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Abstract. We find a criterion of unconditional basicity of the system (
√
xρkJν(xρk) : k ∈ N) in the

space L2(0; 1) where Jν is the Bessel function of the first kind of index ν ≥ −1/2 and (ρk : k ∈ N) is
a sequence of distinct nonzero complex numbers.
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1 Introduction and main results

Let P = {ρk : k ∈ N} be a sequence of nonzero complex numbers. Developing the results of Pavlov
[21], Nikol’skii [20] and others (see [14, 16, 24]), Minkin [19] obtained a criterion of unconditional
basicity of the system of exponentials (exp(iρkt) : k ∈ N) in L2(−π; π). Lyubarskii and Seip [17]
found another approach to the proof of this criterion. Let

Jν(z) =
∞∑
k=0

(−1)k(z/2)ν+2k

k!Γ(ν + k + 1)
, z = x+ iy = reiθ,

be the Bessel function of the first kind of index ν ∈ R, where Γ is the gamma function. In this paper,
we will establish a criterion of unconditional basicity of the system

(
√
xρkJν(xρk) : k ∈ N) (1.1)

in the space L2(0; 1) if ν ≥ −1/2.
Basis properties of the systems of Bessel functions and similar systems have been studied in a

number of papers (see, for instance, [2], [12], [13] and [26]–[33]). In particular, it is well known that
if ν > −1 and (ρk : k ∈ N) is a sequence of positive zeros of Jν , then [13] (see also [26], [27], [33])
system (1.1) forms a basis in L2(0; 1). Another sufficient conditions of basicity of system (1.1) with
ν ≥ −1/2 in L2(0; 1) were found in [30].

Let λk = ρk, λ−k := −λk, Λ = {λk : k ∈ Z \ {0}}, let L2(X) be the space of all measurable
functions f : X → C, X ⊆ R, satisfying

‖f‖2
L2(X) :=

∫
X

|f(x)|2 dx < +∞,

let ν ∈ (−1; +∞), let L2,ν(R) be the space of all Lebesgue measurable functions f satisfying

‖f‖2
L2,ν(R) :=

∫ +∞

−∞
|x|2ν+1|f(x)|2 dx < +∞,
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let PW 2,ν be the space of all entire functions f of exponential type σ ≤ 1 for which

‖f‖2
PW 2,ν :=

∫ +∞

−∞
|x|2ν+1|f(x)|2 dx < +∞,

and let PW 2,ν
+ be the subspace of even functions f ∈ PW 2,ν .

Our main result is the following statement.

Theorem 1.1. Let ν ≥ −1/2. System (1.1) forms an unconditionally basis in L2(0; 1) if and only if
the following conditions hold:
1) ρ2

k 6= ρ2
j for k 6= j;

2) the function

S(z) =
∞∏
k=1

(
1− z2

ρ2
k

)
is an entire function of exponential type σ ≤ 1 and (z2 − ρ2

1)−1S(z) ∈ PW 2,ν
+ ;

3) inf

 ∏
Imλj>0,
j 6=k

∣∣∣∣λk − λjλk − λj

∣∣∣∣ : Imλk > 0

 > 0, inf

 ∏
Imλj<0,
j 6=k

∣∣∣∣λk − λjλk − λj

∣∣∣∣ : Imλk < 0

 > 0;

4) inf

{
|λk − λj|

1 + |λk − λj|
: (k; j) ∈ (Z \ {0})2, k 6= j

}
> 0;

5) the function u(x) = F 2(x), F (x) := |x|ν+1/2 |S(x)|
dist(x; Λ)

, satisfies the (continuous) (A2) condition

sup
I

{(
1

|I|

∫
I

u(x) dx

)(
1

|I|

∫
I

u−1(x) dx

)
: I ⊂ R

}
< +∞,

where I ⊂ R is an interval of length |I|, and dist(x; Λ) is the distance between the element x and the
set Λ.

Remark 1. The conditions 3) – 5) may be expressed in different ways (see [17]). We will discuss
this in detail below.

