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1 Introduction

A new type functional spaces that got the name of Lebesgue grand spaces Lp)(G) (meas G <∞) was
introduced in [8]. These spaces were introduced for the purpose of investigating local integrability
of the Jacobian of functions belonging to the Sobolev space W 1,p

loc (G,Rn). Further, these spaces were
developed and generalized by many mathematicians. For example, the Lebesgue small space L(p(G),
Lebesgue-Morrey grand grand spaces Lp),λ)(G) and Sobolev-Morrey grand spaces W l

p),κ,a(G) were
introduced and studied in [1, 3, 4, 6, 7, 9-12, 18, 19].

This paper is devoted to introduction and study of some properties of func-
tions from the space called small small Sobolev-Morrey spaces W l

(p,(κ,a,α(G)(l ∈ Nn,

p ∈ (1,∞), κ ∈ (0,∞)n, α ≥ 0, a ∈ [0, 1], G ⊂ Rn is a bounded domain) from the point of
view of the embedding theory. In other words, at first the modification of the Lebesgue-Morrey
space called small small Lebesgue-Morrey spaces L(p,(κ,a,α(G) is constructed and on the base of
the space L(p,(κ,a,α(G) small small spaces W l

(p,(κ,a,α(G) are constructed. Then, by the method of
integral representation of functions defined on n-dimensional domains and satisfying the flexible
λ-horn condition, the Sobolev-type inequalities are proved in this space, and it is proved that for
f ∈ W l

(p,(κ,a,α(G) , generalized mixed derivatives Dνf satisfy the Hölder condition in the metric of
the space Lq−ε(G) with the exponent σ.

It should be noted that in this paper we not only introduce a new space but also show that the
Hölder exponent σ is greater than in previous papers [5], [13]-[16]. Hence, Theorem 1.3 can be more
effective when studying smoothness properties of solutions of partial differential equations.

Let G be a bounded domain of the space Rn, for any t > 0 and x ∈ Rn, we denote

Itκ(x) =

{
y : |yj − xj| <

1

2
tκj , j = 1, 2, ..., n

}
, Gtx(x) = G ∩ Itx(x)
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Definition 1. We denote by W l
(p,(κ,a,α(G) the space of all locally summable functions f on G and

having on G the generalized derivatives Dli
i f (i = 1, 2, ..., n) with the finite norm

‖f‖W l
(p,(κ,a,α(G) = ‖f‖

(p,(κ,a,α;G
+

n∑
i=1

∥∥Dli
i f
∥∥

(p,(κ,a,α;G
, (1.1)

where
‖f‖

(p,(κ,a,α;G
= ‖f‖L(p,(κ,a,α(G)

= sup
x∈G

0<t≤d

inf
0<ε<sm

 1

t|κ|a+αε
ε
− p−ε

(p−ε)′
1

|Gtκ(x)|

∫
Gtκ (x)

|f(y)|p−ε dy


1
p−ε

, (1.2)

d is the diameter of G,

sm = min

{
p− 1,

|κ| a
α

}
, (p− ε)′ = p− ε

p− ε− 1
, (we suppose that

0

0
is equal to 0).

We note a number of properties of the spaces L(p,(κ,a,α(G) and W l
(p,(κ,a,α(G).

1. For any κ ∈ (0,∞)n, α ≥ 0, and a ∈ [0, 1] we have the embeddings

L(p,(κ,a,α(G) ↪→ L(p(G), W l
(p,(κ,a,α(G) ↪→ W l

(p(G)

i.e. there exists C > 0 such that

‖f‖(p,G ≤ C ‖f‖(p,(κ,a,α;G ; ‖f‖W l
(p

(G) ≤ C ‖f‖W l
(p,(κ,a,α(G) ,

‖f‖W l
(p

(G) = ‖f‖(p,G +
n∑
i=1

∥∥Dli
i f
∥∥

(p,G
,

‖f‖(p,G = ‖f‖L(p(G) = inf
0<ε<p−1

ε− p−ε
(p−ε)′

1

|G|

∫
G

|f(x)|p−ε dx

 1
p−ε

.

