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equation of the Volterra type. It is shown that the obtained integral operator is a contraction operator
and a unique solution exists.
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1 Introduction

The method of similarity for solving the Stefan problem (automodel solution) with thermal coeffi-
cients depending on the temperature has been widely developed in recent years. The one-dimensional
Stefan problem with given temperature and heat flux condition at fixed face for a semi-infinite ma-
terial is considered in papers [2]-[3].

Recently, Huntul and Lesnic also discussed an inverse problem of determining the time-dependent
thermal conductivity and the transient temperature satisfying the heat equation with initial data
[7]. The inverse Stefan problems for finding the time-dependent thermal conductivity using shifted
Chebyshev polynomials [5] and the latent heat depending on the position using Kummer functions
[1] are considered successfully on the base of the similarity principle. The detailed information
concerning this approach can be found in the references of papers [2]-[3].

Mathematical modeling of the arc erosion in electrical contacts should take into account the
temperature dependence of all thermal and electrical coefficients, which is very essential for the
correct description of melting and boiling dynamics [6].The method of similarity is applied in this
paper to modeling of the temperature field of a liquid spherical metal zone between two free moving
boundaries related to the melting and boiled isotherms.

2 Mathematical model

The temperature distribution in a liquid metal zone at the interaction of electrical contacts with the
arc can be described by the spherical model introduced by R. Holm [4]

c(T )γ(T )
∂T

∂t
=

1

r2

∂

∂r

[
r2λ(T )

∂T

∂r

]
, α(t) < r < β(t), t > 0, (2.1)
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T (α(t), t) = Tb, (2.2)

T (β(t), t) = Tm, (2.3)

and Stefan’s conditions
−λb

∂T

∂r
(α(t), t) = Lbγbα

′(t), (2.4)

−λm
∂T

∂r
(β(t), t) = Lmγmβ

′(t). (2.5)

Here T (r, t) is the temperature distribution in a liquid zone, Tb is the temperature of boiling, Tm is
the temperature of melting, c(T ), γ(T ) and λ(T ) are given coefficients of the heat capacity, density,
heat conductivity correspondingly, Lb, Lm are the specific heats of evaporation and melting, r =
α(t), r = β(t) are the radii of boiling and melting isotherms, λb = λ(Tb), λm = λ(Tm), γb = γ(Tb) and
γm = γ(Tm). After the substitution

θ(r, t) =
T (r, t)− Tm
Tb − Tm

, (2.6)

we get the following new problem

c̃(θ)γ̃(θ)
∂θ

∂t
=

1

r2

∂

∂r

[
r2λ̃(θ)

∂θ

∂r

]
, α(t) < r < β(t), t > 0, (2.7)

θ(α(t), t) = 1, (2.8)

θ(β(t), t) = 0, (2.9)

−λb
∂θ

∂r
(α(t), t) = Lbγbα

′(t)/(Tb − Tm), (2.10)

−λm
∂θ

∂r
(β(t), t) = Lmγmβ

′(t)/(Tb − Tm). (2.11)

where

c̃(θ) = c((Tb − Tm)θ + Tm), γ̃(θ) = γ((Tb − Tm)θ + Tm), λ̃(θ) = λ((Tb − Tm)θ + Tm).

Using the similarity principle [2], the solution of problem (2.1)-(2.11) can be represented in the
following form

θ(r, t) = u(η), α(t) = α0

√
t, β(t) = β0

√
t, η =

r

2α0

√
t

(2.12)

for some β0 > α0 > 0. Then

∂θ

∂t
= − 1

2t
η
du

dη
,

1

r2

∂

∂r

[
r2λ̃(θ)

∂θ

∂r

]
=

1

4α2
0t

1

η2

d

dη

[
λ̃(u)η2du

dη

]
(2.13)

and problem (2.7)-(2.11) takes the form

d

dη

[
L(u)η2du

dη

]
+ 2α2

0η
3N(u)

du

dη
= 0,

1

2
< η <

β0

2α0

, (2.14)

u(1/2) = 1, (2.15)

u(β0/2α0) = 0, (2.16)
du

dη
(1/2) = −(Lbγbα

2
0)/(λb(Tb − Tm)), (2.17)
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du

dη
(β0/2α0) = −(Lmγmβ

2
0)/(λm(Tb − Tm)), (2.18)

where

L(u) = λ((Tb − Tm)u+ Tm), N(u) = c((Tb − Tm)u+ Tm) · γ((Tb − Tm)u+ Tm).