Let w = (wk) be a sequence of positive numbers, let l2,w be the space of all sequences d = (dk)
for which ‖d‖2

2,w :=
∑

k |dk|2wk < +∞, and let l2,w+ be the subspace of l2,w of sequences d = (dk : k ∈
Z \ {0}) such that d−k = dk. Interpolation problems in the spaces PW 2,ν have been considered in
[3]–[6], [9]–[11], [16], [18] and [22]–[24]. Following Lyubarskii and Seip [17], we say that a sequence
Λ = {λk : k ∈ Z \ {0}} (sequence P = {ρk : k ∈ N}) is a complete interpolating sequence for PW 2,ν

(for PW 2,ν
+ ) if for every sequence d ∈ l2,w, wk := |λk|2ν+1(1 + | Imλk|)e−2| Imλk| (sequence d ∈ l2,w+ ,

wk := |ρk|2ν+1(1+| Im ρk|)e−2| Im ρk|), the interpolation problem f(λk) = dk, k ∈ Z\{0} (interpolation
problem f(ρk) = dk, k ∈ N) has a unique solution f ∈ PW 2,ν (f ∈ PW 2,ν

+ ). Following [17], we also
say that a sequence w = (wk) satisfies the discrete (A2) condition if

sup

{(
1

n

k+n∑
j=k+1

wj

)(
1

n

k+n∑
j=k+1

w−1
j

)
: n ∈ N, k ∈ Z \ {0}

}
< +∞.

Theorem 1.1 will be proved by using the results of Lyubarskii and Seip ([17, 18]), and the following
statement.

Theorem 1.2. Let ν ≥ −1/2 and wk = |ρk|2ν+1(1+ | Im ρk|)e−2| Im ρk|. System (1.1) forms an uncon-
ditionally basis in L2(0; 1) if and only if the sequence P = {ρk : k ∈ N} is a complete interpolating
sequence for PW 2,ν

+ .
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2 Proof of Theorem 1.2

To prove Theorem 1.2 we need the following auxiliary statements.
Lemma 2.1. (see [3]) Let ν > −1. Then every function f ∈ L2(0; +∞) can be represented in the
form

f(z) =

∫ +∞

0

√
ztJν(zt)hf (t) dt

with some function hf ∈ L2(0; +∞). Also, we have ‖f‖L2(0;+∞) = ‖hf‖L2(0;+∞) and

hf (t) =

∫ +∞

0

√
ztJν(zt)f(z) dz.

Lemma 2.2. (see [1], [8]) Let ν ≥ −1/2. A function f has the representation

f(z) =

∫ 1

0

√
tzJν(zt)γf (t) dt

with some function γf ∈ L2(0; 1) if and only if f ∈ L2(0; +∞) and f(z) = zν+1/2Qf (z), where Qf is
an even entire function of exponential type σ ≤ 1.

By cj we denote some positive constants.
Lemma 2.3. Let ν > −1 and (ρk : k ∈ N) be an arbitrary sequence of nonzero complex numbers.
Then there exists a positive constant c1 such that for all k ∈ N

e2| Im ρk|(1 + | Im ρk|)−1/c1 ≤ ‖
√
tρkJν(tρk)‖2

L2(0;1) ≤ c1e
2| Im ρk|(1 + | Im ρk|)−1.

Proof. In fact, the right-hand side of this inequality follows from the following estimate (see [13],
[29], [33])

|
√
zJν(z)| ≤ c2e

| Im z|
(
|z|

1 + |z|

)ν+1/2

, z ∈ C.

Let us prove the left-hand side of this inequality (in the case Im ρk = 0 the proof is given in [26,
p. 227]). Without lost of generality, we may assume that |ρk| > 1. Using relations (see [26], [27],
[33])

Jν(z) =
zν

2νΓ(ν + 1)
+O(zν+2), z → 0,

Jν(z) =

√
2

πz
cos
(
z − π

2
ν − π

4

)
+O

(
e| Im z|

|z|3/2

)
, z →∞, | arg z| < π,

we get

‖
√
tρkJν(tρk)‖L2(0;1) =

(∫ 1

0

|ρk|t|Jν(t|ρk|eiθk)|2 dt
)1/2

=

(
1

|ρk|

∫ |ρk|
0

t|Jν(teiθk)|2 dt

)1/2

=

(
1

|ρk|

∫ 1

0

t|Jν(teiθk)|2 dt+
1

|ρk|

∫ |ρk|
1

t|Jν(teiθk)|2 dt

)1/2

≥ 1√
|ρk|

(∫ |ρk|
1

t|Jν(teiθk)|2 dt

)1/2

=
1√
|ρk|
‖
√
tJν(te

iθk)‖L2(1;|ρk|)

≥
√

2

π

1√
|ρk|

∥∥∥cos
(
teiθk − π

2
ν − π

4

)∥∥∥
L2(1;|ρk|)

− 1√
|ρk|

∥∥∥∥et| sin θk|t

∥∥∥∥
L2(1;|ρk|)