Indeed,

‖f‖
(p,(κ,a,α;G

= sup
x∈G

0<t≤d

inf
0<ε<sm

 1

t|κ|a+αε
ε
− p−ε

(p−ε)′
1

|Gtκ(x)|

∫
Gtκ (x)

|f(y)|p−ε dy


1
p−ε

≥ d−
|κ|a+αε

p inf
0<ε<p−1

ε− p−ε
(p−ε)′

1

|G|

∫
G

|f |p−ε dx

 1
p−ε

= d−
|κ|a+αε

p ‖f‖(p,G

2. The spaces L(p,(κ,a,α(G) andW l
(p,(κ,a,α(G) are complete. The proof of the completeness of these

spaces can be carried out as in [2, p.398]
3.

‖f‖
(p,(κ,0,0;G

= ‖f‖(p,G , ‖f‖W l
(p,(κ,0,0(G) = ‖f‖W l

(p
(G) .
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Theorem 1.1. Let p ∈ (1,∞) and let G ⊂ Rn be a bounded domain. Let f ∈ Lp),κ),a,α(G) and
g ∈ L(p′,(κ,a,α(G). Then for any x ∈ G we have the inequality

1

|Gtκ(x)|

∫
Gtκ (x)

f(y)g(y)dy ≤ ‖f‖
p),κ)a,α;G

‖g‖(p′(κ,a,α;G . (1.3)

Here Lp),κ),a,α(G) is the grand grand Lebesgue-Morrey space introduced in [17]. The norm in this
space is defined as:

‖f‖p),κ),a,α;G = ‖f‖Lp),κ),a,α(G) = sup
x∈G,

0<t≤d,
0<ε<sm

 1

t|κ|a−αε
ε

1

|Gtκ(x)|

∫
Gtκ (x)

|f(y)|p−εdy


1
p−ε

.

Proof. For any x ∈ G and α > 0, we have

1

|Gtκ(x)|

∫
Gtκ (x)

f(y)g(y)dy ≤

 1

|Gtκ(x)|

∫
Gtκ (x)

|f(y)|p−ε dy


1
p−ε
 1

|Gtκ(x)|

∫
Gtκ (x)

|g(y)|
p−ε
p−ε−1 dy


p−ε
p−ε−1

≤ ε
1
p−ε

 1

|Gtκ(x)|

∫
Gtκ (x)

|f(y)p−εdy


1
p−ε

ε−
1
p−ε

 1

|Gtκ(x)|

∫
Gtκ (x)

|g(y)|
p−ε−1
p−ε dy


p−ε−1
p−ε

≤ t−
|κ|a
p−ε ε

1
p−ε

 1

|Gtκ(x)|

∫
Gtκ (x)

|f(y)|p−ε dy


1

p−ε−1

t−
|κ|a(p−ε−1)

p−ε ε−
1
p−ε

 1

|Gtκ(x)|

∫
Gtκ (x)

|g(y)|
p−ε
p−ε−1 dy


p−ε−1
p−ε

×t
|κ|a
p−ε+

|κ|a(p−ε−1)
p−ε = t−

|κ|a
p−ε ε

1
p−ε

 1

|Gtκ(x)|

∫
Gtκ (x)

|f(y)|p−ε dy


1
p−ε

×t−
|κ|a(p−ε−1)

p−ε ε−
1
p−ε

 1

|Gtκ(x)|

∫
Gtκ (x)

|g(y)|
p−ε
p−ε−1 dy


p−ε−1
p−ε

t|κ|a

≤ t−
|κ|a
p−ε t

αε
p−ε ε

1
p−ε ‖f‖Lp−ε(Gtκ (x)) t

− |κ|a(p−ε−1)
p−ε t−

αε(p−ε−1)
p−ε ε−

1
p−ε

×‖g‖L p−ε
p−ε−1

(Gtκ (x)) t
|κ|at−

αε
p−ε t

αε(p−ε−1)
p−ε

≤ sup
x∈G,

0<t≤d,
0<ε<sm

(
1

t
|κ|a−αε
p−ε

ε
1
p−ε ‖f‖Lp−ε(Gtκ (x))

