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1 Introduction

Let I = (0,∞), 1 < p, q <∞, 1
p

+ 1
p′

= 1 and 1
q

+ 1
q′

= 1. Let υ, ρ be positive functions and ω be a
nonnegative function on I such that υp, ρp, ωq, ρ−p′ and ω−q′ are locally summable on I.

Denote by W 1
p (ρ, υ) ≡ W 1

p (ρ, υ, I) the space of all functions locally absolutely continuous on I
having the finite norm

‖f‖W 1
p

= ‖ρf ′‖p + ‖υf‖p,

where ‖ · ‖p is the standard norm of the Lebesgue space Lp(I).
Let ÅC(I) be the set of all locally absolutely continuous functions with compact supports on I.
Denote by W̊ 1

p (ρ, υ) ≡ W̊ 1
p (ρ, υ, I) the closure of the set ÅC (I) ∩W 1

p (ρ, υ) with respect to the
norm of the space W 1

p (ρ, υ).
Let Lp,υ ≡ Lp(υ, I) be the space of all measurable functions I with the finite norm ‖f‖p,υ ≡ ‖υf‖p.
We consider the Riemann-Liouville fractional integration operator Iα, α > 0:

Iαf(x) =

x∫
0

(x− s)α−1f(s)ds, x ∈ I. (1.1)

The main aim of this paper is to establish a criterion of the boundedness of the Riemann-Liouville
operator Iα from W̊ 1

p (ρ, υ) to Lq(ω, I), i.e., the validity of the inequality:

‖ωIαf‖q ≤ C(‖ρf ′‖p + ‖υf‖p), f ∈ W̊ 1
p (ρ, υ). (1.2)

In papers [2], [5] and [7], inequalities of type (1.2) are studied for certain classes of Volterra type
integral operators. In the case where ρ ≡ 0, the validity of inequality (1.2) means the boundedness
of the Riemann-Liouville operator Iα from Lp,υ to Lq,ω. There are many recent works devoted to this
problem. For example, in the case 0 < q <∞, 1 < p <∞, α > 1

p
and υ(·) ≡ 1, explicit criteria for the
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boundedness of operators (1.1) from Lp to Lq,ω are independently found in the works by A.A. Meskhi
[3] and D.V. Prokhorov [9]. When the function υ(·) does not increase, a generalization of these
results is given in the work by S.M. Farsani [1]. In paper [10], D.V. Prokhorov and V.D. Stepanov
find criteria for the boundedness and compactness of (1.1) from Lp,υ to Lq,ω for 1 < p ≤ q <∞ and
two cases: (a) 1 − q′

p′
< α ≤ 1 and the function υ does not increase; (b) 1 − p

q
< α ≤ 1 and the

function ω does not increase. Generalizations of these results for the convolution type operators are
presented in works [8] and [11].

This paper is organized as follows: In Section 2 we collect all required notations, definitions and
statements. In Sections 3 we state and prove our main result concerning the validity of inequality
(1.2).2

2 Preliminaries

In the sequel, the relation A � B means A ≤ CB with a constant C depending only on the
parameters p and q. Moreover, if A� B � A we write A ≈ B.

As in [4] (see also [5, 7]), we introduce the following function

δ(x, y) = sup

d > 0 :

x∫
x−d

ρ−p
′
(t)dt ≤

x+y∫
x

ρ−p
′
(t)dt, (x− d, x] ⊂ I

 ,

with the domain D(δ) = {(x, y) : x ∈ I, y > 0, [x, x + y) ⊂ I}. If we fix x ∈ I, then at least for a
sufficiently small y > 0 we have

x∫
x−δ(x,y)

ρ−p
′
(t)dt =

x+y∫
x

ρ−p
′
(t)dt. (2.1)

