operator T :
(Tx∗)(τ, t, ζ) = x∗(τ, t, ζ) that is

x∗(τ, t, ζ) ≡
τ+θ∫
τ

K(τ, s)fθ(s, λ(s, τ, t), µ(s, τ, ζ), x∗(s, λ(s, τ, t), µ(s, τ, ζ))) ds.

It is the unique (θ, ω)-periodic solution of system (2.1) by condition 30. Thus, the following theorem
is proved.

Theorem 3.1. Suppose that
1) conditions (2.3)–(2.6) are satisfied with respect to the input data of the differentiation operator

D,
2) the matrix A is such that linear homogeneous system (2.15) corresponding to the given quasi-

linear system has no (θ, ω)-periodic solutions, except for the zero one (in particular, if conditions
(2.18)–(2.20) are satisfied)
and

3) the vector-function f (τ, t, ζ, x) satisfies condition (3.1).
Then, under condition (3.15) with respect to the parameters c0, c∗, c, χ, γ quasilinear system

(2.1) has a unique (θ, ω)-periodic solution x∗(τ, t, ζ) ∈ Sθ,ωδ,γ .

4 Conclusion

A technique has been developed for investigation of oscillatory solutions of perturbed quasilinear
autonomous systems of form (2.1)–(2.2), based on proving the existence of a fixed point of nonlinear
operator (3.2), which is an analogue of representation (2.24) in space Sθ,ωδ,γ .

The main essence of the technique for investigation of multiperiodic solutions of the system
under consideration is the further development of the methods of papers [15, 16], on the basis of
the fundamental methods of works [4, 9, 11, 17] and investigation carried out in [5–8, 10, 12–14].
In conclusion, the developed technique allows to establish sufficient conditions for the existence and
uniqueness of multiperiodic solutions of quasilinear systems (2.1) with the differentiation operator
(2.2).
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