)

× sup
x∈G,

0<t≤d

inf
0<ε<sm

(
1

t
(|κ|a+αε)(p−ε−1)

p−ε

ε−
1
p−ε ‖g‖L p−ε

p−ε−1
(Gtκ (x)

)
,
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where
|κ| a+

αε(p− ε− 1)− αε
p− ε

> 0.

In other words, for any x ∈ G we have the inequality (1.3).

Let ϕ(·, y, z) ∈ C∞0 (Rn) be such that

S(ϕ) = suppϕ ⊂ I1 =

{
x : |xj| <

1

2
, j = 1, 2, ...,

}
,

0 < T ≤ 1, λ = (λ1, ..., λn), λj > 0, j = 1, 2, ..., n and let

V =
⋃

0<t≤T

{
y :
( y
tλ

)
∈ S(ϕ)

}
,

where y
tλ

=
(
y1
tλ1
, ..., yn

tλn

)
.

Let U be an open set contained in the domain G. We will assume that U + V ⊂ G, and denote

GTκ(U) = (U + ITκ(x)) ∩G = Q.

Notice that if 0 < κj ≤ λj (j = 1, 2, ..., n), ITλ ⊂ ITκ , then, consequently

U + V ⊂ Q.

We prove a lemma that we will need in the sequel to prove main theorems.

Lemma 1.1. Let 1 < p < q ≤ r ≤ ∞, 0 < |κ| ≤ |λ|−αε
a+1

, 0 < t, η ≤ T ≤ 1, 0 < γ < γ0 (γ0 is a fixed
number), ν = (ν1, ..., νn), νj ≥ 0 be entire (j = 1, 2, ..., n), ψ ∈ L(p,(κ,a,α(G) and let

µι = λιli − (ν, λ)− (|λ| − |κ| a− |κ| − αε)
(

1

p− ε
− 1

q − ε

)
(1.4)

(ν, λ) =
n∑
j=1

νjλj, |λ| =
n∑
j=1

λj,

Ei
η(x) =

η∫
0

t−1−|λ|−(ν,λ)+λili

∫
Rn

ψ(x+ y)ϕ

(
y

tλ
,
ρ(tλ, x)

tλ
, ρ′(tλ, x)

)
dydt, (1.5)

Ei
η,T (x) =

T∫
η

t−1−|λ|−(ν,λ)+λili

∫
Rn

ψ(x+ y)ϕ

(
y

tλ
,
ρ(tλ, x)

tλ
, ρ′(tλ, x)

)
dydt, (1.6)

ρ′(u, x) = ∂
∂u
ρ(u, x). Then

sup
x∈U

∥∥Ei
η

∥∥
q−ε,Uγκ (x)

≤ C1 ‖ψ‖(p,(κ,a,α;G ε
1

(p−ε)′ ηµι (µι > 0), (1.7)

sup
x∈U

∥∥Ei
η,T

∥∥
q−ε,Uγκ (x)

≤ C2 ‖ψ‖(p,(κ,a,α;G ε
1

(p−ε)′


T µι , µι > 0
ln T

η
, µι = 0

ηµι , µι < 0.

(1.8)

Here Uγκ(x) =
{
x : |xj − xj| < 1

2
γκj , , j = 1, 2, ..., n

}
, C1 and C2 are positive constants independent

of ψ, γ, η, T .
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Proof. Applying the generalized Minkowski inequality, for any x ∈ U and 0 < ε < sm we get

∥∥Ei
η

∥∥
q−ε,Uγκ (x)

≤
η∫
0

t−1−|λ|−(ν,λ)+λili ‖A(·, t)‖q−ε,Uγκ (x) dt, (1.9)

where

A(x, t) =

∫
Rn

ψ(x+ y)ϕ

(
y

tλ
,
ρ(tλ, x)

tλ
, ρ′(tλ, x)

)
dy.