Let us consider the obtained differential equation[
L(u)η2u′

]′
+ 2α2

0η
3N(u)u′ = 0. (2.19)

By using the substitution L(u(η))η2u′(η) = ν(η) we get the following equation

ν ′(η) + P (η, u(η))ν(η) = 0, (2.20)

where
P (η, u(η)) =

2α2
0ηN(u(η))

L(u(η))
.

Solving equation (2.20) with respect to ν(η) we get

ν(η) = ν(1/2) exp

[
−

η∫
1/2

P (s, u(s))ds

]
,

where, by the definition of the function ν and conditions (2.15) and (2.17),

ν(1/2) = (L(1)u′(1/2))/4 = (λbu
′(1/2))/4 = −(Lbγbα

2
0)/(4(Tb − Tm)). (2.21)

By the substitution L(u(η))η2u′(η) = ν(η) using condition (2.15) we get the following non-linear
integral equation of the Volterra type with respect to u(η)

u(η)− 1 = ν(1/2)

η∫
1/2

1

v2L(u(v))
exp

[
−

v∫
1/2

P (s, u(s))ds

]
dv,

which we can rewrite as follows

u(η) = 1 + Φ[η, L(u), N(u)], (2.22)

where

Φ[η, L(u), N(u)] = ν(1/2)

η∫
1/2

E[t, u(t)]/(t2L(u(t))dt,

E[t, u] = exp

(
−

t∫
1/2

P (s, u(s))ds

)
= exp

(
− 2α2

0

t∫
1/2

sN(u(s))/L(u(s))ds

)
.

Integral equation (2.22) is equivalent to differential equation (2.14) plus conditions (2.15) and (2.17),
and the initial problem of finding a solution to differential equation (2.14), satisfying conditions
(2.15)-(2.18), is equivalent to the problem of finding a solution to integral equation (2.22), satisfying
conditions (2.16) and (2.18).

If u is a solution to nonlinear integral equation (2.22), satisfying conditions (2.16) and (2.18),
then by (2.12) the desired temperature distribution in a liquid zone T (r, t) has the form

T (r, t) = Tm + (Tb − Tm)u(r/(2α0

√
t)).
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3 Main results

Using the fixed point theorem we find conditions ensuring that integral equation (2.22) has a unique
solution if β0 > α0. Let us denote Φ[η, u] ≡ Φ[η, L(u), N(u)]. We suppose that there exist positive
constants Nm, NM , Ls and LM , such that for all ξ > 0

Ls ≤ L(ξ) ≤ LM , Nm ≤ N(ξ) ≤ NM . (3.1)

We assume that the specific heat and dimensionless thermal conductivity are Lipschitz functions and
there exist positive constants L̃ and Ñ such that

||L(g)− L(f)|| ≤ L̃||g − f ||, ∀g, f ∈ C(R+) ∩ L∞(R+),

||N(g)−N(f)|| ≤ Ñ ||g − f ||, ∀g, f ∈ C(R+) ∩ L∞(R+),
(3.2)

where ||f || = supη∈R+ |f(η)| and R+ = [0,∞).

Lemma 3.1. For η >
1

2
we have

exp

(
− α2

0

NM

Ls

(
η2 − 1

4

))
≤ E[η, u] ≤ exp

(
− α2

0

Nm

LM

(
η2 − 1

4

))
.

Proof. To prove, for example, the right-hand-side inequality it suffices to note that

E[η, u] ≤ exp

(
− 2α2

0(Nm/LM)

η∫
1/2

sds

)
= exp

(
− α2

0(Nm/LM)

(
η2 − 1

4

))
.