, ρk := |ρk|eiθk .
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In addition, (here and in what follows the sign � means that the ratio of the two sides lies between
two positive constants) ∥∥∥∥et| sin θk|t

∥∥∥∥2

L2(1;|ρk|)
� e2|ρk|| sin θk|

2|ρk|(1 + |ρk|| sin θk|)
, k →∞,

| cos(x+ iy)|2 = cos2 x+ sinh2 y,∫ |ρk|
1

sinh2(t sin θk) dt =
sinh(2|ρk| sin θk)− sinh(2 sin θk)

4 sin θk
− |ρk| − 1

2
,∫ |ρk|

1

cos2
(
t cos θk −

π

2
ν − π

4

)
dt

=
|ρk| − 1

2
+

sin(|ρk| cos θk − cos θk) sin(|ρk| cos θk + cos θk − πν)

2 cos θk
.

Proof of Theorem 1.2. The sequence (ek) of nonzero elements of a separable Hilbert space H with
the inner product 〈·; ·〉 is an unconditional basis of H (see, for example, [25]) if and only if for each
sequence (bk) satisfying

∑
k |bk|2‖ek‖−2 < +∞ there is a unique element g ∈ H such that 〈g; ek〉 = bk

for all k ∈ N. If H = L2(0; 1), ek =
√
ρkxJν(ρkx) and g ∈ L2(0; 1), then by Lemmas 2.1 and 2.2, we

have

〈g; ek〉 =

∫ 1

0

√
ρktJν(ρkt)g(t)dt = ρ

ν+1/2
k Qf (ρk),

where Qf ∈ PW 2,ν
+ . Therefore, using Lemma 2.3, we obtain the required statement.

3 Proof of Theorem 1.1

Theorem 1.1 follows from Theorem 1.2 and the results of Lyubarskii and Seip ([17], [18]). So, we are
going to sketch the proof of Theorem 1.1.

Let −∞ ≤ a < b ≤ +∞ and Ca,b = {z : a < Im z < b}, and let H2(Ca,b) be the space of all
functions f that are holomorphic in the strip Ca,b and satisfy

sup

{∫ +∞

−∞
|f(x+ iy)|2 dx : a < y < b

}
< +∞.

If at least one of the numbers a or b is finite, then every function f ∈ H2(Ca,b) has angular limit values
f ∈ L2(∂Ca,b) almost everywhere on ∂Ca,b, and the equality ‖f‖2 :=

∫
∂Ca,b
|f(z)|2 |dz| determines a

norm on H2(Ca,b) (see [3], [15]). If a ∈ R and b = +∞, then H2(Ca,b) is the Hardy space in the
half-plane Ca,b. The same can be said when a = −∞ and b ∈ R.

Lemma 3.1. (see [3]–[6], [22], [23]) If ν ≥ −1/2 and f ∈ PW 2,ν, then for any a ∈ R the function
f+(z) = (z + ia)ν+1/2eizf(z) belongs to H2(C−a,+∞) and∫ +∞

−∞
|x+ iy + ia|2ν+1|f(x+ iy + ia)|2 dx ≤ e2y

∫ +∞

−∞
|x+ ia|2ν+1|f(x+ ia)|2 dx, y > −a.

Moreover, the function f−(z) = (z − ia)ν+1/2e−izf(z) belongs to H2(C−∞,a) and∫ +∞

−∞
|x+ iy − ia|2ν+1|f(x+ iy − ia)|2 dx ≤ e−2y

∫ +∞

−∞
|x− ia|2ν+1|f(x− ia)|2 dx, y < a.
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Lemma 3.2. (see [3]–[6], [22], [23]) Let ν ≥ −1/2, γ ∈ R and β ∈ R. The space (as a set) PW 2,ν
+

coincides with the set W 2,ν [γ; β] of all even entire functions f of exponential type σ ≤ 1 satisfying

‖f‖2
W 2,ν [γ;β] :=

∫ +∞

−∞
|x+ iγ|2ν+1|f(x+ iβ)|2 dx < +∞.

Moreover, the norms ‖f‖W 2,ν [γ;β] and ‖f‖PW 2,ν
+

are equivalent,∫ +∞

−∞
|x|2ν+1|f(x+ iy)|2 dx ≤ c3‖f‖PW 2,ν

+
e2|y|,

and for any z = x+ iy ∈ C holds

|f(z)| ≤ c4‖f‖PW 2,ν
+
e|y|(1 + |z|)−ν−1/2(1 + |y|)−1/2.

