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1 Introduction

Let (U, µ) be a space with measure µ, Ω some set. By GΩ = {Gt,y}t>0, y∈Ω we denote a two-parameter
family of µ -measurable sets satisfying the following condition:

Gt,y ⊂ Gs,y for 0 < t < s, y ∈ Ω.

This family of sets will be called a net. If the sets Gt,y, t > 0 do not depend on the parameter y,
then such nets will be denoted by G = {Gt}t>0. For y ∈ Ω, set G{y} = {Gt,y}t>0. We will say that
these nets are generated by the net GΩ.

Let 0 < p, q ≤ ∞, 0 < λ <∞. We denote by Mλ
p,q(GΩ, µ) the space of all µ-measurable functions

f : U → R such that for q <∞

Mλ
p,q(GΩ, µ) =

{
f :

( ∞∫
0

(
t−λ sup

y∈Ω

( ∫
Gt,y

|f(x)|pdµ
)1/p)q

dt

t

)1/q

<∞

}
,

and for q =∞

Mλ
p,∞(GΩ, µ) =

{
f : sup

t>0, y∈Ω
t−λ
( ∫
Gt,y

|f(x)|pdµ
)1/p

<∞

}
.

If U = Rn, µ is the Lebesgue measure, Gt,y = B(y, t) (the ball centered at point y ∈ Rn of radius
t > 0), then this space will be denoted by Mλ

p,q,Ω. In particular, for q = ∞ and Ω = Rn this is the
classical Morrey space Mλ

p .
If U = Rn, µ is the Lebesgue measure, Ω = {0} and Gt = Gt,0 = B(0, t), then the space

Mλ
p,q(GΩ, µ) is the local Morrey-type space LMλ

p,q, introduced and used to study the properties
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maximal and fractional maximal operator in the works [5, 6, 7, 8]. If Ω = {y} andGt = Gt,y = B(y, t),
then the corresponding local Morrey-type space will be denoted by LMp,q,y.

The interpolation problem for the real method for the Morrey spaces was considered in the papers
[25, 15, 22, 24, 25, 4, 18]. It follows from the results of [22] that for 1 ≤ p <∞

(Mλ0
p ,M

λ1
p )θ,∞ ⊂Mλ

p , where λ = (1− θ)λ0 + θλ1 0 < θ < 1,

where (·, ·) denotes the real interpolation functor. In the works [24, 4] it was established that this
inclusion is strict.

In [19], it was proved that the embedding

(Mλ0
p0
,Mλ1

p1
)θ,∞ ⊂Mλ

p ,

where

1 ≤ p1, p2 <∞,
1

p
=

1− θ
p0

+
θ

p1

, λ = (1− θ)λ0 + θλ1, 0 < θ < 1,

holds if and only if p0 = p1.
In the papers [9, 10, 11, 12] it was established that, in contrast to the scale of the Morrey spaces

Mλ
p , the scale of the local Morrey-type spaces LMλ

p,q with fixed p is closed with respect to the
interpolation procedure, namely, it was proved that if 0 < p, q0, q1, q ≤ ∞, 0 < θ < 1, λ0 6= λ1 and
0 < λ0, λ1 <∞, then(

LMλ0
p,q0
, LMλ1

p,q1

)
θ,q

= LMλ
p,q, where λ = (1− θ)λ0 + θλ1, 0 < θ < 1.

In the paper [10], a description of interpolation spaces is obtained also for spaces that are substantially
more general than LMλ

p,q.
In the papers [12, 13], the following interpolation theorem for quasi-additive operators was proved.

Theorem 1.1. Let Ω ⊂ Rn, 0 < p, q, σ, τ ≤ ∞, 0 ≤ α0, α1 < ∞, α0, α1 > 0, if σ < ∞, α0 6= α1,
0 ≤ β0, β1 <∞, β0 6= β1, 0 < θ < 1 and

α = (1− θ)α0 + θα1, β = (1− θ)β0 + θβ1.