Lemma 3.2. For β0 > α0 we have

|ν(1/2)|α0

√
NM

LM
√
Ls

exp((α2
0NM)/(4Ls))

(
−
√
π erf(α0

√
NM/Lsη)

+
√
π erf(α0/2

√
NM/Ls)−

1

α0η

√
Ls
NM

exp(−α2
0η

2NM/Ls)

+
2

α0

√
Ls/NM exp(−(α2

0NM)/(4Ls)) ≤ Φ[η, u]

≤ |ν(1/2)|α0

√
Nm

Ls
√
LM

exp((α2
0Nm)/(4LM))

(
−
√
π erf(α0

√
Nm/LMη)

+
√
π erf(α0/2

√
Nm/LM)− 1

α0η

√
LM
Nm

exp(−α2
0η

2Nm/LM)

+
2

α0

√
LM/Nm exp(−(α2

0Nm)/(4LM)),

where erf(x) =
2√
π

x∫
0

e−t
2
dt and ν(1/2) is defined by (2.21).
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Proof. By Lemma 3.1 we have

Φ[η, u] ≤ (|ν(1/2)|/Ls)
η∫

1/2

exp(−α2
0Nm(v2 − 1/4)/LM)/(v2)dv

= (|ν(1/2)|/Ls) exp((α2
0Nm)/(4Ls))

η∫
1/2

exp(−α2
0Nmv

2/LM)/(v2)dv.

By making the substitution t = α0v
√
Nm/LM we obtain

Φ[η, u] ≤ |ν(1/2)|α0

√
Nm

Ls
√
LM

exp((α2
0Nm)/(4LM))

·
[
−
√
π erf(α0η

√
Nm/LM) +

√
π erf(α0/2

√
Nm/LM)

− 1

α0η

√
LM
Nm

exp(−α2
0η

2Nm/LM) +
2

α0

√
LM
Nm

exp(−(α2
0Nm)/(4LM))

]
.

Analogously we can obtain the left-hand-side inequality.

Lemma 3.3. Let β0 > α0. If (3.1)-(3.2) hold, then for all u, u∗ ∈ C[1/2, β0/2α0] we have

|E[η, u]− E[η, u∗]| ≤ (α2
0/Ls)(η

2 − 1/4)(Ñ +NM L̃/Ls)||u∗ − u||, ∀η ∈ (1/2, β0/2α0).

Proof. By using the inequality | exp(−x)− exp(−y)| ≤ |x− y|, ∀x, y ≥ 0 we obtain

|E[η, u]− E[η, u∗]| =
∣∣∣∣ exp

(
− 2α2

0

η∫
1/2

sN(u(s))/L(u(s))ds

)

− exp

(
− 2α2

0

η∫
1/2

sN(u∗(s))/L(u∗(s))ds

)∣∣∣∣ ≤ 2α2
0

∣∣∣∣
η∫

1/2

sN(u(s))/L(u(s))ds

−
η∫

1/2

sN(u∗(s))/L(u∗(s))ds

∣∣∣∣ ≤ 2α2
0

η∫
1/2

∣∣∣∣N(u)/L(u)−N(u∗)/L(u∗)

∣∣∣∣sds
≤ 2α2

0

η∫
1/2

∣∣∣∣N(u)/L(u)−N(u∗)/L(u) +N(u∗)/L(u)−N(u∗)/L(u∗)

∣∣∣∣sds
≤ 2α2

0

η∫
1/2

(
|N(u)−N(u∗)|/|L(u)|+ |N(u∗)| · |L(u∗)− L(u)|/(|L(u)| · |L(u∗)|)

)
sds

≤ 2α2
0

(
Ñ/Ls +NM(L̃/L2

s)

)
||u∗ − u||

η∫
1/2

sds ≤ (α2
0/Ls)(η

2 − 1/4)(Ñ +NM L̃/Ls)||u∗ − u||.
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Lemma 3.4. Let β0 > α0. Suppose that (3.1)-(3.2) hold. Then for all u, u∗ ∈ C[1/2, β0/2α0] we
have

|Φ[η, u]− Φ[η, u∗]| ≤ (|ν(1/2)|/L2
s)||u∗ − u||

(
α2

0(Ñ +NM L̃/Ls)(η + 1/4η − 1) + L̃(2− 1/η)

)
,

∀η ∈ (1/2, β0/2α0),

where ν(1/2) defined by (2.21).