By the Hölder inequality (q ≤ r) we have

‖A(·, t)‖q−ε,Uγκ (x) ≤ ‖A(·, t)‖r−ε,Uγκ (x) γ
|κ|( 1

q−ε−
1
r−ε). (1.10)

Let χ be the characteristic function of the set S(ϕ) and 1 < p < r ≤ ∞,
s ≤ r

(
1
s

= 1− 1
p−ε + 1

r−ε

)
,

|ψϕ| =
(
|ψ|p−ε |ϕ|s

) 1
r−ε
(
|ψ|p−ε χ

) 1
p−ε−

1
r−ε (|ϕ|s)

1
s
− 1
r−ε .

Applying the Hölder inequality ( 1
r−ε +

(
1
p−ε −

1
r−ε

)
+ 1

s
− 1

r−ε = 1) and taking into account that
|ϕ(x, y, z)| ≤ C1 |ϕ1(x)|, we get

‖A(·, t)‖r−ε,Uγκ (x) ≤ C1 sup
x∈Uγκ (x)

∫
Rn

|ψ(x+ y)|p−ε χ
( y
tλ

)
dy

 1
p−ε−

1
r−ε

×

×sup
y∈V

 ∫
Uγκ (x)

|ψ(x+ y)|p−ε dx


1
r−ε ∫

Rn

∣∣∣ϕ1

( y
tλ

)∣∣∣s dy
 1

s

. (1.11)

For any 0 < t ≤ 1,κ ≤ λ, x ∈ U, then Qtλ(x) ⊂ Qtκ(x) and we have∫
Rn

|ψ(x+ y)|p−ε χ
( y
tλ

)
dy ≤

∫
Q
tλ

(x)

|ψ(y)|p−ε dy ≤
∫

Qtκ (x)

|ψ(y)|p−ε dy =

= ‖ψ‖p−εp−ε,Qtκ (x) ≤ ‖ψ‖
p−ε
(p,Qtκ (x) |Qtκ(x)| ε

p−ε
(p−ε)′ ≤ ‖ψ‖p−ε(p,(κ,a,α;Q ε

p−ε
(p−ε)′ t|κ|a+αε+|κ|, (1.12)

for y ∈ V ∫
Uγκ (x)

|ψ(x+ y)|p−ε dx ≤
∫

Qγκ (x+y)

|ψ(x)|p−ε dx = ‖ψ‖p−εp−ε,Qγκ (x+y) ≤

≤ ‖ψ‖p−ε(p,Qγκ (x+y) ε
p−ε

(p−ε)′ |Qγκ(x)| ≤ ‖ψ‖p−ε(p,(κ,a,α;Q ε
p−ε

(p−ε)′ γ|κ|a+|κ|+αε, (1.13)∫
Rn

∣∣∣ϕ1

( y
tλ

)∣∣∣s dy = t|λ| ‖ϕ1‖ss . (1.14)

From inequalities (1.10) - (1.14) for r = q we get

‖A(·, t)‖q−ε,Uγκ (x) ≤ C1 ‖ϕ1‖s ‖ψ‖(p,κ,a,α;Q ε
1

(p−ε)′ γ
|κ|a+|κ|+αε

q−ε ηµι (µι > 0). (1.15)

Substituting (1.15) in (1.9), we arrive at (1.7). Inequality (1.8) is proved in the same way.



62 A.M. Najafov

We prove two theorems on properties of functions belonging to the space W l
(p,(κ,a,α(G).

