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Abstract. The work is connected with investigation of nonlinear problems for parabolic equations
with an unknown coefficient at the derivative with respect to time. The considered statements
are new subjects in the theory of parabolic equations which essentially differ from usual boundary
value problems. One of the statements is a system containing a boundary value problem of the
first kind and an equation for a time dependence of the sought coefficient. For such a nonlinear
system we determine the faithful character of differential relations in a class of smooth functions
and establish conditions of unique solvability. The obtained results are then used for investigation
of another statement in which, moreover, it is required to determine a boundary function in one of
the boundary conditions by using an additional information about the sought coefficient at the final
time.

The nonlinear parabolic problems considered in the present work are important not only as
new theoretical subjects but also as the mathematical models of physical-chemical processes with
changeable inner characteristics.

DOI: https://doi.org/10.32523/2077-9879-2021-12-1-21-38

1 Introduction

We study nonlinear problems for parabolic equations with an unknown coefficient at the derivative
with respect to time. There is a rapidly growing interest in such new subjects in the theory of
parabolic equations. This interest is connected, in particular, with modern needs of the mathematical
modeling of physical-chemical processes, where inner characteristics of materials are subjected to
changes (see, e.g., [2]). In the present paper, the main attention is given to such new parabolic
problems in the Hölder spaces for a case of the boundary conditions of the first kind.

In Section 2, we analyze one of the statements formulating it as a system that involves a boundary
value problem for a quasilinear parabolic equation with an unknown coefficient at the time derivative
and, moreover, an additional relationship for a time dependence of this coefficient. Justification of the
present mathematical statement is an important task since such a statement essentially differs from
usual boundary value problems of the first kind for parabolic equations, where all the input data must
be given (see the well known monographs [4, 8]). Therefore, a considerable theoretical interest is to
obtain conditions for existence and uniqueness of its smooth solution. Investigation of such conditions
is carried out by using the Rothe method and a priori estimates in the difference-continuous Hölder
spaces for the corresponding differential-difference nonlinear system that approximates the original
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system by the Rothe method. The approach that is proposed in the present work allows one to avoid
additional assumptions of the smoothness of the input data, which have usually been imposed by the
Rothe method (see, e.g., [8]). Thus, the faithful character of differential relations between the input
data and the solution in the chosen function spaces is determined. Moreover, in Section 2 the error
estimates for the approximate solutions of the Rothe method are given.

In Section 3, we analyze a nonlinear parabolic problem which is formulated as an inverse problem
to the statement of Section 2: it is necessary to find a boundary function in one of the boundary
conditions by using the given final observation of the sought coefficient. This inverse problem belongs
to a class of ill-posed boundary inverse problems but it has an essential distinction from usual
statements of such ones for parabolic equations with final observation. In this statement, besides the
boundary function, the unknown coefficient must be determined in the nonlinear system of Section 2.

In order to investigate the present boundary inverse problem, it is reduced in Section 3 to an
operator equation in the corresponding function spaces. The choice of such spaces relies on the
faithful differential relations in the Hölder classes established in Section 2. This operator equation
is equivalent to the minimization problem for the residual functional on the corresponding set of
boundary functions. The estimates in the Hölder spaces obtained in Section 2 allow us to prove the
continuity of this functional. This property is then used for regularization of the present ill-posed
minimization problem. To this end we modify the known quasisolution method [5, 6] on a system of
the extending compact sets. Results for the stability of the regularized solutions in the corresponding
Hölder spaces complete Section 3.

Section 4 is a short conclusion summarizing the content of this work. The following remarks must
be added.

In our analysis we use standard definitions for the function spaces from [8]. In particular, the
Hölder class H2+λ,1+λ/2(Q) (0 < λ < 1) is determined as the space of functions u(x, t) continuous on
the closed set Q = {0 ≤ x ≤ l, 0 ≤ t ≤ T} together with their derivatives uxx, ut which satisfy the
Hölder condition as functions of x, t with the corresponding exponents λ and λ/2.

For a convenient presentation, the following notation is also used.
H1,λ/2,1(D) is the space of all functions which are continuous for (x, t, u) ∈ D

= Q × [−M0,M0] together with their derivatives with respect to x, u and, moreover, satisfy the
Hölder condition as functions of t with the exponent λ/2.

Moreover, in connection with application of the Rothe method we use analogues of the
Hölder classes in the case of the grid functions û = (u0, . . . , un, . . . , uN) defined on the
grid ωτ = {tn} = {nτ, n = 0, N, τ = TN−1} and in the case of the grid-continuous
functions û(x) = (u0(x), . . . , un(x), . . . , uN(x)) defined on the set Qτ = {0 ≤ x ≤ l,
tn ∈ ωτ}. Just as in [3] these analogues are determined in the following way.

H
1+λ/2
τ (ωτ ) is a difference analogue of the space H1+λ/2[0, T ] (see [8]) of all functions û having

the finite norm
|û|1+λ/2

ωτ
= max

0≤n≤N
|un|+ max

1≤n≤N
|unt|+ 〈ût〉

λ/2
ωτ
,

unt = (un − un−1)τ−1, n = 1, N, 〈ût〉
λ/2
ωτ

= max
1≤n<n′≤N

{|unt − un′t||tn − tn′|−λ/2}.

H
λ,λ/2
τ (Qτ ) is a difference-continuous analogue of the space Hλ,λ/2(Q) (see [8]) of all functions

û(x) continuous in x for (x, tn) ∈ Qτ and having the finite norm

|û(x)|λ,λ/2
Qτ

= max
(x,tn)∈Qτ

|un(x)|+ 〈û(x)〉λ
x,Qτ

+ 〈û(x)〉λ/2
t,Qτ

,

〈û(x)〉λ
x,Qτ

= sup
(x,tn),(x′,tn)∈Qτ

{|un(x)− un(x′)||x− x′|−λ},

〈û(x)〉λ/2
t,Qτ

= sup
(x,tn),(x,t′n)∈Qτ

{|un(x)− un′(x)||tn − tn′|−λ/2}.
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H
1+λ, 1+λ

2
τ (Qτ ) is a difference-continuous analogue of the spaceH1+λ, 1+λ

2 (Q) (see [8]) of all functions
û(x) continuous in x together with their derivatives with respect to x for (x, tn) ∈ Qτ and having
the finite norm

|û(x)|1+λ, 1+λ
2

Qτ
= max

(x,tn)∈Qτ
|un(x)|+ |ûx(x)|λ,λ/2

Qτ
+ 〈û(x)〉

1+λ
2

t,Qτ
,

where ûx(x) = (u0x(x), . . . , unx(x), . . . , uNx(x)).
H

2+λ,1+λ/2
τ (Qτ ) is a difference-continuous analogue of the space H2+λ,1+λ/2(Q) of all functions

û(x) continuous in x together with their derivatives ûxx(x) and ût(x) for (x, tn) ∈ Qτ and having the
finite norm

|û(x)|2+λ,1+λ/2

Qτ
= max

(x,tn)∈Qτ
|un(x)|+ max

(x,tn)∈Qτ
|unx(x)|+ |ûxx(x)|λ,λ/2

Qτ
+ |ût(x)|λ,λ/2

Qτ
,

where
ûxx(x) = (u0xx(x), . . . , unxx(x), . . . , uNxx(x)),
ût(x) = (u1t(x), . . . , unt(x), . . . , uNt(x)),
unt(x) = (un(x)− un−1(x))τ−1, n = 1, N.