Let an operator T be quasi-additive 1 on
⋃
y∈Ω

(
LMα0

p,σ,y + LMα1
p,σ,y

)
with a quasi-additivity constant

A.
If for some M0,M1 > 0 the inequalities

‖Tf‖
LM

βi
q,∞,y
≤Mi‖f‖LMαi

p,σ,y
(1.1)

hold for all y ∈ Ω and for all functions f ∈ LMαi
p,σ,y, i = 0, 1, then the inequality

‖Tf‖Mβ
q,τ,Ω
≤ cAM1−θ

0 M θ
1‖f‖Mα

p,τ,Ω
(1.2)

holds for all functions f ∈Mα
p,τ,Ω, where c > 0 depends only on α0, α1, β0, β1, q, σ, τ and θ.

1 That is,
|T (f0 + f1)(x)| ≤ A(|Tf0(x)|+ |Tf1(x)|)

for almost all x ∈ Rn for all y ∈ Ω and for all f0 ∈ LMα0
p,σ,y, f1 ∈ LMα1

p,σ,y.
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In this theorem, in a certain sense strong estimate (1.2) is derived from in a certain sense weak
estimates (1.1).

In this paper, we consider the interpolation properties of nonlinear Urysohn integral operators

(Tf)(y) =

∫
U

K(f(x), x, y)dµ(x) , y ∈ V, (1.3)

where f : U → R, K : f(U)×U×V → R, in much more general classes of Morrey-type spaces, which
allow one to obtain analogues of the Marcinkiewicz–Calderon and Stein–Weiss–Peetre interpolation
theorems for a wide class of operators of form (1.3). Note that the well-known interpolation theorems
of Marcinkiewicz–Calderon [14], Stein–Weiss–Peetre [26, 23] do not cover this class of operators.

For the properties of Urysohn operators and, in particular, for the conditions on K under which
the integral in (1.3) exists and is finite for almost all y ∈ V , see the book [17] and the articles [20],
[21].

In particular, if K is Borel measurable on F (U) × U × V , f ∈ Lp(U, µ), where 0 < p < ∞, for
some 0 ≤ α ≤ p and c > 0

|K(z, x, y)| ≤ c|z|α|K(1, x, y)|

for all x ∈ U, y ∈ V, z ∈ f(U), and ‖K(1, ·, y)‖Lr(U,µ) < ∞ for almost all y ∈ V , where 1
r

= 1 − α
p
,

then the integral in (1.3) exists and is finite for almost all y ∈ V .

2 Interpolation theorems for Morrey-type spaces

Let (U, µ) be a space with measure µ, Ω some set, GΩ = {Gt,y}t>0, y∈Ω be a net, s > 0. Let us define
the nets

Ǧs
Ω =

{
Ǧs
t,y

}
t>0, y∈Ω

, Ĝs
Ω =

{
Ĝs
t,y

}
t>0, y∈Ω

(2.1)

and, for y ∈ Ω, the nets generated by them

Ǧs
{y} =

{
Ǧs
t,y

}
t>0

, Ĝs
{y} =

{
Ĝs
t,y

}
t>0

, (2.2)

where
Ǧs
t,y =

{
Gt,y, if s ≥ t,
Gs,y, if s < t ,

(2.3)

Ĝs
t,y =

{
�, if s ≥ t,
Gt,y, if s < t.

(2.4)

Remark 1. If G = {Gt}t>0 is a filtering, i.e. G is a system of expanding σ−algebras of measurable
sets, then in the theory of stochastic processes the procedure defined by relation (2.3) is called a
stop corresponding to the moment s, and procedure (2.3) defines the beginning, corresponding to
the moment s. These transformations play an important role in the construction of interpolation
methods for stochastic processes [1, 2, 3]. In this section, we present the main results of this work,
where these transformations also play an essential role.

Theorem 2.1. Let (U, µ), (V, ν) be spaces with measures µ, ν, Ω ⊂ Rn.
Let GΩ, Ǧs

Ω, Ĝs
Ω, Ǧs

{y}, Ĝ
s
{y}, where s > 0, y ∈ Ω, be the nets in U , defined by (2.1) – (2.4).