Let x ∈ I and Dx be the set of y > 0 such that x+ y ∈ I and (2.1) holds. For all x ∈ I we define

d+(x) = sup{d : ‖ρ−1‖p′,(x−δ(x,d),x+d)‖υ‖p,(x−δ(x,d),x+d) ≤ 1, d ∈ Dx}

and d−(x) = δ(x, d+(x)). Moreover, we assume that µ−(x) = x− d−(x) and µ+(x) = x+ d+(x).
Let a = inf{x ∈ I : µ−(x) > 0} and b = sup{x ∈ I : µ+(x) < ∞}. Let h0 = ‖ρ−1‖p′,(0,c)‖υ‖p,(0,c)

and h∞ = ‖ρ−1‖p′,(c,∞)‖υ‖p,(c,∞) for some c ∈ I. In [4] it is shown that

a = 0⇔ h0 =∞, b =∞⇔ h∞ =∞,

‖ρ−1‖p′,∆(x)‖υ‖p,∆(x) = 1, ∀x ∈ (a, b),

and hence
‖ρ−1‖p′,∆(x)‖υ‖p,∆(x) = 1, ∀x ∈ I, (2.2)

in the case
h0 = ‖ρ−1‖p′,(0,c)‖υ‖p,(0,c) =∞, h∞ = ‖ρ−1‖p′,(c,∞)‖υ‖p,(c,∞) =∞, (2.3)

where ∆(x) = [µ−(x), µ+(x)].
By Lemma 1.1 in [4], the functions µ−(x) = x−d−(x) and µ+(x) = x+d+(x) are continuous and

strictly increasing on (a,∞) and (0, b), respectively. In addition, if h0 <∞, then

µ−(x) = 0 = lim
z→a+

µ−(z), ∀x ∈ (0, a),
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if h∞ <∞, then
µ+(x) =∞ = lim

z→b−
µ+(z), ∀x ∈ (b,∞),

and if (2.3) holds, then
lim
x→0+

µ±(x) = 0, lim
x→∞

µ±(x) =∞. (2.4)

From the last condition it follows that 0 < µ±(x) < ∞ for any x ∈ I. Moreover, condition (2.4)
follows from (2.2).

For simplicity, we assume that (2.3) holds. Then, in view of the above, the functions µ−(x) and
µ+(x) are continuous and strictly increasing on I and (2.4) holds. The validity of (2.3) is equivalent
to the condition W̊ 1

p (ρ, υ) = W 1
p (ρ, υ) (see [4]). How to overcome the difficulties that arise when

condition (2.3) does not hold is also given in [4].
We need Lemma 2.1 of [7].

Lemma 2.1. ([7, Lemma 2.1]) Let condition (2.3) hold. Then the functions µ−(x) and µ+(x) are
locally absolutely continuous on I.

Denote by ϕ+ and ϕ− the inverses of the functions µ− and µ+, respectively. Then the functions
ϕ+ and ϕ− are continuous and strictly increasing on I. Moreover, ϕ+(x) > ϕ−(x) for any x ∈ I and
lim
x→0+

ϕ+(x) = 0, lim
x→∞

ϕ−(x) =∞.
Let us consider the extremal problem of finding the quantity

J(ρ, v, g) = sup
06=f∈W̊ 1

p

∞∫
0

f(x)g(x)dx

‖f‖W 1
p

, (2.5)

where g is a nonnegative function locally summable on I. The solution of problem (2.5) is given in
Theorem 2.1 obtained in [5].
Theorem A. ([5, Theorem 2.1]) Let 1 < p < ∞. Let g be a nonnegative function locally integrable
on I. Then

J(ρ, v, g) ≈


∞∫

0

 ϕ+(x)∫
ϕ−(x)

g(t)dt


p′

ρ−p
′
(x)dx


1
p′

,

where the equivalence constants depend only on p.
For an arbitrary positive operator T we consider the inequality

‖ωTf‖q ≤ C(‖ρf ′‖p + ‖υf‖p), f ∈ W̊ 1
p (ρ, υ). (2.6)

On the basis of Theorem A we have Theorem B.
Theorem B. ([5, Theorem 2.2]) Let 1 < p, q < ∞. Inequality (2.6) for all functions f ∈ W̊ 1

p (ρ, υ)
is equivalent to the inequality

b∫
a

 ϕ+(x)∫
ϕ−(x)