Theorem 1.2. Let an open bounded set G ⊂ Rn satisfy the flexible λ-horn condition (see [2]);
1 < p < q ≤ ∞; |κ| ≤ |λ|−αε

1+a
; ν = (ν1, ..., νn), νj ≥ 0 be nonnegative integers (j = 1, 2, ..., n); µi >

0 (i = 1, 2, ..., n) and let f ∈ W l
(p,(κ,a,α(G).

Then Dν : W l
(p,(κ,a,α(G) ↪→ Lq−ε(G) (0 < ε < sm) and the following inequality is valid

‖Dνf‖q−ε,G ≤ C(ε)

(
T µ0 ‖f‖

(p,(κ,a,α;G
+

n∑
i=1

T µi
∥∥Dli

i f
∥∥

(p,(κ,a,α;G

)
, (1.16)

where µ0 = µi − λili
In particular, if

µi,0 = λili − (ν, λ)− (|λ| − |κ| a− |κ| − αε) 1

p− ε
> 0 (i = 1, 2, ..., n),

then Dνf is equivalent to a continuous function on G and

ess sup
x∈G

|Dνf(x)| ≤ C(ε)

(
T µ0,0 ‖f‖

(p,(κ,a,α;G
+

n∑
i=1

T µι,0
∥∥Dli

i f
∥∥

(p,(κ,a,α;G

)
, (1.17)

where µ0,0 = µi,0 − λili.
In (1.16) and (1.17) 0 < T ≤ 1 and C(ε) = Cε

1
(p−ε)′ , where C > 0 is a constant independent of

f and T .

Proof. Under the assumptions of the theorem there exist the generalized derivatives Dνf . Indeed, if
µi > 0, p < q, |κ| < λ−αε

|κ|+a , then λili − (ν, λ) > 0 (i = 1, ..., n). Since f ∈ W l
(p,(κ,a,α(G) ↪→ W l

(p(G) ↪→
W l
p−ε(G) (p− ε > 1), for almost every point x ∈ G, we have the identity obtained by O.V. Besov [2]

Dνf(x) = f
(ν)

Tλ
(x) +

n∑
i=1

Ei
T , (1.18)

where

f
(ν)

Tλ
(x) = T−|λ|−(ν,λ)

∫
Rn

f(x+ y)Ω(ν)

(
y

T λ
,
ρ(T λ, x)

T λ

)
dy (1.19)

and

Ei
T =

T∫
0

∫
Rn

t−1−|λ|−(ν,λ)+λiliL
(ν)
i

(
y

tλ
,
ρ(tλ, x)

tλ
, ρ′(tλ, x)

)
Dνf(x+ y)dydt.

Here 0 < T ≤ min(1, T0), the functions Ων(·, y), L
(ν)
ι (·, y, z) are the functions of the class C∞0 (Rn),

and their supports are contained in I1, the supports of the kernels in representations (1.18), (1.19)
are in the flexible horn x + V (λ) ⊂ G. Based on the Minkowski inequality, from (1.18), (1.19) we
have

‖Dνf‖q−ε,G ≤
∥∥∥f (ν)

Tλ

∥∥∥
q−ε,G

+
n∑
i=1

∥∥Ei
T

∥∥
q−ε,G . (1.20)

By means of inequality (1.15) for U = G, t = T, f = ψ, ϕ = Ω(ν), we get∥∥∥f (ν)

Tλ

∥∥∥
q−ε,G

≤ C1(ε)T µ0 ‖f‖(p,(κ,a,α;G , (1.21)
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and by means of inequality (1.7), for U = G, Dli
i f = ψ, ϕ = L

(ν)
i , η = T , we get∥∥Ei

T

∥∥
q−ε,G ≤ C2(ε)T µi

∥∥Dli
i f
∥∥

(p,(κ,a,α;G
. (1.22)

Taking into account inequalities (1.20)-(1.22), we get inequality (1.16).
Now let µi,0 > 0(i = 1, 2, ..., n). We show that Dνf is equivalent to a continuous function on G.