Lemma 3.3. (see [17, pp. 362, 363, 366, 367]) Let ν ≥ −1/2. If the sequence P = {ρk : k ∈ N} is
a complete interpolating sequence for PW 2,ν

+ , then for every k ∈ Z \ {0} the interpolation problems
fk(λk) = fk(λ−k) = 1 and fk(λj) = fk(λ−j) = 0, j ∈ Z \ {0; k;−k}, are solvable in H2(C0,+∞) and
in H2(C−∞,0). Moreover, properties 1), 2) and the following ones hold:

inf


∏

Imλj>a,
j 6=k

∣∣∣∣ λk − λj
λk − λj + 2ia

∣∣∣∣ : Imλk > a

 > 0 for each a ∈ R; (3.1)

inf


∏

Imλj<a,
j 6=k

∣∣∣∣ λk − λj
λk − λj − 2ia

∣∣∣∣ : Imλk < a

 > 0 for each a ∈ R; (3.2)

sup


∑

j∈Z\{0},
j 6=k

(1 + | Imλk|)(1 + | Imλj|)
|λk − λj|2

: k ∈ Z \ {0}

 < +∞; (3.3)

for some ε > 0 the disks

K(λk) := {z : |z − λk| ≤ 10ε(1 + | Imλk|)} are pairwise disjoint; (3.4)

µΛ :=
∑

Imλk≥0

Imλkδλk (3.5)

is a Carleson measure in C+ := C0,+∞ (δλ is the unit point measure at λ).

By manipulating the Carleson conditions (3.1) and (3.2) in much the same way as in [7, pp. 288–
290], we obtain the following lemma.

Lemma 3.4. (see [17, pp. 363, 364, 367]) Condition (3.3) is equivalent to conditions 3) and 4), and
also to conditions (3.1) and (3.2).

Lemma 3.5. Let ν ≥ −1/2. If a sequence Λ satisfies condition (3.3), then∑
k∈Z\{0}

(1 + | Imλk|)(1 + |λk|)2ν+1e−2| Imλk||f(λk)|2 ≤ c5‖f‖2
PW 2,ν

+
, f ∈ PW 2,ν

+ .
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Proof. Indeed, if f ∈ PW 2,ν
+ , then by Lemma 3.1, we have f+(z) = (z+2i)ν+1/2eizf(z) ∈ H2(C−2,+∞)

and f−(z) = (z − 2i)ν+1/2e−izf(z) ∈ H2(C−∞,2), and for the Hardy spaces the corresponding result
is true (see [15]).

Let Q(x; r) be the square with center at x ∈ R, side length 2r, and sides parallel to the coordinate
axes. According to [17], we say that a set P ⊂ C is relatively dense if there exists r0 > 0 such that
P ∩Q(x; r0) 6= ∅ for each x ∈ R.

Lemma 3.6. Let ν ≥ −1/2. If P = {ρk : k ∈ N} is a complete interpolating sequence for PW 2,ν
+ ,

then Λ = {λk : k ∈ Z \ {0}} is relatively dense and for any function f ∈ PW 2,ν
+

‖f‖2
PW 2,ν

+
/c6 ≤

∑
k∈Z\{0}

(1 + | Imλk|)(1 + |λk|)2ν+1e−2| Imλk||f(λk)|2 ≤ c6‖f‖2
PW 2,ν

+
. (3.6)

Proof. The proof of condition (3.6) is the same as that of [17]. Assume that a set Λ is not rel-
atively dense. Then there exist sequences {xj} and {rj} such that |xj| > s, s ∈ N, rj → +∞
and Λ ∩ Q(xj; rj) = ∅. Let s > 1 + ν, µ = ν + 1 − s, qj = 1/|xj| and let fj(z) =

qµj

(
∞∑
k=0

(−1)k

(2k + 1)!
q2k+1
j (z2 − x2

j)
k

)s
. Then fj ∈ PW 2,ν

+ ,

fj(z) = qµj

(
sin qj(z

2 − x2
j)

1/2

(z2 − x2
j)

1/2

)s

,

‖fj‖2
PW 2,ν

+
= 2

∫ 1

0

(1− u2)ν
(
| sinu|
u

)2s

u du+ 2

∫ +∞

0

(1 + u2)ν
(
| sinu|
u

)2s

u du,

‖fj‖2
PW 2,ν

+
/c6 ≤

∞∑
k=1

(1 + | Imλk|)(1 + |λk|)2ν+1e−2| Imλk||fj(λk)|2 ≤ c6‖fj‖2
PW 2,ν

+
,

and

‖fj‖2
PW 2,ν

+
/c6 ≤

∞∑
k=1

(1 + | Imλk|)(1 + |λk|)2ν+1e−2| Imλk||fj(λk)|2 → 0, j →∞.