Let FΩ = {Ft,y}t>0, y∈Ω be a net in V and F{y}, where y ∈ Ω, be the nets in V generated by F .
Let 0 < p, q, σ, τ ≤ ∞, 0 ≤ α0, α1 < ∞, α0, α1 > 0, if σ < ∞, α0 6= α1, 0 ≤ β0, β1 < ∞, β0 6=

β1, 0 < θ < 1 and
α = (1− θ)α0 + θα1, β = (1− θ)β0 + θβ1.
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Let f ∈Mα
p,τ (GΩ, µ) and T be an Urysohn integral operator (1.3).

If for some M0,M1 > 0 the inequalities

‖Tfχ
Gs,y
‖
M
β0
q,∞(F{y},ν)

≤M0‖f‖Mα0
p,σ(Ǧs{y},µ), (2.5)

‖Tf(1− χ
Gs,y

)‖
M
β1
q,∞(F{y},ν)

≤M1‖f‖Mα1
p,σ(Ĝs{y},µ), (2.6)

hold for all y ∈ Ω, s > 0, then the inequality

‖Tf‖Mβ
q,τ (FΩ,ν) ≤ cM1−θ

0 M θ
1‖f‖Mα

p,τ (GΩ,µ), (2.7)

holds, where c > 0 depends only on α0, α1, β0, β1, q, σ, τ and θ.

Remark 2. Conditions (2.5), (2.6) of the theorem are formulated correctly since if f ∈Mα
p,τ (GΩ, µ),

then for arbitrary y ∈ Ω and s > 0
‖f‖Mα0

p,σ(Ǧs{y},µ) <∞,

‖f(1− χ
Gs,y

)‖Mα1
p,σ(G{y},µ) ≤ ‖f‖Mα1

p,σ(Ĝs{y},µ) <∞.

Remark 3. This theorem, although similar in form to classical interpolation theorems, has an
essential distinction. The point is that the conditions and statement of the theorem are formulated
for a fixed function f ∈Mα

p,q(GΩ, µ). We can say that here we are not talking about the interpolation
of an operator, but about the interpolation of inequalities for a fixed function. This fact makes the
statement more universal for application. In particular, the sets Gs,y can be chosen to depend on f .

Let U = V = Rn, and µ = ν be the Lebesgue measure, Ω ⊂ Rn, 0 < p, q ≤ ∞, 0 ≤ λ < ∞,
λ > 0 if q <∞. Let v be a positive locally absolutely continuous strictly increasing function defined
on (0,∞). We define the spaces Mλ

p,q,Ω(v): for 0 < q <∞

Mλ
p,q,Ω(v) =

{
f ∈ Llocp (R)n) :

‖f‖Mλ
p,q,Ω(v) =

( ∞∫
0

(
(v(r))−λ sup

y∈Ω
‖f‖Lp(B(y,r))

)q
dv(r))

v(r)

)1/q

<∞

}
and

Mλ
p,∞,Ω(v) =

{
f : ‖f‖Mλ

p,∞,Ω(v) = sup
r>0,y∈Ω

(v(r))−λ‖f‖Lp(B(y,r)) <∞
}
.

Corollary 2.1. Let Ω ⊂ Rn, 0 < p, q, σ, τ ≤ ∞, 0 < α0, α1 < ∞, α0, α1 > 0, if σ < ∞, α0 6= α1,
0 ≤ β0, β1 <∞, β0 6= β1, 0 < θ < 1 and

α = (1− θ)α0 + θα1, β = (1− θ)β0 + θβ1.

Let functions v, w satisfy the conditions listed above and let T be an Urysohn integral operator
(1.3).