From equalities (1.18), (1.19) and inequality (1.22) for q =∞, µi(q =∞) = µi,0 > 0 (i = 1, 2, ..., n)
we have ∥∥∥Dνf − f (ν)

Tλ

∥∥∥
∞,G
≤

n∑
i=1

T µi,0
∥∥Dli

i f
∥∥

(p,(κ,a,α;G
.

Hence it follows that as T → 0 the left hand side of the inequality tends to zero. As f ν
Tλ

are continuous
on G and converge to Dνf in L∞(G), the limit function Dνf is equivalent to a continuous function
on G.

Theorem 1.3. Let the assumtions of Theorem 1.2 be satisfied. Then for µi > 0(i = 1, 2, ..., n) the
derivative Dνf satisfies on G the Hölder condition in the metric Lq−ε with the exponent σ, namely

‖∆(ζ,G)Dνf‖q−ε,G ≤ C(ε) ‖f‖W l
(p,(κ,a,α(G) |ζ|

σ , (1.23)

where C(ε) is defined in Theorem 1.2 and σ is a number satisfying the inequalities

0 ≤ σ ≤ 1, if
µ0

λ0

> 1,

0 ≤ σ < 1, if
µ0

λ0

= 1 (1.24)

0 ≤ σ <
µ0

λ0

if
µ0

λ0

< 1,

µ0 = minµi (i = 1, ..., n);λ0 = maxλj(j = 1, ..., n).
If µi,0 > 0 (i = 1, ..., n), then

ess sup
x∈G

|∆(ζ,G)Dνf(x)| ≤ C(ε) ‖f‖W l
(p,(κ,a,α(G) |ζ|

σ0 , (1.25)

where σ0 satisfies the same conditions as σ, but with µi replaced by µi,0.

Proof. Let ζ ∈ Rn. By Lemma 8.6 from [2] there exists a domain

Gω ⊂ G (ω = ξrλ(x), ξ > 0, rλ(x) = ρλ(x, ∂G), x ∈ G).

Suppose |ζ|λ < ω. Then for any x ∈ Gω, the segment connecting the points x, x + ζ is contained
in G. Then for all points of this segment, equalities (1.18), (1.19) with the same kernels are valid.
After some transformations we get

|∆(ζ,G)Dνf(x)| ≤ T−|λ|−(ν,λ)

∫
Rn

f(x+ y)×

×
∣∣∣∣Ω(ν)

(
y − ζ
T λ

,
ρ(T λ, x)

T λ

)
− Ω(ν)

(
y

T λ
,
ρ(T λ, x)

T λ

)∣∣∣∣ dy+
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+
n∑
i=1


|ζ|

1
λ0∫
0

t−1−|λ|−(ν,λ)+λili

∫
Rn

(∣∣Dli
i f(x+ ζ + y)

∣∣+
∣∣Dli

i f(x+ y)
∣∣)×

×
∣∣∣∣L(ν)

i

(
y

tλ
,
ρ(tλ, x)

tλ
, ρ′(tλ, x)

)∣∣∣∣ dydt+

T∫
|ζ|

1
λ0

t−1−|λ|−(ν,λ)+λili×

×
∫
Rn

∣∣Dli
i f(x+ y)

∣∣ ∣∣∣∣L(ν)
i

(
y − ζ
tλ

,
ρ(tλ, x)

tλ
, ρ′(tλ, x)

)
−

− L(ν)
i

(
y

tλ
,
ρ(tλ, x)

tλ
, ρ′(tλ, x)

)∣∣∣∣ dydt = E(x, ζ)+

+
n∑
i=1

(
Ei

|ζ|
1
λ0

(x, ζ) + Ei

|ζ|
1
λ0 ,T

(x, ζ)

)
,

where 0 < T ≤ min(1, T0), |ζ|
1
λ0 < T, consequently, |ζ| < min(ω, T λ0).