2 Unique solvability of a nonlinear parabolic problem with an unknown
coefficient at the derivative with respect to time

2.1. The statement for a quasilinear parabolic equation. We formulate
this problem as a system for determining the functions {u(x, t), ρ(x, t)} in the domain
Q = {0 ≤ x ≤ l, 0 ≤ t ≤ T} that satisfy the boundary value problem of the first kind

c(x, t, u)ρ(x, t)ut − Lu = f(x, t), (x, t) ∈ Q, (1)

u(x, t)|x=0 = w(t), u(x, t)|x=l = v(t), 0 < t ≤ T, (2)

u(x, t)|t=0 = ϕ(x), 0 ≤ x ≤ l, (3)

and the additional relation

ρt(x, t) = γ(x, t, u), (x, t) ∈ Q, ρ(x, t)|t=0 = ρ0(x), 0 ≤ x ≤ l, (4)

where the uniformly elliptic operator L has the form

Lu ≡ (a(x, t, u)ux)x − b(x, t, u)ux − d(x, t, u)u.

All the input data in equation (1), boundary conditions (2), initial condition (3), and in relationship
(4) are the known functions of their arguments; a ≥ amin > 0, c ≥ cmin > 0, ρ0 ≥ ρ0

min > 0, amin,
cmin, ρ0

min = const > 0.
In what follows, we assume that the function γ(x, t, u) is of constant sign for (x, t, u) ∈ D =

Q × [−M0,M0] (where M0 ≥ max(x,t)∈Q |u|, M0 is the constant from the maximum principle for
boundary value problem (1)–(3)). In order to ensure the parabolic form of equation (1) the sought
coefficient ρ(x, t) must satisfy some requirements depending on the sign of γ(x, t, u) for (x, t, u) ∈ D.
These requirements have the form

0 < ρ0
min < ρ(x, t) ≤ max

0≤x≤l
ρ0(x) + T max

(x,t,u)∈D
γ(x, t, u) for γ(x, t, u) > 0, (5)

0 < ρ0
min − T max

(x,t,u)∈D
|γ(x, t, u)| ≤ ρ(x, t) ≤ max

0≤x≤l
ρ0(x) for γ(x, t, u) ≤ 0. (6)
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If γ(x, t, u) ≤ 0 in the domain D, then condition(6) leads to the restriction to the time
interval [0, T ], where the solution {u(x, t), ρ(x, t)} of system (1)–(4) is sought: 0 < T <
ρ0

min(max(x,t,u)∈D |γ(x, t, u)|)−1.
The represented statement involving the quasilinear parabolic equation is especially important

in the mathematical modeling of high temperature processes since it allows one to take into account
the dependence of thermophysical characteristics upon the temperature.

2.2. Conditions of unique solvability in the Hölder spaces. The result for finding a smooth
solution {u(x, t), ρ(x, t)} of system (1)–(4) is given in the following theorem.

Theorem 2.1. Let the following conditions be satisfied.

1. For (x, t) ∈ Q and any u, |u| < ∞, the input data of boundary value problem (1)–(3) are
uniformly bounded functions of their arguments, where the coefficient a(x, t, u) — together with
the derivatives ax(x, t, u) and au(x, t, u), moreover, 0 < amin ≤ a(x, t, u) ≤ amax, 0 < cmin ≤
c(x, t, u) ≤ cmax.

2. For (x, t, u) ∈ D = Q× [−M0,M0] the functions a(x, t, u), ax(x, t, u), au(x, t, u), b(x, t, u), and
d(x, t, u) have the uniformly bounded derivatives with respect to u and Hölder continuous in x
and t with the corresponding exponents λ and λ/2; moreover, the functions c(x, t, u) and f(x, t)
belong to H1,λ/2,1(D) and Hλ,λ/2(Q), respectively.

3. The functions w(t) and v(t) belong to H1+λ/2[0, T ], the functions ϕ(x) and ρ0(x) are in
H2+λ[0, l] and C1[0, l], respectively, 0 < ρ0

min ≤ ρ0(x) ≤ ρ0
max, ρ0

min and ρ0
max are positive

constants, and the following matching conditions hold:

c(x, 0, ϕ)ρ0(x)wt − Lϕ|x=0,t=0 = f(x, 0)|x=0,

c(x, 0, ϕ)ρ0(x)vt − Lϕ|x=l,t=0 = f(x, 0)|x=l.

4. The function γ(x, t, u) in condition (4) is of constant sign for (x, t, u) ∈ D and belongs to
H1,λ/2,1(D).

Then there exists a unique solution {u(x, t), ρ(x, t)} of nonlinear system (1)–(4) which has prop-
erties

u(x, t) ∈ H2+λ,1+λ/2(Q), |u(x, t)|2+λ,1+λ/2

Q
≤M, M = const > 0,

ρ(x, t) ∈ C(Q), ρx(x, t) ∈ C(Q), ρt(x, t) ∈ Hλ,λ/2(Q)

and satisfies restrictions (5), (6) depending on the sign of the function γ(x, t, u).

In order to prove Theorem 2.1 and to establish the existence of a smooth solution of system (1)–(4)
we approximate this system using the discretization procedure of the Rothe method on the uniform
grid ωτ = {tn} ∈ [0, T ] with time-step τ = TN−1:

cnρnunt − (anunx)x + bnunx + dnun = fn, (x, tn) ∈ Qτ = {0 < x < l} × ωτ , (7)

un|x=0 = wn, un|x=l = vn, 0 < tn ≤ T, (8)

u0(x) = ϕ(x), 0 ≤ x ≤ l, (9)

ρnt = γn−1, (x, tn) ∈ Qτ , ρn(x)|n=0 = ρ0(x), 0 ≤ x ≤ l. (10)

The approximating system can be constructed as follows. Find {un(x), ρn(x)} — approximate values
of the functions u(x, t) and ρ(x, t) for t = tn — satisfying conditions (7)–(10) in which an, bn, cn, and
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dn are the values of the corresponding coefficients at the point (x, tn, un); fn = f(x, tn), wn = w(tn),
vn = v(tn), and γn−1 = γ(x, tn−1, un−1). In system (7)–(10) the following notations are also used:
unt = (un(x)− un−1(x))τ−1, unx = dun(x)/dx, ρnt = (ρn(x)− ρn−1(x))τ−1.

The proof of solvability of system (1)–(4) by the Rothe method involves several stages.
Stage 1. Investigation of differential-difference boundary value problem (7)–(9) in the difference-

continuous Hölder space H2+λ,1+λ/2
τ (Qτ ) under the assumption that ρn(x) is the known function. The

aim of this stage is to prove unique solvability of problem (7)–(9) and to drive the corresponding a
priori estimates for the solution un(x) (independent of x, τ , n).

Stage 2. The proof of the existence and uniqueness of a solution {un(x), ρn(x)} to differential-
difference system (7)–(10) in the corresponding function spaces by using the results of stage 1.