(T ∗g)(t)dt


p′

ρ−p
′
(x)dx


1
p′

≤ C1

 b∫
a

ω−q
′
(t)gq

′
(t)dt


1
q′

(2.7)

for all non-negative functions g ∈ Lq′(ω−1, I), where T ∗ is the dual operator to the operator T with

respect to the bilinear form
b∫
a

f(t)g(t)dt. Moreover, C ≈ C1, where C > 0 and C1 > 0 are the best

constants in (2.6) and (2.7), respectively.
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Indeed, we have

sup
g≥0

‖1
ρ

∫ ϕ+

ϕ−
T ∗g‖p′

‖ g
ω
‖q′

= sup
g≥0

1

‖ g
ω
‖q′

sup
f∈W̊ 1

p

∫
I
f · T ∗g
‖f‖W 1

p

= sup
g≥0

1

‖ g
ω
‖q′

sup
0≤f∈W̊ 1

p

∫
I
f · T ∗g
‖f‖W 1

p

= sup
0≤f∈W̊ 1

p

1

‖f‖W 1
p

sup
g≥0

∫
I
g · Tf
‖ g
ω
‖q′

= sup
0≤f∈W̊ 1

p

‖ωTf‖q
‖f‖W 1

p

= sup
f∈W̊ 1

p

‖ωTf‖q
‖f‖W 1

p

.

On the basis of Theorem B Lemma 3.3 in [2] was obtained that presents the inequality dual to
(2.6).

Lemma 2.2. ([2, Lemma 3.3]) Let 1 < p, q < ∞. Inequality (2.6) for all functions f ∈ W̊ 1
p (ρ, υ) is

equivalent to the inequality ∞∫
0

ω(x)T

 µ+(·)∫
µ−(·)

f(t)dt

 (x)


q

dx


1
q

≤ C1

 ∞∫
0

ρp(t)fp(t)dt

 1
p

(2.8)

for all nonnegative functions f ∈ Lp(ρ, I). Moreover, C ≈ C1, where C > 0 and C1 > 0 are the best
constants in (2.6) and (2.8), respectively.

Lemma 2.2 is proved as follows

sup
g≥0

‖1
ρ

∫ ϕ+

ϕ−
T ∗g‖p′

‖ g
ω
‖q′

= sup
g≥0

1

‖ g
ω
‖q′

sup
f≥0

∫
I

[
f ·
∫ ϕ+

ϕ−
T ∗g

]
‖fρ‖p

= sup
f≥0

1

‖fρ‖p
sup
g≥0

∫
I

[
g · T

(∫ µ+
µ−

f
)]

‖ g
ω
‖q′

= sup
f≥0

‖ωT
(∫ µ+

µ−
f
)
‖q

‖fρ‖p
.

Let α(x) and β(x) be locally absolutely continuous and strictly increasing functions on I such that
α(x) < β(x) for any x ∈ I and lim

x→0+
α(x) = lim

x→0+
β(x) = 0, lim

x→∞
α(x) = lim

x→∞
β(x) = ∞. Consider

the Hardy-type operator

Hf(x) =

β(x)∫
0

f(s)ds, x ∈ I, (2.9)

and the integral operator

Kf(x) =

β(x)∫
α(x)

K(x, s)f(s)ds, x ∈ I. (2.10)

Let

E = sup
z∈I

 ∞∫
z

ωq(x)dx

 1
q
 β(z)∫

0

ρ−p
′
(t)dt


1
p′

.

From the results of work [12] we have Theorem C.
Theorem C. ([12, Theorem 4.1]) Let 1 < p ≤ q <∞. Then operator (2.9) is bounded from Lp(ρ, I)
to Lq(ω, I) if and only if the condition E <∞ holds. Moreover, for the norm ‖H‖p→q of the operator
H from Lp(ρ, I) to Lq(ω, I) the relation ‖H‖p→q ≈ E holds.
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Let Ω = {(x, s) : 0 < x < ∞, α(x) ≤ s ≤ β(x)}. Let a function K(·, ·) ≥ 0 be defined and
measurable on Ω. Moreover, assume that K(·, ·) does not decrease in the first argument. Let us
define the class O1(Ω) of kernels of operator (2.10). The function K(·, ·) belongs to the class O1(Ω)
if and only if for K(·, ·) there exist functions K1,0(x, s) and u(s) defined and measurable on Ω and
the relation

K(x, s) ≈ K1,0(x, t)u(s) +K(t, s) (2.11)

holds for 0 < t ≤ x < ∞ and α(x) ≤ s ≤ β(t), where the constants of equivalency in (2.11) do not
depend on x, t and s. Let us note that the class O1(Ω) is the class O+

1 (α, β(·),Ω+) of paper [6].
Denote

D+
1 = sup

z∈I
sup

y∈∆+(z)


z∫
y

ωq(x)

 β(y)∫
α(z)

Kp′(x, s)ρ−p
′
(s)ds


q
p′

dx


1
q

,

D+
2 = sup

z∈I
sup

y∈∆+(z)