We have a contradiction, since ‖fj‖2
PW 2,ν

+

is independent of j.

Lemma 3.7. Let ν ≥ −1/2. If P = {ρk : k ∈ N} is a complete interpolating sequence for PW 2,ν
+ ,

then there exists a relatively dense set Γ = {γj : j ∈ Z\{0}} ⊂ Λ such that (|γj|2ν+1|S ′(γj)|2) satisfies
the discrete (A2) condition.

Proof. Indeed, let r > r0, Qj = Q(4jr; r) and Γ = {γj : j ∈ Z\{0}} ⊂ Λ is a relatively dense sequence
such that γj ∈ Qj. Let Σ = {σj} be another sequence with |γj − σj| = ε and S(σj) = εS ′(γj). Then
the sequence {σj} also satisfies condition (3.3). Therefore, by Lemma 3.5, we have∑

j

|σj|2ν+1(1 + | Imσj|)e−2| Imσj ||f(σj)|2 ≤ c7‖f‖2
PW 2,ν

+
.

Since S ′ is an odd function, then for a finite set {dj : j ∈ [1;m] ∩ Z} the unique solution of the
interpolation problem f(γk) = dk, γk ∈ Γ and f(γk) = 0, γk /∈ Γ, has the form

f(z) =
m∑
k=1

2γkdkS(z)

(z2 − γ2
k)S

′(γk)
=

m∑
k=−m,k 6=0

dkS(z)

(z − γk)S ′(γk)
, d−k := dk.
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In this case, according to Lemma 3.6, we get

c6‖f‖2
PW 2,ν

+
≤
∑
j

|γj|2ν+1(1 + | Im γj|)e−2| Im γj ||dj|2.

Since γj ∈ Qj, then the sequences (| Im γj|) and (| Imσj|) are bounded. Therefore∑
j

|σj|2ν+1(1 + | Imσj|)e−2| Imσj ||f(σj)|2 ≤ c8

∑
j

|γj|2ν+1(1 + | Im γj|)e−2| Im γj ||dj|2

and ∑
j

|σj|2ν+1|f(σj)|2 ≤ c9

∑
j

|γj|2ν+1|dj|2.

Since
f(σj) = εS ′(γj)

∑
k

dk
(σj − γk)S ′(γk)

,

we obtain ∑
j

|γj|2ν+1|S ′(γj)|2
∣∣∣∣∣∑
k

dk
σj − γk

∣∣∣∣∣
2

≤ c9

∑
j

|γj|2ν+1|S ′(γj)|2|dj|2.

Thus, the operator HΓ,Σ : d = {dj} 7−→ HΓ,Σd, HΓ,Σd :=
∑
k

dk
σj−γk

is bounded on l2,w+ if wj =

|γj|2ν+1|S ′(γj)|2. Therefore ([17]), the sequence (|γj|2ν+1|S ′(γj)|2) satisfies the discrete (A2) condition,
and the lemma is proved.

Lemma 3.8. If ν ≥ −1/2 and P = {ρk : k ∈ N} is a complete interpolating sequence for PW 2,ν
+ ,

then 5) holds.

In fact, since the discrete (A2) condition is equivalent to the continuous (A2) condition, by using
Lemma 2 from [17, p. 368] and the inequality tss1−α ≤ t+ s, t, s > 0, α ∈ [0; 1], we obtain that the
statement of this lemma follows from Lemma 3.7.

Similarly to [17], by using conditions 1), 2) and 5), we obtain the following lemma.

Lemma 3.9. (see [17, Lemma 3, p. 371]) Let condition (3.4) be true. Then

|S(z)| ≥ c10(1 + |z|)−1/2e| Im z|, for dist(z; Λ) ≥ ε(1 + | Im z|).

Lemma 3.10. Let ν ≥ −1/2 and P = {ρk : k ∈ N} be an arbitrary sequence of nonzero complex
numbers. A sequence Λ = {λk : k ∈ Z \ {0}} is a complete interpolating sequence for PW 2,ν

+ if and
only if conditions 1) – 5) hold.