Stage 3. The passage to the limit as time-step τ goes to 0 (i.e., n→∞) in conditions (7)–(10) by
using the compactness of the set {un(x), ρn(x)} thanks to the estimates obtained at stage 2. The aim
of this last stage is to show that original system (1)–(4) has at least one solution in the corresponding
Hölder spaces.

2.3. A priori estimates in the difference-continuous Hölder spaces. Passing to these stages
we give the proof in details only if the justification of the Rothe method must take into account
specific properties of system (1)–(4). Otherwise, we only sketch the proof referring to the known
results.

The conditions of unique solvability of problem (7)–(9) in H2+λ,1+λ/2
τ (Qτ ) are formulated by the

next lemma under the assumption that the coefficient ρn(x) in differential-difference equation (7) is
a given function continuous in x together with the derivative ρnx(x) on the domain Qτ and satisfying
the Hölder condition as a function of tn with the exponent λ/2.

Lemma 2.1. Assume that the conditions 1–3 of Theorem 2.1 hold and let ρn(x) be a coefficient with
the above mentioned properties. Then differential-difference boundary value problem (7)–(9) has a
unique solution un(x) in the domain Qτ (for any sufficiently small time-step τ of the grid ωτ) and
the following estimates are valid

max
(x,tn)∈Qτ

|un(x)| ≤M0, max
(x,tn)∈Qτ

|unx(x)| ≤M1,

|û(x)|λ,λ/2
Qτ

≤M2, |ûx(x)|λ,λ/2
Qτ

≤M3, |û(x)|2+λ,1+λ/2

Qτ
≤M4, (11)

where Mi > 0 (i = 0, 4) are positive constants independent of x, τ , and n.

The conclusion of Lemma 2.1 is based on results of Theorem 4.3.3 in [3] about the unique solv-
ability of the differential-difference boundary value problems of the first kind in the Hölder class
H

2+λ,1+λ/2
τ (Qτ ). For problem (7)–(9) the constant M0 from the maximum principle has the form

M0 =
{
c−1

minρ
−1
minfmaxT + max(wmax, vmax, ϕmax)

}
exp(K1T ),

K1 ≥ (1 + ε)dmaxc
−1
minρ

−1
min, ε > 0 is arbitrary, τ ≤ τ0 = εK−1

1 . (12)

Passing to stage 2 we consider system (7)–(10) in order to find {un(x), ρn(x)}. The values of ρn(x)
are beforehand unknown and are simultaneously determined with un(x). This requires additional
reasonings for proving the solvability of system (7)–(10).

Lemma 2.2. Assume that the input data of system (1)–(4) satisfy the hypotheses of Theorem 2.1.
Then in the domain Qτ for any time-step τ ≤ τ0 (τ0 > 0 is the constant defined by estimate (12)) there
exists a unique solution {un(x), ρn(x)} of differential-difference system (7)–(10) having the properties

un(x) ∈ H2+λ,1+λ/2
τ (Qτ ), |û(x)|2+λ,1+λ/2

Qτ
≤M4,
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0 < ρ0
min < ρn(x) ≤ ρmax, ρmax = ρ0

max + T max
(x,t,u)∈D

γ(x, t, u) for γ(x, t, u) > 0,

0 < ρ0
min − T max

(x,t,u)∈D
|γ(x, t, u)| ≤ ρn(x) ≤ ρ0

max for γ(x, t, u) ≤ 0,
(13)

max
(x,tn)∈Qτ

|ρnx(x)|+ max
(x,tn)∈Qτ

|ρnt(x)|+ max
(x,tn)∈Qτ

|ρnxt(x)|+ 〈ρ̂t(x)〉λ/2
t,Qτ
≤M5, (14)

where M5 is a positive constant independent of x, τ , and n; its value depends, in particular, on
max0≤x≤l |ρ0

x(x)|, max(x,t,u)∈D (|γx(x, t, u)|, |γu(x, t, u)|), and on the values of the constants M1 and
M2.

Proof. To prove Lemma 2.2 we start with the initial conditions for t0 = 0 and assume that for
each of the time layers tj (j = 1, n− 1) the solutions {uj(x), ρj(x)} are found and the corresponding
estimates are established. The conditions of Theorem 2.1 concerning the functions γ(x, t, u) and
ρ0(x) allow one to conclude that for 0 ≤ x ≤ l, t = tn the following inequalities are valid

|ρnt(x)| ≤ max
(x,t,u)∈D

|γ(x, t, u)|,

|ρnxt(x)| ≤ max
(x,t,u)∈D

|γx(x, t, u)|+ max
(x,t,u)∈D

|γu(x, t, u)| max
(x,tn−1)∈Qτ

|un−1x(x)|,

〈ρ̂t(x)〉λ/2
t,Qτ
≤ 〈γ̂(x, tn−1, un−1)〉λ/2

t,Dτ
+ max

(x,t,u)∈Dτ
|γu(x, tn−1, un−1)| 〈ûn−1(x)〉λ/2

t,Qτ
.

From here it follows that

|ρnxt(x)| ≤ max
(x,t,u)∈D

|γx(x, t, u)|+ max
(x,t,u)∈D

|γu(x, t, u)|M1,

〈ρ̂t(x)〉λ/2
t,Qτ
≤ 〈γ〉λ/2

t,D
+ max

(x,t,u)∈D
|γu(x, t, u)|M2.

Moreover, from (10) it is not difficult to obtain that

ρn(x) = ρn−1(x) + τγ(x, tn−1, un−1) = ρ0(x) +
n−1∑
j=0

τγ(x, tj, uj). (15)

Hence, depending on the sign of the function γ(x, t, u), the following inequalities are valid

0 < ρ0
min < ρn(x) ≤ ρ0

max + tn−1γmax for γ(x, t, u) > 0, (x, t, u) ∈ D,

0 < ρ0
min − tn−1γmax ≤ ρn(x) ≤ ρ0

max for γ(x, t, u) ≤ 0, (x, t, u) ∈ D,

where γmax = max
(x,t,u)∈D

|γ(x, t, u)|. The required estimates (13) for ρn(x) are an easy corollary of these

inequalities. Next we note that by (15) that the following representation holds

ρnx(x) = ρ0
x(x) +

n−1∑
j=0

τ{γx(x, tj, uj) + γu(x, tj, uj)ujx(x)},

which leads to the bound

|ρnx(x)| ≤ max
0≤x≤l

|ρ0
x(x)|+ tn−1

{
max

(x,t,u)∈D
|γx(x, t, u)|+ max

(x,t,u)∈D
|γu(x, t, u)|M1

}
.
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Thus, for t = tn the bounds of |ρnx(x)|, |ρnt(x)|, |ρnxt(x)|, and 〈ρ̂t(x)〉λ/2
t,Qτ

are obtained. This allows
one to prove estimate (14) since we assume that the corresponding estimates for tj (j = 1, n− 1) are
already known.

As a result of (13), (14) the grid-continuous function ρn(x), which is determined from (10) by
using the given values of ρn−1(x) and un−1(x), satisfies the conditions of Lemma 2.1. This means
that the differential-difference boundary value problem of the first kind (7)–(9) with such a coefficient
ρn(x) has a unique solution un(x) in H2+λ,1+λ/2

τ (Qτ ) for which bound (11) holds. Thus Lemma 2.2
is proved.