β(y)∫
α(z)

ρ−p
′
(s)

 z∫
y

Kq(x, s)ωq(x)dx


p′
q

ds


1
p′

,

where ∆+(z) = [β−1(α(z)), z]. From the results of work [6] we have one more theorem.
Theorem D. ([6, Theorem 3]) Let 1 < p ≤ q <∞ and the kernel of operator (2.10) belong to O1(Ω).
Then operator (2.10) is bounded from Lp(ρ, I) to Lq(ω, I) if and only if the condition Di <∞ holds
at least for one of i = 1, 2. Moreover, for the norm ‖K‖p→q of the operator K from Lp(ρ, I) to
Lq(ω, I) the relation ‖K‖p→q ≈ D1 ≈ D2 holds.

3 Criterion for the validity of inequality (1.2) for operator (1.1)

Here and in the sequel we assume that condition (2.3) holds.
Let

A1 = sup
z∈I

 ∞∫
z

ωq(x)xq(α−1)dx

 1
q

 µ−(z)∫
0

ρ−p
′
(t)
[
ϕ+(t)− ϕ−(t)

]p′
dt


1
p′

,

A2,1 = sup
z∈I

sup
y∈∆+(z)


µ+(y)∫
µ−(z)

ρ−p
′
(x)

 z∫
y

(t− ϕ−(x))qαωq(t)dt


p′
q

dx


1
p′

,

A2,2 = sup
z∈I

sup
y∈∆+(z)


z∫
y

ωq(t)

 µ+(y)∫
µ−(z)

(
t− ϕ−(x)

)p′α
ρ−p

′
(x)dx


q
p′

dt


1
q

,

where ∆+(z) = [ϕ−(µ−(z)), z].
Suppose that

U(t) =
d

dt

µ−(t)∫
0

|ϕ+(x)− ϕ−(x)|p′ρ−p′(x)dx.
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Theorem 3.1. Let 1 < p ≤ q < ∞ and α > 1
p
. Let the function U be non-increasing for t > 0.

Then Riemann-Liouville operator (1.1) is bounded from W̊ 1
p (ρ, υ) to Lq(ω, I) if and only if Aj =

max{A1, A2,j} < ∞ at least for one of j = 1, 2. Moreover, for the norm ‖Iα‖W→q of operator (1.1)
from W̊ 1

p (ρ, υ) to Lq(ω, I), the relation ‖Iα‖W→q ≈ Aj, j = 1, 2, is valid.

Proof of Theorem 3.1. By Lemma 2.2 inequality (1.2) holds if and only if inequality (2.8) holds for
T = Iα, i.e., the operator

Ĩαf(s) ≡ Iα

 µ+(·)∫
µ−(·)

f(x)dx

 (s)

is bounded from Lp(ρ, I) to Lq(ω, I). Moreover, ‖Iα‖W→q ≈ ‖Ĩα‖p→q, where ‖Ĩα‖p→q is the norm of
the operator Ĩα from Lp(ρ, I) to Lq(ω, I). Let 0 ≤ f ∈ Lp(ρ, I). Since

Iα

 µ+(·)∫
µ−(·)

f(x)dx

 (s) =

s∫
0

(s− t)α−1

µ+(t)∫
µ−(t)

f(x)dxdt, (3.1)

by changing the order of integration, we get

s∫
0

(s− t)α−1

µ+(t)∫
µ−(t)

f(x)dxdt =

µ−(s)∫
0

f(x)

ϕ+(x)∫
ϕ−(x)

(s− t)α−1dtdx

+

µ+(s)∫
µ−(s)

f(x)

s∫
ϕ−(x)

(s− t)α−1dtdx =

µ−(s)∫
0

f(x)

ϕ+(x)∫
ϕ−(x)

(s− t)α−1dtdx

+
1

α

µ+(s)∫
µ−(s)

(s− ϕ−(x))αf(x)dx = Ĩ1,αf(s) +
1

α
Ĩ2,αf(s). (3.2)

From (2.8), (3.1) and (3.2) it follows that the operator Ĩα is bounded from Lp(ρ, I) to Lq(ω, I) if and
only if the operators

Ĩ1,αf(s) ≡
µ−(s)∫
0

f(x)

ϕ+(x)∫
ϕ−(x)