Proof.

|Φ[η, u]− Φ[η, u∗]| ≤ |ν(1/2)|
η∫

1/2

∣∣∣∣ exp

(
− 2α2

0

η∫
1/2

uN(v(u))/L(v(u))du

)

− exp

(
− 2α2

0

η∫
1/2

uN(v∗(u))/L(v∗(u))du

)∣∣∣∣/v2L(u(v))dv

+|ν(1/2)|
η∫

1/2

∣∣∣∣ 1

L(u(v))
− 1

L(u∗(v))

∣∣∣∣ 1

v2
exp

(
− 2α2

0

η∫
1/2

uN(u∗)/L(u∗)du

)
dv

≡ T1(η) + T2(η).

From Lemma 3.3 we get

T1(η) ≤ |ν(1/2)|
η∫

1/2

|E[v, u]− E[v, u∗]|/(v2Ls)dv

≤ |ν(1/2)|
η∫

1/2

(α2
0/Ls)(η

2 − 1/4)(Ñ +NM L̃/Ls)||u∗ − u||/(v2Ls)dv

≤ |ν(1/2)|(α2
0/L

2
s)(Ñ + (NM/Ls)L̃)||u∗ − u||

η∫
1/2

v2 − 1/4

v2
dv

= |ν(1/2)|(α2
0/L

2
s)(Ñ + (NM/Ls)L̃)||u∗ − u||(η + 1/4η − 1)

and

T2(η) ≤ |ν(1/2)|
η∫

1/2

∣∣∣∣ 1

L(u(v))
− 1

L(u∗(v))

∣∣∣∣dvv2

≤ |ν(1/2)|
η∫
ν

|L(u∗(v))− L(u(v))|
|L(u(v)L(u∗(v)))|

dv

v2
≤ |ν(1/2)|(L̃/L2

s)||u∗ − u||
η∫

1/2

1

v2
dv

= |ν(1/2)|(L̃/L2
s)||u∗ − u||(2− 1/η).

Then we have

T1(η) + T2(η) = (|ν(1/2)|/L2
s)||u∗ − u||

(
α2

0(Ñ + (NM/Ls)L̃)(η + 1/4η − 1) + L̃(2− 1/η)

)
.
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Theorem 3.1. Let β0 > α0. Suppose that (3.1)-(3.2) hold. If the following inequality is satisfied

b(α0, β0) =
|ν(1/2)|
L2
s

(
α2

0

(
Ñ +

NM L̃

Ls

)(
β0

2α0

+
α0

2β0

− 1

)
+ L̃

(
2− 2α0

β0

))
< 1, (3.3)

where ν(1/2) is defined by (2.21), then there exists a unique solution u ∈ C[1/2, β0/2α0] of integral
equation (2.22).

Proof. Let W : C[1/2, β0/2α0]→ C[1/2, β0/2α0] be the operator defined by

W (u)(η) = 1 + Φ[η, L(u), N(u)], u ∈ C[1/2, β0/2α0].

A solution of (2.22) is a fixed point of the operator W , that is

W (u)(η) = u(η), 1/2 < η < β0/2α0.

Let u, u∗ ∈ C[1/2, β0/2α0], then we obtain

||W (u)−W (u∗)|| = max
η∈[1/2,β0/2α0]

|W (u(η))−W (u∗(η))| ≤ max
η∈[1/2,β0/2α0]

|Φ[η, u∗]− Φ[η, u]|.

Finally, by using Lemmas 3.2 - 3.4 we have

||W (u)−W (u∗)|| ≤ b(α0, β0)||u∗ − u||.

Hence, if condition (3.3) is satisfied, W is a contraction operator and by the fixed point theorem
there exists a unique solution of integral equation (2.22).
Remark. Clearly, condition (3.3) is satisfied for β0 > α0 sufficiently close to α0 and is not satisfied
for sufficiently large β0.
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