Passing to stage 3 we note that uniform estimates (11), (13), and (14) (independent of x, τ ,
and n) mean the compactness of the set {un(x), ρn(x)} in the corresponding spaces. By taking the
limit as τ goes to 0 (i.e., as n → ∞) in equations (7)–(10), we can show in a standard way that
original problem (1)–(4) has at least one solution {u(x, t), ρ(x, t)} such that u(x, t) ∈ H2+λ,1+λ/2(Q),
ρ(x, t) ∈ C(Q), ρt(x, t) ∈ Hλ,λ/2(Q). Moreover, estimates (13) allow one to establish that ρ(x, t)
satisfies inequalities (5) and (6) depending on the sign of γ(x, t, u) in condition (4). Next we note
thanks to the supposed smoothness of the functions γ(x, t, u) and ρ0(x) that ρ(x, t) has the derivative
ρx(x, t) continuous everywhere on the closed set Q. Indeed, from (4) it follows that for 0 ≤ x ≤ l,
0 ≤ t ≤ T

ρ(x, t) =

t∫
0

γ(x, τ, u(x, τ)) dτ + ρ0(x), (16)

ρx(x, t) =

t∫
0

{γx(x, τ, u(x, τ)) + γu(x, τ, u(x, τ))ux(x, τ)} dτ + ρ0
x(x).

From here it is easily seen that ρx(x, t) ∈ C(Q) since ux(x, t) ∈ C(Q), γ(x, t, u) ∈ H1,λ/2,1(D), and
ρ0(x) ∈ C1[0, l].

Thus the proof of the solvability in the Hölder spaces of nonlinear boundary value problem (1)–(4)
by the Rothe method is completed.

2.4. Proof of the uniqueness of the solution {u(x, t), ρ(x, t)}. In order to complete the proof
of Theorem 2.1, it remains to show that the solution of problem (1)–(4) is unique in the class of
smooth functions

sup
(x,t)∈Q

|u, ux, uxx, ut| <∞, sup
(x,t)∈Q

|ρ, ρx, ρt| <∞.

Assume that for t ∈ [0, t0], 0 ≤ t0 < T , the uniqueness is already proved. Let us show the
uniqueness result for t ∈ [t0, t0 + ∆t], where ∆t > 0 is a sufficiently small but bounded time interval,
that allows us to exhaust all the segment [0, T ] by a finite number of steps. We will use a contradiction
argument. Assume to the contrary that for t ∈ [t0, t0 +∆t] there exist two solutions of system (1)–(4)
{u(x, t), ρ(x, t)} and {u(x, t), ρ(x, t)}. By (16) expressions for ρ(x, t) and ρ(x, t) have the form

ρ(x, t) =

t∫
t0

γ(x, τ, u(x, τ)) dτ + ρ(x, t0), ρ(x, t) =

t∫
t0

γ(x, τ, u(x, τ)) dτ + ρ(x, t0).

By taking into account that ρ(x, t0) = ρ(x, t0), the differences

η(x, t) = u(x, t)− u(x, t), ζ(x, t) = ρ(x, t)− ρ(x, t)

satisfy the following estimate in the domain Qt0 = {0 ≤ x ≤ l, t0 ≤ t ≤ t0 + ∆t}

max
(x,t)∈Qt0

|ζ(x, t)| ≤ ∆t max
(x,t,u)∈D

|γu(x, t, u)| max
(x,t)∈Qt0

|η(x, t)|. (17)
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Moreover, due to (1)–(3) η(x, t) and ζ(x, t) satisfy the relations

c(x, t, u)ρ(x, t)ηt − (a(x, t, u)ηx)x +A0ηx +A1η = c(x, t, u)utζ(x, t), (x, t) ∈ Qt0 ,

η|x=0 = 0, η|x=l = 0, t0 < t ≤ t0 + ∆t,

η(x, t0) = 0, 0 ≤ x ≤ l,

where the coefficients A0 and A1 depend in the corresponding way on the derivatives au, axu, auu,
bu, cu, and du at the point (x, t, σu+ (1−σ)u) (0 < σ < 1). Moreover, A0 and A1 depend on u(x, t),
ρ(x, t), and the derivatives ux(x, t), uxx(x, t), and ut(x, t).

All the input data of this linear boundary value problem of the first kind are uniformly bounded
in the domain Qt0 as functions of (x, t). This allows one to apply the maximum principle that leads
to the following estimate

max
(x,t)∈Qt0

|η(x, t)| ≤ K2∆t max
(x,t)∈Qt0

|ζ(x, t)|, K2 = const > 0.

From here by taking into account (17) we obtain

max
(x,t)∈Qt0

|η(x, t)| ≤ (∆t)2K2 max
(x,t,u)∈D

|γu(x, t, u)| max
(x,t)∈Qt0

|η(x, t)|.

Choosing then ∆t > 0 such that

(∆t)2K2 max
(x,t,u)∈D

|γu(x, t, u)| ≤ 1− µ, 0 < µ < 1,

we deduce the following inequality

max
(x,t)∈Qt0

|η(x, t)| ≤ (1− µ) max
(x,t)∈Qt0

|η(x, t)|,

hence max(x,t)∈Qt0
|η(x, t)| = 0. Due to (17) from here it is easily seen that max(x,t)∈Qt0

|ζ(x, t)| = 0.
Thus, the uniqueness result is completely proved for t ∈ [t0, t0 + ∆t].

By repeating the analogous arguments for t ∈ [t1, t2] (t1 = t0 + ∆t, t2 = t1 + ∆t), t ∈ [t2, t3], etc.,
up to the final time T , we drive the uniqueness result for problem (1)–(4) on all the segment [0, T ].

Thus, there exists a unique solution {u(x, t), ρ(x, t)} of nonlinear system (1)–(4) in the class of
smooth functions. Theorem 2.1 is completely proved.

2.5. Error estimates of the Rothe method. Our next aim is to show that the Rothe method is
applicable for construction of approximate solutions of the considered nonlinear system. It is required
to estimate the differences

ωn(x) = un(x)− u(x, tn), ξn(x) = ρn(x)− ρ(x, tn),

where {u(x, tn), ρ(x, tn)} solves original problem (1)–(4) for t = tn, {un(x), ρn(x)} solves approxi-
mating system (7)–(10).

Theorem 2.2. Assume that the input data satisfy the conditions of Theorem 2.1. Then for any
sufficiently small time-step τ of the grid ωτ the following error estimates for the Rothe method hold

max
(x,tn)∈Qτ

|ωn(x)| ≤ K3(Ψ + ψ), max
(x,tn)∈Qτ

|ξn(x)| ≤ K4(Ψ + ψ), (18)

where Ψ = max(x,tn)∈Qτ Ψn(x), ψ = max(x,tn)∈Qτ ψn(x), Ψn(x) is the discretization error for
differential-difference boundary value problem (7)–(9) and ψn(x) is the discretization error for equa-
tion (10), K3 and K4 are positive constants independent of x, t, τ , and n.
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The proof repeats — with the appropriate modification — the above proof of the uniqueness
result in Theorem 2.1. We only note that estimates (18) are shown step by step for the bounded
time intervals [0, tn0 ], [tn0 , tn1 ], [tn1 , tn2 ], etc., up to the final time tN = T . Existence of such estimates
allows one to apply the Rothe method for approximate solving nonlinear problem (1)–(4) with the
unknown coefficient at the time derivative. The solution {u(x, t), ρ(x, t)} can be obtained as the
limit of the solution {un(x), ρn(x)} of approximating system (7)–(10) as the time-step τ of the grid
ωτ goes to 0.