(s− t)α−1dtdx (3.3)

and

Ĩ2,αf(s) ≡
µ+(s)∫
µ−(s)

(s− ϕ−(x))αf(x)dx (3.4)

are bounded from Lp(ρ, I) to Lq(ω, I). Moreover, for the norms of the operators ‖Ĩα‖p→q, ‖Ĩ1,α‖p→q
and ‖Ĩ2,α‖p→q from Lp(ρ, I) to Lq(ω, I) the following relation holds:

‖Ĩα‖p→q ≈ ‖Ĩ1,α‖p→q + ‖Ĩ2,α‖p→q. (3.5)

Theorem 3.1 will be proved if we prove the following two assertions.
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Theorem 3.2. Let 1 < p ≤ q <∞. Then operator (3.4) is bounded from Lp(ρ, I) to Lq(ω, I) if and
only if the condition A2,j < ∞ holds at least for one of j = 1, 2. Moreover, for the norm ‖Ĩ2,α‖p→q
of the operator Ĩ2,α from Lp(ρ, I) to Lq(ω, I), the relation ‖Ĩ2,α‖p→q ≈ A2,1 ≈ A2,2 is valid.

Theorem 3.3. Let 1 < p ≤ q < ∞ and α > 1
p
. Let the function U do not increase for t >

0. Then operator (3.3) is bounded from Lp(ρ, I) to Lq(ω, I) if and only if the condition A1 < ∞
holds. Moreover, for the norm ‖Ĩ1,α‖p→q of the operator Ĩ1,α from Lp(ρ, I) to Lq(ω, I), the relation
‖Ĩ1,α‖p→q ≈ A1 is valid.

Proof of Theorem 3.2. We first consider the kernel K(s, x) = (s− ϕ−(x))α of the operator Ĩ2,α.
Let 0 < t ≤ s < ∞ and µ−(s) ≤ x ≤ µ+(t). Then from x ≤ µ+(t) it follows that ϕ−(x) ≤ t ≤

s <∞. Hence, we have that

K(s, x) = (s− ϕ−(x))α ≈ (s− t)α + (t− ϕ−(x))α = K1,0(s, t)u(x) +K(t, x),

where K1,0(s, t) = (s− t)α and u(x) ≡ 1, i.e., relation (2.11) holds. Therefore, the kernel K(s, x) =

(s − ϕ−(x))α of the operator Ĩ2,α belongs to the class O1(Ω). Then on the basis of Theorem D the
operator Ĩ2,α is bounded from Lp(ρ, I) to Lq(ω, I) if and only if A2,j <∞ at least for one of j = 1, 2.
Moreover,

‖Ĩ2,α‖p→q ≈ A2,1 ≈ A2,2. (3.6)

Proof of Theorem 3.3. Let the operator Ĩ1,α be bounded from Lp(ρ, I) to Lq(ω, I). Since for u(x) =
ϕ+(x)− ϕ−(x) we have that  ∞∫

0

ωq(s)sq(α−1)

∣∣∣∣∣∣∣
µ−(s)∫
0

u(x)f(x)dx

∣∣∣∣∣∣∣
q

ds


1
q

≤

 ∞∫
0

ωq(s)

∣∣∣∣∣∣∣
µ−(s)∫
0

f(x)

ϕ+(x)∫
ϕ−(x)

(s− t)α−1dtdx

∣∣∣∣∣∣∣
q

ds


1
q

≤ C

 ∞∫
0

|ρ(x)f(x)|pdx

 1
p

,

then the Hardy-type operatorHµ−,αf(s) = sα−1
µ−(s)∫

0

u(x)f(x)dx is bounded from Lp(ρ, I) to Lq(ω, I).

Moreover, in view of Theorem B, we have

‖Ĩ1,α‖p→q ≥ ‖Hµ−,α‖p→q � A1. (3.7)

Let A1 <∞. Then we have ∞∫
0

ωq(s)

∣∣∣∣∣∣∣
µ−(s)∫
0

f(x)

ϕ+(x)∫
ϕ−(x)

(s− t)α−1dtdx

∣∣∣∣∣∣∣
q

ds


1
q
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≤

 ∞∫
0

ωq(s)

∣∣∣∣∣∣∣
µ−(s)∫
0

(s− ϕ+(x))α−1u(x)f(x)dx

∣∣∣∣∣∣∣
q

ds


1
q

≤

 ∞∫
0

ωq(s)

∣∣∣∣∣∣∣
µ−(s)∫

µ−( s
2

)

(s− ϕ+(x))α−1u(x)f(x)dx

∣∣∣∣∣∣∣
q

ds


1
q

+

 ∞∫
0

ωq(s)

∣∣∣∣∣∣∣
µ−( s

2
)∫

0

(s− ϕ+(x))α−1u(x)f(x)dx

∣∣∣∣∣∣∣
q

ds


1
q

= F1 + F2. (3.8)

Let us estimate F2.