Proof. The necessity follows from Lemmas 3.3–3.8. Let us prove the sufficiency. First, we will show
that the function

f(z) =
∑
m∈N

2ρmdmS(z)

(z2 − ρ2
m)S ′(λm)

= v.p.
∑

m∈Z\{0}

dmS(z)

(z − λm)S ′(λm)
(3.7)

is the required solution of the interpolation problem f(ρk) = dk, where d−k := dk for k ∈ N. To
this end, it suffices to estimate the partial sums of series (3.7) corresponding to λm ∈ R∪C0,+∞ and
λm ∈ R∪C−∞,0, respectively on the lines Im z = −1/2 and Im z = 1/2. Following [17, p. 373], we will
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give the corresponding estimates on the line Im z = 0 assuming that Imλm ≥ 1/2 and Imλm < 1/2,
respectively. In the first case, let

B(z) =
∏

Imλj≥1/2

z − λj
z − λj

, G(z) =
S(z)

e−izB(z)
.

Then S(z) = G(z)e−izB(z), where G is a bounded outer function in C+, and we observe that 5) is
equivalent to |G(x)|2 satisfying the (A2) condition. Moreover, |G(x)|−2 satisfies the (A2) condition,
and the Lemma 3.4 implies |S ′(λk)| � |G(λk)| e

Imλk

Imλk
. Now let

H : f 7−→ Hf(t) =
1

iπ

∫ +∞

−∞

f(τ)

t− τ
dτ

is the classical Hilbert operator. Following [17, p. 373], we consider the function

f̃(x) =
n∑

Imλm≥1/2,
m=−n,m 6=0

Imλmdme
− ImλmG(x)

(x− λm)G(λm)
.

By duality (see [17, p. 373]), we obtain (here w(x) = xν+1/2, hw(x) = w(x)h(x) ∈ L2(R))

‖f̃‖L2,ν(R) = sup
‖h‖≤1,

h∈L2,ν(R)

∣∣∣∣∣∣∣∣
n∑

Imλm≥1/2,
m=−n,m 6=0

∫ +∞

−∞

Imλmdme
− ImλmG(x)hw(x)

(x− λm)G(λm)
dx

∣∣∣∣∣∣∣∣
≤ sup

‖h‖≤1,

h∈L2,ν(R)

∣∣∣∣∣∣∣∣
n∑

Imλm≥1/2,
m=−n,m 6=0

Imλmdme
− ImλmHGhw(λm)

G(λm)

∣∣∣∣∣∣∣∣
≤ sup

‖h‖≤1,

h∈L2,ν(R)

 ∑
Imλm≥1/2

∣∣∣∣HGhwG
(λm)

∣∣∣∣2 Imλm

1/2

×

 ∑
Imλm≥1/2

Imλme
−2 Imλm|dm|2

1/2

.

Since
∑

Imλk≥0

Imλkδλk is a Carleson measure, |G(x)|−2 satisfies the (A2) condition, G is an outer

function in C+, we have HGh/G ∈ H2(C+). Therefore, the last sums are uniformly bounded, and
we get the desired conclusion. The sum corresponding to Imλk < 0 is treated similarly. Hence, there
exists a solution of the considered interpolation problem. Now we turn to the proof of uniqueness.
Observe first that (see [17, p. 370])∫ +∞

−∞
|F (x)|2 dx

1 + |x|2
< +∞,

∫ +∞

−∞
|F (x)|2 dx = +∞.

Suppose that f(ρ) = 0, ρ ∈ P. Let ψ(z) = f(z)/S(z). Since, by Lemma 3.2, |f(z)| ≤
c4‖f‖PW 2,ν

+
e| Im z|(1 + |z|)−ν−1/2(1 + | Im z|)−1/2, z ∈ C, if f ∈ PW 2,ν

+ , then using Lemma 3.9, we
obtain

|ψ(z)| =
∣∣∣∣f(z)

S(z)

∣∣∣∣ ≤ c11
e| Im z|(1 + |z|)−ν−1/2(1 + | Im z|)−1/2

(1 + |z|)−1/2e| Im z| = c11
(1 + |z|)−ν

(1 + | Im z|)1/2
.
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Therefore, |ψ(z)| is uniformly bounded for z satisfying dist(z; Λ) ≥ ε(1 + | Im z|). By the classical
Phragmén-Lindelöf principle ([16, p. 39]), we get ψ(z) ≡ c12, whereas ([17, p. 372])

∫ +∞
−∞ |S(x +

i)|2 dx = +∞ and
∫ +∞
−∞ |S(x)|2 dx = +∞. Hence, ψ(z) ≡ 0.

Theorem 1.1 is an immediate corollary of Lemma 3.10 and Theorem 1.2.
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