3 Investigation of the nonlinear problem with the unknown boundary
function in system (1)–(4)

3.1. The boundary inverse problem with final observation. Assume that in system (1)–(4)
the function v(t) in the boundary condition at x = l is unknown but the additional information is
given in the form of a final observation for the coefficient ρ(x, t)

ρ(x, T ) = g(x), g(x) > 0, 0 ≤ x ≤ l. (19)

Then the following problem arises that is inverse to the statement of system (1)–(4): it is required
to find the functions u(x, t), ρ(x, t) in the domain Q and the boundary function v(t) for 0 ≤ t ≤ T
that satisfy relations (1)–(4) and final condition (19), where all the other input data are given. The
considered inverse problem belongs to a class of ill-posed boundary inverse problems for parabolic
equations with final observation. However, usual statements of such ones are related to parabolic
equations with the given coefficients. The essential distinction of the considered inverse problem is
a requirement to find a boundary function for parabolic equation (1) with the unknown coefficient
ρ(x, t).

For this inverse problem it is important to choose the appropriate function spaces for the input
data and the solution: if they are not chosen properly, the exact solution may not exist. Our choice
relies on the faithful differential relations in the Hölder spaces established in Theorem 2.1 between the
input data and the solution {u(x, t), ρ(x, t)} of system (1)–(4). By Theorem 2.1 this nonlinear system
has the unique solution {u(x, t), ρ(x, t)} in the corresponding spaces for any boundary function v(t)
that belongs to the class H1+λ/2[0, T ] and satisfies the matching condition at t = 0:

c(x, 0, ϕ)ρ0(x)vt − Lϕ|x=l,t=0 = f(x, 0)|x=l. (20)

Taking this into account we define the solution of the considered inverse problem as a collection of
the functions {u(x, t), ρ(x, t), v(t)} having the properties

u(x, t) ∈ H2+λ,1+λ/2(Q), v(t) ∈ H1+λ/2[0, T ],

ρ(x, t) ∈ C(Q), ρx(x, t) ∈ C(Q), ρt(x, t) ∈ Hλ,λ/2(Q)

and satisfying relationships (1)–(4), (19), and (20) in the usual sense.
We represent this inverse problem by the operator equation

Av = g, v ∈ V ⊂ L2[0, T ], g ∈ G ⊂ L2[0, l], (21)

where A : V → G is a nonlinear operator that maps each element v ∈ V to ρ(x, t)|t=T , here
{u(x, t), ρ(x, t)} is the solution of system (1)–(4) corresponding to this element. An exact solution
of operator equation (21) is an element v0 ∈ V such that the corresponding coefficient ρ(x, t; v0)
coincides at t = T with the given element g ∈ G.
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Possibility to define the operator A for each v ∈ V and to realize the insertion AV ⊂ G is ensured
by the corresponding choice of the sets V and G based on Theorem 2.1:

V =
{
v(t) ∈ W 2

2 [0, T ], c(x, 0, ϕ)ρ0(x)vt − Lϕ|x=l,t=0 = f(x, 0)|x=l

}
,

V ⊂ H1+λ/2[0, T ], G =
{
w(x) ∈ C1[0, l], w(x) > 0, x ∈ [0, l]

}
. (22)

Operator equation (21) is equivalent to the minimization problem for the residual functional on the
chosen set of boundary functions

inf
v∈V

Jg(v), Jg(v) = ‖Av − g‖L2[0,l].

Taking this into account, below we consider the regularization variational method for obtaining
approximate solutions of our boundary inverse problem in the chosen spaces.

3.2. Justification of the variational quasisolution method. One of the efficient methods for
solving ill-posed inverse problems is the variational quasisolution method [5, 6]. Carrying out the
corresponding modification, we justify its applicability for construction of stable approximations in
the class of smooth functions.

Namely, to regularize the ill-posed minimization problem for the functional Jg(v) we use the
quasisolution method for the system of extending sets

VR = {v ∈ V, ‖v‖W 2
2 [0,T ] ≤ R}, R = const > 0,

compact in the metric of the Hölder space H1+λ/2[0, T ] (0 < λ < 1) by the corresponding embedding
theorem [10].

We call the set
V ∗R = {vR ∈ VR, Jg(vR) = inf

v∈VR
Jg(v)} (23)

a quasisolution of operator equation (21) on the compact set VR.

Theorem 3.1. For any fixed R > 0 the minimization problem for the residual functional Jg(v) on
VR is well-posed, namely, the set V ∗R is not empty and for any minimizing sequence {vn} ⊂ VR the
following relation holds

inf
vR∈V ∗R

|vn − vR|1+λ/2
[0,T ] → 0 for n→∞.

The well-known Weierstrass theorem implies the proof of this theorem as a result of the compact-
ness of the set VR in H1+λ/2[0, T ] (0 < λ < 1) and the following property of Jg(v).

Theorem 3.2. Under the assumptions of Theorem 2.1 for the input data the residual functional
Jg(v) is continuous in H1+λ/2[0, T ] (0 < λ < 1) on the set VR and is weakly continuous in W 2

2 [0, T ]
on the sets VR and V .

Proof. Let {vn(t)} ⊂ VR be a sequence convergent in H1+λ/2[0, T ] to a point v(t) ∈ VR:

|vn − v|1+λ/2
[0,T ] → 0 for n→∞. (24)

Denote

∆v(t) = vn(t)− v(t), ∆u(x, t) = un(x, t)− u(x, t), ∆ρ(x, t) = ρn(x, t)− ρ(x, t),
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where {un(x, t), ρn(x, t)} and {u(x, t), ρ(x, t)} are the solutions of system (1)–(4) corresponding to
the boundary functions vn(t) and v(t). It is obvious that

|Jg(vn)− Jg(v)| =
∣∣‖ρn(x, T )− g(x)‖L2[0,l] − ‖ρ(x, T )− g(x)‖L2[0,l]

∣∣ ≤ ‖∆ρ(x, T )‖L2[0,l]. (25)

We show that in the domain Q the following estimates hold

max
(x,t)∈Q

|∆u(x, t)| ≤ K5 max
0≤t≤T

|∆v(t)|, K5 = const > 0,

max
(x,t)∈Q

|∆ρ(x, t)| ≤ K6 max
0≤t≤T

|∆v(t)|, K6 = const > 0. (26)

Assume that for t ∈ [0, t0], 0 ≤ t0 < T , these estimates are already established:

max
0≤x≤l,0≤t≤t0

|∆u(x, t)| ≤ K5 max
0≤t≤t0

|∆v(t)|,

max
0≤x≤l,0≤t≤t0

|∆ρ(x, t)| ≤ K6 max
0≤t≤t0

|∆v(t)|. (27)