If for some M0,M1 > 0 the inequalities

‖Tf‖
M
βi
q,∞,y(v)

≤Mi‖f‖Mαi
p,σ,y(w)

hold for all y ∈ Ω and for all functions f ∈ LMαi
p,σ,y(w), i = 0, 1, then the inequality

‖Tf‖Mβ
q,τ,Ω(v) ≤ cM1−θ

0 M θ
1‖f‖Mα

p,τ,Ω(w)

holds for all functions f ∈ LMα
p,τ,Ω(w), where c > 0 depends only on α0, α1, β0, β1, q, σ, τ and θ.
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3 An interpolation theorem of Marcinkiewicz–Calderon type

Recall that, given a space (U, µ) with measure µ and a µ-measurable function f defined on U , the
function

f ∗(t) = inf{σ ≥ 0 : µ ({x ∈ U : |f(x)| > σ}) ≤ t}, t ≥ 0,

is called the non-increasing rearrangement of f . Moreover, for 0 < r <∞, 0 < q ≤ ∞. the Lorentz
space Lr,q(U, µ) is the space of all µ-measurable functions f defined on U for which

‖f‖Lr,q(U,µ) =

 ∞∫
0

(
t

1
r f ∗(t)

)q dt
t

1/q

<∞.

We say that a measure µ satisfies the regularity condition if for every µ-measurable set e, and
α ∈ (0, µ(e)

2
] there is a µ-measurable subset w ⊂ e such that

α ≤ µ(w) ≤ 2α. (3.1)

Theorem 3.1. Let (U, µ), (V, ν) be spaces with measures µ, ν satisfying regularity condition (3.1).
Let 1 ≤ p0 < p1 <∞, 1 ≤ q0, q1 <∞, q0 6= q1, 0 < σ, τ ≤ ∞, 0 < θ < 1 and

1

p
=

1− θ
p0

+
θ

p1

,
1

q
=

1− θ
q0

+
θ

q1

.

Let T be an Urysohn integral operator (1.3).
If for some M0,M1 > 0 the inequalities

‖Tf‖Lqi,∞(V,ν) ≤Mi‖f‖Lpi,σ(U,µ) (3.2)

hold for all functions f ∈ Lpi,σ(U, µ), i = 0, 1, then the inequality

‖Tf‖Lq,τ (V,ν) ≤ cM1−θ
0 M θ

1‖f‖Lp,τ (U,µ) (3.3)
holds for all functions f ∈ Lp,τ (U, µ), where c > 0 depends only on p0, p1, q0, q1, σ, τ and θ.

3 An interpolation theorem of Stein–Weiss–Peetre type

Let µ be a measure on U satisfying regularity condition (3.1) and w a positive µ-measurable function
on U (weight function).

By Lp(U,w, µ), where 0 < p ≤ ∞ we denote the space of all µ-measurable functions on U for
which

‖f‖Lp(U,w,µ) =

( ∫
U

(w(x)|f(x)|)pdµ
) 1

p

<∞.

If w ≡ 1, then Lp(U, 1, µ) ≡ Lp(U, µ); if µ is the Lebesgue measure, then Lp(U,w, µ) ≡ Lp(U,w).

Theorem 3.1. Let 0 < p ≤ q <∞, 0 < θ < 1. Let w0, w1 be positive µ-measurable functions on U
and T be an Urysohn integral operator (1.3).

If for some M0,M1 > 0 the inequalities

‖Tf‖Lq(U,wi,µ) ≤Mi‖f‖Lp(U,wi,µ)

hold for all functions f ∈ Lp(U,wi, µ), i = 0, 1, then the inequality

‖Tf‖Lq(U,w1−θ
0 wθ1 ,µ) ≤ cM1−θ

0 M θ
1‖f‖Lp(U,w1−θ

0 wθ1 ,µ) (3.1)

holds for all functions f ∈ Lp(U,w1−θ
0 wθ1, µ), where c > 0 depends only on q, α0, α1, λ0, λ1 and θ.
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Remark 4. Theorem 3.1, in the case when T is a linear operator and p0 = p1 = p, was proved by
Stein and Weiss [26]. In this case, the constant c in inequality (3.1) is equal to 1. In the case when
T is a quasi-additive operator, this theorem was proved by Peetre [23].
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