If x ∈ G x ∈ G\Gω, then by the definition ∆(ζ, g)Dνf(x) = 0.
Then

‖∆(ζ,G)Dνf‖q−ε,G = ‖∆(ζ,G)Dνf‖q−ε,Gω ≤

≤ ‖E(·, ζ)‖q−ε,G +
n∑
ι=1

(∥∥∥∥Ei

|ζ|
1
λ0

(·, ζ)

∥∥∥∥
q−ε,G

+

∥∥∥∥Ei

|ζ|
1
λ0 ,T

(·, ζ)

∥∥∥∥
q−ε,G

)
. (1.26)

Notice that ∣∣∣∣Ω(ν)

(
y − ζ
T λ

,
ρ(T λ, x)

T λ

)
− Ω(ν)

(
y

T λ
,
ρ(T λ, x)

T λ

)∣∣∣∣ ≤
≤

n∑
j=1

T−λj

|ζ|∫
0

∣∣∣∣DjΩ
(ν)

(
y − ηeζ
T λ

,
ρ(T λ, x)

T λ

)∣∣∣∣ dη,
where eζ = ζ

|ζ| , then

E(x, ζ) ≤
n∑
j=1

T−λj−|λ|−(ν,λ)

|ζ|∫
0

dη

∫
Rn

|f(x+ ηeζ + y|
∣∣∣∣DjΩ

(ν)

(
y

T λ
,
ρ(T λ, x)

T λ

)∣∣∣∣ dy,

Ei

|ζ|
1
λ0 ,T

(x, ζ) ≤
n∑
j=1

|ζ|∫
0

t−1−|λ|−(ν,λ)−λj+λilidt

∫
Rn

∣∣Dli
i f(x+ ηeζ + y)

∣∣×
×
∣∣∣∣DjL

(ν)
i

(
y

tλ
,
ρ(tλ, x)

tλ
, ρ′(tλ, x)

)∣∣∣∣ dy.
By means of inequality (1.15) for U = G, t = T, f = ψ, ϕ = Ω(ν), we have

‖E(·, ζ)‖q−ε,G ≤ C
(ξ)
1 |ζ| ‖f‖(p,(κ,a,α;G . (1.27)
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From (1.7) for U = G, η = |ζ|
1
λ0 , Dli

i f = ψ, L
(ν)
i = ϕ we get∥∥∥∥Ei

|ζ|
1
λ0

(·, ζ)

∥∥∥∥
q−ε,G

≤ C2(ε) |ζ|
µi
λ0

∥∥Dli
i f
∥∥

(p,(κ,a,α;G
, (1.28)

and from (1.8) for U = G, η = |ζ|
1
λ0 , Dli

i f = ψ, L
(ν)
i = ϕ we get∥∥∥∥Ei

|ζ|
1
λ0 ,T

(·, ζ)

∥∥∥∥
q−ε,G

≤ C3(ε) |ζ|σ
∥∥Dlι

ι f
∥∥

(p,(κ,a,α;G
. (1.29)

From inequalities (1.26)-(1.29), we have

‖∆(ζ,G)Dνf‖q−ε,G ≤ C(ε) ‖f‖W l
(p,(κ,a,α(G) |ζ|

σ .

Also if |ζ| ≥ min(ω, T λ0), then

‖∆(ζ,G)Dνf‖q−ε,G ≤ 2 ‖Dνf‖q−ε,G ≤ C(ω, T ) ‖Dνf‖q−ε,G |ζ|
σ .

Estimating ‖Dνf‖q−ε,G by using inequality (1.16), we again get the required inequality.

Acknowledgements. The author is extremely thankful to the editors for careful reading the
paper and fruitful comments which allowed to improve the quality of the paper.



66 A.M. Najafov

References

[1] G. Anatriello, M.R. Formica, R. Giova, Fully measurable small Lebesgue spaces. Jour. of Mathematical Analysis
and Applications. 447 (2017), no. 1, 550- 563.

[2] O.V. Besov, V.P. Il’in, S.M. Nikol’skii, Integral representation of functions and imbedding theorems. M. Nauka,
1996, 480 pp. (in Russian).