We prove that the analogous estimates hold for t ∈ [t0, t0 + ∆t], where ∆t > 0 is a sufficiently small
but fixed value. In the domain Qt0 = {0 ≤ x ≤ l, t0 ≤ t ≤ t0 + ∆t} the differences ∆u(x, t) and
∆ρ(x, t) satisfy the relations

c(x, t, u)ρ(x, t)∆ut − (a(x, t, u)∆ux)x + B0∆ux + B1∆u

= c(x, t, un)unt ∆ρ(x, t), (x, t) ∈ Qt0 ,

∆u|x=0 = 0, ∆u|x=l = ∆v(t), t0 < t ≤ t0 + ∆t, (28)

∆ρ(x, t) =

t∫
t0

γu(x, τ, u)∆u(x, τ) dτ + ∆ρ(x, t0), 0 ≤ x ≤ l. (29)

All the coefficients of the present parabolic equation (including B0 and B1) are uniformly bounded
in the domain Qt0 as functions of (x, t) thanks to the corresponding estimates of Theorem 2.1 for
{un(x, t), ρn(x, t)} and {u(x, t), ρ(x, t)}. Hence relations (28) is a linear boundary value problem of
the first kind for ∆u(x, t) and application of the maximum principle allows one to conclude that

max
(x,t)∈Qt0

|∆u(x, t)| ≤ K7∆t max
(x,t)∈Qt0

|∆ρ(x, t)|+K8 max
(

max
0≤t≤t0

|∆v(t)|, max
0≤x≤l

|∆u(x, t0)|
)
,

where K7, K8 are positive constants.
Moreover from (29) it follows that

max
(x,t)∈Qt0

|∆ρ(x, t)| ≤ ∆t max
(x,t,u)∈D

|γu(x, t, u)| max
(x,t)∈Qt0

|∆u(x, t)|+ max
0≤x≤l

|∆ρ(x, t0)|.

By taking into account these bounds and (27) and choosing the value of ∆t from the condition

(∆t)2K7 max
(x,t,u)∈D

|γu(x, t, u)| < 1,

we establish that
max

(x,t)∈Qt0
|∆ρ(x, t)| ≤ K6 max

0≤t≤T
|∆v(t)|.
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Then from the estimate of the maximum principle for ∆u(x, t) it follows

max
(x,t)∈Qt0

|∆u(x, t)| ≤ K5 max
0≤t≤T

|∆v(t)|.

By repeating the analogous arguments for t ∈ [t1, t1+∆t] (t1 = t0+∆t), t ∈ [t2, t2+∆t] (t2 = t1+∆t),
etc., we establish estimates (26) on the whole segment [0, T ] for 0 ≤ x ≤ l. This allows us to conclude
from (25) that

|Jg(vn)− Jg(v)| ≤ K9 max
0≤t≤T

|∆v(t)|, K9 = const > 0.

Thus, thanks to (24) we obtain the equality lim
n→∞

Jg(v
n) = Jg(v), which proves the first claim of

Theorem 3.2.
To prove the second we note that for any sequence {vn} ⊂ V (or VR) weakly convergent in

W 2
2 [0, T ] to an element v ∈ V (VR) the following inequalities are valid [7]

‖vn‖W 2
2 [0,T ] ≤ K10, ‖v‖W 2

2 [0,T ] ≤ K10, K10 = const > 0.

From the fact that the embedding operator of W 2
2 [0, T ] into H1+λ/2[0, T ] (0 < λ < 1) is compact

[10] and also from the uniqueness of a weak limit, it follows that the sequence {vn(t)} satisfies (24).
By repeating the previous arguments, we obtain the equality lim

n→∞
Jg(v

n) = Jg(v), which proves the
weak continuity of the residual functional Jg(v) in W 2

2 [0, T ] for v ∈ V (VR). �

3.3. Regularized approximate solutions for the boundary inverse problem. In what follows
we assume that operator equation (21) has the exact solution v0 ∈ V for the given g. Such assumption
is natural for inverse problems of identification of boundary regimes. This means that the right-hand
side of equation (21) g ∈ AV , where AV ⊂ G is a transform of the set V in G (see (22)).

Now we pass to construction of stable approximations in the class of smooth functions for the
considered boundary inverse problem. At first we note that the exact solution of equation (21) is not
necessarily unique (an illustrating example will be shown below). Denote the set of such solutions
by V 0:

V 0 = {v0 ∈ V, Jg(v0) = inf
v∈V

Jg(v) = 0}.

From the weak continuity of the residual functional Jg(v) in W 2
2 [0, T ] for v ∈ V (see Theorem 3.2)

and from the weak closure of the set V in W 2
2 [0, T ] it follows that the set V 0 is weakly closed in

W 2
2 [0, T ] too. Hence there exist elements v0

min having the minimal norm in W 2
2 [0, T ]:

V 0
min = {v0

min ∈ V 0, ‖v0
min‖W 2

2 [0,T ] = R0} 6= ∅, R0 = inf
v0∈V 0

‖v0‖W 2
2 [0,T ]. (30)

If on a compact set VR for the functional Jg(v) the equality inf
v∈VR

Jg(v) = 0 holds, then VR∩V 0 6= ∅

and the quasisolution V ∗R (see (23)) coincides with VR ∩ V 0. Thus, the considered inverse problem is
reduced to the minimization problem for the residual functional Jg(v) on the compact set VR which
is well-posed in the sense of Tikhonov [11] by Theorem 3.1.

Otherwise, if on a compact set VR inf
v∈VR

Jg(v) > 0, then we consider the quasisolutions V ∗R on the

system of extending compact sets VR for 0 < R < R0. Our aim is to show that each element vR ∈ V ∗R
converges in W 2

2 [0, T ] to some element of the set V 0
min for R→ R0.

By using the definition of β-convergence of sets [5, 9] this claim is formulated in the following
theorem.
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Theorem 3.3. Assume that the input data satisfy the hypotheses of Theorem 2.1. Then the quasiso-
lution V ∗R defined for any R, 0 < R < R0, β-converges to the set V 0

min of the exact solutions with the
minimal norm for R→ R0:

V ∗R
β→ V 0

min (W 2
2 [0, T ]). (31)

Moreover, for R→ R0

U∗R
β→ U0

min

(
C(Q)

)
, <∗R

β→ <0
min

(
C(Q)

)
, (32)

where
{
U∗R,<∗R

}
and

{
U0

min,<0
min

}
are the sets of solutions of nonlinear problem (1)–(4) corresponding

to the sets of the boundary functions vR ∈ V ∗R and v0
min ∈ V 0

min.
Assume, moreover, that for (x, t, u) ∈ D the derivatives of the coefficients of equation (1)

axu(x, t, u), auu(x, t, u), bu(x, t, u), cu(x, t, u), and du(x, t, u) are Hölder continuous in x, t, and u
with the corresponding exponents λ, λ/2, λ; moreover, the derivative with respect to u of the function
γ(x, t, u) in equation (4) satisfies the Hölder condition as a function of x, t with the exponents λ,
λ/2, the derivative γuu(x, t, u) is uniformly bounded.