F2 =

 ∞∫
0

ωq(s)

∣∣∣∣∣∣∣
µ−( s

2
)∫

0

(s− ϕ+(x))α−1u(x)f(x)dx

∣∣∣∣∣∣∣
q

ds


1
q

�

 ∞∫
0

ωq(s)sq(α−1)

∣∣∣∣∣∣∣
µ−( s

2
)∫

0

u(x)f(x)dx

∣∣∣∣∣∣∣
q

ds


1
q

≤

 ∞∫
0

ωq(s)sq(α−1)

∣∣∣∣∣∣∣
µ−(s)∫
0

u(x)f(x)dx

∣∣∣∣∣∣∣
q

ds


1
q

.

Thus, by Theorem C we have

F2 � A1

 ∞∫
0

|ρ(x)f(x)|pdx

 1
p

. (3.9)

Now we estimate F1. In the expression F1 we change the variables x = µ−(t) in the inner integral.
Then we get

F1 =

 ∞∫
0

ωq(s)

∣∣∣∣∣∣∣
s∫

s
2

(s− t)α−1u(µ−(t))f(µ−(t))
dµ−(t)

dt
dt

∣∣∣∣∣∣∣
q

ds


1
q

=

 ∞∫
0

ωq(s)

∣∣∣∣∣∣∣
s∫

s
2

(s− t)α−1u(µ−(t))ρ−1(µ−(t))

·
(
dµ−(t)

dt

) 1
p′

ρ(µ−(t))

(
dµ−(t)

dt

) 1
p

f(µ−(t))dt

∣∣∣∣∣
q

ds

) 1
q
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=

 ∞∫
0

ωq(s)

∣∣∣∣∣∣∣
s∫

s
2

(s− t)α−1U
1
p′ (t)ρ̃(t)f̃(t)dt

∣∣∣∣∣∣∣
q

ds


1
q

, (3.10)

where ρ̃(t) = ρ(µ−(t))
(dµ−(t)

dt

) 1
p and f̃(t) = f(µ−(t)).

Since the function U is non-increasing, from (3.10) we have

F q
1 =

∑
k

2k+1∫
2k

ωq(s)

∣∣∣∣∣∣∣
s∫

s
2

(s− t)α−1U
1
p′ (t)ρ̃(t)f̃(t)dt

∣∣∣∣∣∣∣
q

ds

≤
∑
k

U
q
p′ (2k−1)

2k+1∫
2k

ωq(s)

 s∫
s
2

(s− t)p′(α−1)


q
p′

ds

 2k+1∫
2k−1

|ρ̃(t)f̃(t)|pdt


q
p

�
∑
k

(
U(2k−1)2k−1

) q
p′

2k+1∫
2k

ωq(s)sq(α−1)ds

 2k+1∫
2k−1

|ρ̃(t)f̃(t)|pdt


q
p

≤
∑
k

∞∫
2k

ωq(s)sq(α−1)ds

 µ−(2k)∫
0

up
′
(x)ρ−p

′
(x)dx


q
p′  2k+1∫

2k−1

|ρ̃(t)f̃(t)|pdt


q
p

≤ Aq1
∑
k

 2k+1∫
2k−1

|ρ̃(t)f̃(t)|pdt


q
p

≤ Aq1

 ∞∫
0

|ρ(x)f(x)|pdx


q
p

.

From the last inequality and inequalities (3.8), (3.9) it follows that the operator Ĩ1,α is bounded from
Lp(ρ, I) to Lq(ω, I) and the estimate ‖Ĩ1,α‖p→q � A1 holds. This, together with (3.7), gives that the
operator Ĩ1,α is bounded from Lp(ρ, I) to Lq(ω, I) if and only if A1 < ∞ and ‖Ĩ1,α‖p→q ≈ A1. The
proof of Theorem 3.3 is completed, which also completes the proof of Theorem 3.1.
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