[3] C. Capone, A. Fiorenza, On small Lebesgue spaces. Jour. of Function Spaces and Applications 3 (2005), no. 1,
73-89.

[4] D. Cruz-Uribe, A. Fiorenza, O.M. Guzmán, Imbeddings of grand Morrey spaces, small Lebesgue spaces and
Lebesgue spaces with variable exponent. Matematicheskiye Zametki. 102 (2017), no. 5-6, 736-748 (in Russian).

[5] A. Eroglu, J.V. Azizov, V.S. Guliyev, Fractional maximal operator and its commutators in generalized Morrey
spaces on Heisenberg group. Proc. of Inst. Math. and Mechanics NAS Azerb. 44 (2018), no. 2, 304-317.

[6] A. Fiorenza, C.E. Karadzhov, Grand and small Lebesgue spaces and their anologues. J. Anal. Appl. 23 (2004),
no. 4, 657-681.

[7] A. Fiorenza, M.R. Formica, A. Gogatishvili, On grand and small Lebesgue spaces and some applications to PDE’s.
Differential Equations and Applications 10 (2018), no. 1, 21-46.

[8] T. Iwaniec, C. Sbordone On the inerrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech.
Anal. 119 (1992), 129-143.

[9] V.M. Kokilashvili, A. Meskhi, Trace inequalities for fractional integrals in grand Lebesgue spaces. Studia Math.
210 (2012), no. 2, 159-176.

[10] Y. Liang, D. Yang, W. Yuan, S. Sawano, T. Ullrich, A new framework for generalized Besov-type and Triebel-
Lizorkin-type spaces. Dissertationes Mathematicae 489 (2013), 1-114.

[11] A. Meskhi, Y. Sawano Density, duality and preduality in grand variable exponent Lebesgue and Morrey spaces.
arxiv:17/0.02383 .v1 [math. FA] 06 0ct. 2017.

[12] Y. Mizuta, T. Ohno, Trudingers exponential integrability for Reisz potentials of function in generalized grand
Morrey spaces. J. Math. Anal. Appl. 420 (2014), no. 1, 268-278.

[13] A.M. Najafov, On some properties of functions from Sobolev-Morrey type spaces. Sibirskii Matem. Zhurnal 46
(2005), no. 3, 634-648 (in Russian).

[14] A.M. Najafov, A.T. Orujova, On the solution of a class of partial differential equations. Electron. J. Qual. Theory
Differ. Equ. (2017), no. 44, 1-9.

[15] A.M. Najafov, N.R. Rustamova, On properties of functions from Sobolev-Morrey type spaces with dominant mixed
derivatives. Trans. of National Academy of Sciences of Azerbaijan, Issue Math. 37 (2017), no. 4, 132-141.

[16] A.M. Najafov, N.R. Rustamova, Some differential properties of anisotropic grand Sobolev-Morrey spaces. Trans.
of A. Razmadze Mathematical Institute 172 (2018), 82-89.

[17] H. Rafeiro, A note on boundedness of operators in grand grand Morrey spaces. Advances in Harmonic Analysis
and Operator Theory (2013), 349-356. DOI: io.1007/978-3-0348-0516

[18] C. Sbordone, Grand Sobolev spaces and their applications to variational problems. Le Mathematiche 1 (1996),
no. 11, 335-347.

[19] S.M. Umarkhadziev, The boundedness of the Riesz potential operator from generalized grand Lebesgue spaces to
generalized grand Morrey spaces. Operator theory: Advances and Applications 242 (2014), 363-373.



On some differential properties of small small Sobolev-Morrey spaces 67

Alik Malik oglu Najafov
Azerbaijan University of Architecture and Construction
and
Institute of Mathematics and Mechanics of the National Academy of Sciences of Azerbaijan
9, B.Vahabzade St AZ1141, Baku, Azerbaijan
E-mail: aliknajafov@gmail.com

Received: 03.09.2019