Then there holds β-convergence in the Hölder spaces for R→ R0:

U∗R
β→ U0

min

(
H2+λ,1+λ/2(Q)

)
, <∗R

β→ <0
min

(
Hλ,λ/2(Q)

)
. (33)

Proof. At first we note that for R = R0 the quasisolution V ∗R coincides with V 0
min. In fact, for all

vR0 ∈ V ∗R0 the inequality ‖vR0‖W 2
2 [0,T ] ≤ R0 holds. On the other hand, from the definition of R0 (see

(30)) and from the inclusion V ∗R0 ⊆ V 0 it follows that the inequality ‖vR0‖W 2
2 [0,T ] < R0 is impossible.

Thus, for all vR0 ∈ V ∗R0 ‖vR0‖W 2
2 [0,T ] = R0, i.e., V ∗R0 coincides with V 0

min.
By the definition of β-convergence of sets relation (31) means that

sup
vR∈V ∗R

inf
vR0∈V ∗

R0

‖vR − vR0‖W 2
2 [0,T ] → 0 for R→ R0. (34)

To prove (34) we note that the function J∗g (R) = infv∈VR Jg(v) is a continuous and nonincreasing
function of R for 0 < R ≤ R0 (see [1]), i.e., J∗g (R) → J∗g (R0) for R → R0. Hence the sequence
{vR} ⊂ VR (where vR is any element of V ∗R) is a minimizing sequence for the functional Jg(v) on the
set VR0 . We can therefore conclude by Theorem 3.1 that

inf
vR0∈V ∗

R0

|vR − vR0 |1+λ/2
[0,T ] → 0 for R→ R0.

From here and from the arbitrariness of vR ∈ V ∗R it follows that

sup
vR∈V ∗R

inf
vR0∈V ∗

R0

|vR − vR0|1+λ/2
[0,T ] → 0 for R→ R0,

i.e., V ∗R
β→ V 0

min

(
H1+λ/2[0, T ]

)
since V ∗R0 coincides with V 0

min.
In order to prove more strong claim (31) we note that the set VR0 is weakly compact in W 2

2 [0, T ]
since by its definition, VR0 is convex, closed, and bounded in W 2

2 [0, T ]. Hence we can find a sub-
sequence {vRn} ⊆ {vR} weakly convergent in W 2

2 [0, T ] to an element vR0 of the set V ∗R0 ⊂ VR0 (see
Theorem 3.2 on the weak continuity in W 2

2 [0, T ] of the functional Jg(v) on the set VR0).
Note that this subsequence is also strongly convergent in W 2

2 [0, T ] to vR0 . In fact, from the weak
lower semicontinuity of the norm of the element vR0 ∈ V ∗R0 in the Hilbert space W 2

2 [0, T ] and because
it belongs to the boundary of the set VR0 (‖vR0‖W 2

2 [0,T ] = R0) it follows that

R0 = ‖vR0‖W 2
2 [0,T ] ≤ limn→∞‖vRn‖W 2

2 [0,T ] ≤ limn→∞‖vRn‖W 2
2 [0,T ] ≤ R0.
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Thus ‖vRn‖W 2
2 [0,T ] → ‖vR0‖W 2

2 [0,T ] for n → ∞ and hence vRn → vR0 strongly in W 2
2 [0, T ] [7]. Then

the arbitrariness of the element vR ∈ V ∗R allows one to conclude that claim (34) is valid. This means
β-convergence of the set V ∗R to V 0

min in W 2
2 [0, T ].

The proof of claim (32) on β-convergence of the sets U∗R and <∗R in C(Q) is then obvious conse-
quence of the embedding theorems [10] and estimates (26) for

∆u(x, t) = uR(x, t)− u0
min(x, t), ∆ρ(x, t) = ρR(x, t)− ρ0

min(x, t),

where {uR(x, t), ρR(x, t)} and {u0
min(x, t), ρ0

min(x, t)} are the solutions of nonlinear problem (1)–
(4) corresponding to the boundary functions vR(t) ∈ V ∗R and v0

min(t) ∈ V 0
min, and where

∆v(t) = vR(t)− v0
min(t).

In order to prove claim (33) on β-convergence of U∗R and <∗R in Hölder classes it is required to
obtain the corresponding stability estimates of the form

|∆u(x, t)|2+λ,1+λ/2

Q
≤ K11|∆v(t)|1+λ/2

[0,T ] , |∆ρ(x, t)|λ,λ/2
Q

≤ K12|∆v(t)|1+λ/2
[0,T ] , (35)

where K11, K12 are positive constants. Such estimates are shown step by step (as in the above proof
of estimates (26)) for the bounded time intervals [t0, t0 + ∆t], [t1, t1 + ∆t] (t1 = t0 + ∆t), etc., under
assumption that for t ∈ [0, t0], 0 ≤ t0 < T , they are already established:

|∆u(x, t)|2+λ,1+λ/2

0≤x≤l,0≤t≤t0 ≤ K11|∆v(t)|1+λ/2

[0,t0] ,

|∆ρ(x, t)|λ,λ/20≤x≤l,0≤t≤t0 ≤ K12|∆v(t)|1+λ/2

[0,t0] . (36)

In the domain Qt0 = {0 ≤ x ≤ l, t0 ≤ t ≤ t0 + ∆t} the following relations hold

c(x, t, uR)ρR(x, t)∆ut − (a(x, t, uR)∆ux)x +D0∆ux +D1∆u

= c(x, t, u0
min)(u0

min)t∆ρ(x, t), (x, t) ∈ Qt0 , (37)

∆u|x=0 = 0, ∆u|x=l = ∆v(t), t0 < t ≤ t0 + ∆t,

∆ρ(x, t) =

t∫
t0

γu(x, τ, uR)∆u(x, τ) dτ + ∆ρ(x, t0), 0 ≤ x ≤ l, (38)

where the coefficients D0 and D1 depend in the corresponding way on the derivatives au, axu, auu,
bu, cu, and du at the point (x, t, σuR + (1 − σ)u0

min) (0 < σ < 1). Moreover, D0 and D1 depend on
ρR(x, t), uR(x, t) and the derivatives uRx(x, t), uRxx(x, t), and uRt(x, t). The estimates in the Hölder
classes of Theorem 2.1 for uR(x, t) and ρR(x, t) and the requirements of Theorem 3.3 to the input
data allow one to conclude that all the coefficients of equation (37) are Hölder continuous in x, t
with the exponents λ, λ/2. Thus, ∆u(x, t) solves the linear boundary value problem of the first kind
in H2+λ,1+λ/2(Qt0) and the corresponding estimate in the domain Qt0 (see [8]) holds

|∆u(x, t)|2+λ,1+λ/2

Qt0
≤ K13

(
|∆ρ(x, t)|λ,λ/2

Qt0
+ |∆v(t)|1+λ/2

[t0,t0+∆t] + |∆u(x, t0)|2+λ
[0,l]

)
, (39)

where K13 is a positive constant.
In order to estimate |∆ρ(x, t)|λ,λ/2

Qt0
in (39) we note that the definition of the norm in the Hölder

space Hλ,λ/2(Qt0) means that

|∆ρ(x, t)|λ,λ/2
Qt0

= max
(x,t)∈Qt0

|∆ρ(x, t)|+ 〈∆ρ(x, t)〉λ
x,Qt0

+ 〈∆ρ(x, t)〉λ/2
t,Qt0

.
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By using relation (38) we can find that

max
(x,t)∈Qt0

|∆ρ(x, t)| ≤ ∆t max
(x,t,u)∈D

|γu(x, t, u)| max
(x,t)∈Qt0

|∆u(x, t)|+ max
0≤x≤l

|∆ρ(x, t0)|,

〈∆ρ(x, t)〉λ
x,Qt0

≤ ∆t
{
〈γu〉λx,D max

(x,t)∈Qt0
|∆u(x, t)|+ max

(x,t,u)∈D
|γu(x, t, u)|〈∆u(x, t)〉λ

x,Qt0

+ max
(x,t,u)∈D

|γuu(x, t, u)|〈uR(x, t)〉λ
x,Qt0

max
(x,t)∈Qt0

|∆u(x, t)|
}

+ 〈∆ρ(x, t0)〉λx,[0,l],

〈∆ρ(x, t)〉λ/2
t,Qt0
≤ ∆t1−λ/2 max

(x,t,u)∈D
|γu(x, t, u)| max

(x,t)∈Qt0
|∆u(x, t)|.

Note that

max
(x,t)∈Qt0

|∆u(x, t)| ≤ |∆u(x, t)|2+λ,1+λ/2

Qt0
, 〈∆u(x, t)〉λ

x,Qt0
≤ |∆u(x, t)|2+λ,1+λ/2

Qt0
.

Hence by (39) the estimates obtained for |∆ρ(x, t)|λ,λ/2
Qt0

allow one to show that for the sufficiently
small but fixed ∆t the following inequality holds

|∆u(x, t)|2+λ,1+λ/2

Qt0
≤ K14

(
|∆v(t)|1+λ/2

[t0,t0+∆t] + |∆u(x, t0)|2+λ
[0,l] + |∆ρ(x, t)|λ,λ/20≤x≤l,0≤t≤t0

)
,

where K14 is a positive constant. By our assumption, for 0 ≤ x ≤ l, 0 ≤ t ≤ t0 estimates (36) are
already derived. Hence the above inequality means that analoguos estimates are valid in the domain
Qt0 including the corresponding estimates for |∆ρ(x, t)|λ,λ/2

Qt0
.

By repeating the similar arguments for the consequent time intervals we can prove estimates (35)
for |∆u(x, t)|2+λ,1+λ/2

Q
and |∆ρ(x, t)|λ,λ/2

Q
in the whole domain Q. The proof of claim (33) is then

obvious consequence of estimates (35) and the embedding theorems [10]. �

Remark. By this theorem any element vR(t) ∈ V ∗R for 0 < R < R0 and the solution
{uR(x, t), ρR(x, t)} of nonlinear problem (1)–(4) corresponding to this boundary function are ap-
proaches in the Hölder spaces to one of the solutions {u0

min(x, t), ρ0
min(x, t), v0

min(t)} of the considered
boundary inverse problem.

If the set of the exact solutions V 0 consists of the single element v0, then the claims of Theorem 3.3
mean α-convergence of the corresponding sets for R→ R0:

V ∗R
α→ v0

(
W 2

2 [0, T ]
)
, U∗R

α→ u0
(
H2+λ,1+λ/2(Q)

)
, <∗R

β→ ρ0
(
Hλ,λ/2(Q)

)
,

where {u0(x, t), ρ0(x, t), v0(t)} is the exact solution of the inverse problem.
In general, without some additional suppositions on the properties of the exact solution of the

considered inverse problem it needs not be unique. This is illustrated by the following example.

Example. It is required to find a function u(x, t) in the domain Q = {0 ≤ x ≤ 1,
0 ≤ t ≤ 1}, a coefficient ρ(t) and a boundary function v(t) for 0 ≤ t ≤ 1 that satisfy the rela-
tions

ρ(t)ut − uxx = f(x, t, u), (x, t) ∈ Q,

u(x, t)|x=0 = 0, u(x, t)|x=1 = v(t), 0 < t ≤ 1,

u(x, t)|t=0 = x(1− x), 0 ≤ x ≤ 1,

and the additional relation

ρt(t) = γ(x, t, u), 0 < t ≤ 1, ρ(t)|t=0 = 0.25,
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with the final condition ρ(t)|t=1 = 1. Here the functions f(x, t, u) and γ(x, t, u) have the form

f(x, t, u) = {2 + 1.5x(1− t)− 1.125x(1− t)3}h1(x, t, u)

− {2 + 0.125x(1 + t)3}h2(x, t, u),

γ(x, t, u) = 1.5(1− t)h1(x, t, u)− 0.5(1 + t)h2(x, t, u),

where

h1(x, t, u) =
u− x

(
0.75 + 0.25(1 + t)2 − x

)
xt(1− t)

,

h2(x, t, u) =
u− x

(
1.75− 0.75(1− t)2 − x

)
xt(1− t)

.

This inverse problem has two solutions {u1(x, t), ρ1(t), v1(t)} and {u2(x, t), ρ2(t), v2(t)}
u1(x, t) = x{0.75 + 0.25(1 + t)2 − x},
ρ1(t) = 0.25(1 + t)2,
v1(t) = 0.25t(2 + t),
u2(x, t) = x{1.75− 0.75(1− t)2 − x},
ρ2(t) = 1− 0.75(1− t)2,
v2(t) = 0.75t(2− t).

4 Conclusion

The work contains the theoretical studies of new nonlinear parabolic problems with the wide poten-
tial applications. Our main aim is to justify such statements in the class of smooth functions for
quasilinear parabolic equations with an unknown coefficient in a case of the boundary conditions of
the first kind. This justification is an important task since such new statements essentially differ
from usual ones. The following results of our analysis can be formulated.

1. Conditions of unique solvability in the Hölder spaces are proved for nonlinear system (1)–(4)
which involves a boundary value problem of the first kind for a quasilinear parabolic equation with
an unknown coefficient at the time derivative and, moreover, an equation for a time dependence of
the sought coefficient. To this end, a priori estimates in the corresponding spaces are established
for the nonlinear differential-difference system that approximates the original system by the Rothe
method. Thanks to these estimates we avoid additional assumptions on the smoothness of the input
data (which have usually been imposed by the Rothe method) and determine the faithful character
of differential relations for the nonlinear parabolic problem of the considered type. Moreover, these
estimates allow one to obtain the error estimates for the Rothe method, i.e., this method provides
the approximate solutions for the considered problem.

2. The established results are then used for investigation of the other nonlinear parabolic
problem, which is inverse to the statement of system (1)–(4) and consists of determination of a
boundary regime at x = l by using the final observation of the sought coefficient ρ(x, t). This
inverse problem belongs to a class of ill-posed boundary inverse problems but it has an essen-
tial distinction from usual statements since, moreover a boundary function, the coefficient ρ(x, t)
must be determined in system (1)–(4). In order to overcome the mentioned difficulty the oper-
ator representation of this inverse problem is proposed. This representation is justified by us-
ing the results of Section 2 on "natural" function spaces for the input data and the solution in
system (1)–(4). For obtaining approximate solutions stable in the chosen spaces the regularization
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variational method is developed with application of quasisolutions on the system of extending com-
pact sets. The continuity of the residual functional in the corresponding variational formulation is
established by using the estimates in the Hölder spaces for nonlinear system (1)–(4). On the basis of
these estimates, results for stability of the regularized approximate solutions are proved in the class
of smooth functions.
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