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1 Introduction

Let 1 < p, q <∞, 1
p

+ 1
p′

= 1. Let {ωi}∞i=1, {ui}∞i=1 be non-negative, {vi}∞i=1 positive sequences of real
numbers, which will be referred to as weights. Let lp,v be the space of sequences f = {fi}∞i=1, for
which the following norm is finite:

‖f‖p,v :=

(
∞∑
i=1

|fivi|p
) 1

p

, 1 ≤ p <∞.

In this paper we consider the problems of boundedness and compactness of matrix operators of the
following form

(Af)n =

β(n)∑
k=α(n)

an,kfk, n ≥ 1 (1.1)

from lp,v to lq,u, where (an,k) is a non-negative matrix of operator A, which satisfy the following
Oinarov’s discrete general condition: there exists d ≥ 1, a sequence of positive numbers {ωi}∞i=1 and
a non-negative matrix (bi,j), such that the inequalities

1

d
(bn,kωm + ak,m) ≤ an,m ≤ d(bn,kωm + ak,m) (1.2)

holds for all 1 ≤ k ≤ n, α(n) ≤ m ≤ β(k), where α(n), β(n) are sequences of the natural numbers
such that:

(i) α(n) and β(n) are strictly increasing sequences;
(ii) α(1) = β(1) = 1 and α(n) < β(n), for n ≥ 2.

(1.3)

Note that from (1.3) it follows n ≤ α(n) < β(n) for n ≥ 2.
An analogue of this question for continuous operators has been studied in a series of papers [9],

[12]-[15].
When an,k = 1, operator (1.1) coincides with the discrete Hardy type operator with variable limits

of summation of the following form



Boundedness and compactness of a certain class of matrix operators 67

(Hf)n =

β(n)∑
k=α(n)

fk, n ≥ 1, (1.4)

its boundedness from lp,v to lq,u was studied in [1], [2].
When α(n) = 1, β(n) = n, ∀n ∈ N in (1.4) we obtain the discrete Hardy operator, which

is investigated in detail in [3], [5], [6]. References about generalizations of the original forms of
the discrete and continuous Hardy inequalities can be found in various books, see e.g [8]. In [10],
[11], [16] necessary and sufficient conditions for the boundedness of the matrix operator (1.1) have
been obtained under the different assumptions for the entries of the matrix (an,k), when α(n) = 1,
β(n) = n, ∀n ∈ N.

We note that from (1.2) it easily follows that

ak,m ≤ dan,m, (1.5)

bn,kωm ≤ dan,m (1.6)

for 1 ≤ k ≤ n, α(n) ≤ m ≤ β(k).
In the sequel we suppose that the symbol M � K means M ≤ cK, where a positive constant c

may depend only on parameters such as p, q and d. If M � K �M, then we write M ≈ K.

2 Main results

Let s ∈ N. We assume Ω(s) := {n ∈ N : α(n) ≤ s}. Note that Ω(s) 6= ∅ since at the least 1 ∈ Ω(s).
For all s ∈ N we denote α−1(s) := max Ω(s). Hence it follows that

α−1(α(s)) = s, α(α−1(s)) ≤ s.

Let m ∈ N. From the condition (1.3) it follows that Ω1 := {s ∈ N : m ≤ s ≤ α−1
(
β(m)

)
} 6= ∅

since m ∈ Ω1.
Our first result reads as follows.

Theorem 2.1. Let 1 < p ≤ q < ∞. Let the entries of matrix (an,k) satisfy condition (1.2). Then
operator (1.1) is bounded from lp,v to lq,u if and only if F = F1 + F2 <∞, where

F1 = sup
m≥1

sup
m≤s≤α−1(β(m))

(
s∑

n=m

uqn

) 1
q

 β(m)∑
k=α(s)

ap
′

m,kv
−p′
k

 1
p′

,

F2 = sup
m≥1

sup
m≤s≤α−1(β(m))

(
s∑

n=m

uqnb
q
n,m

) 1
q

 β(m)∑
k=α(s)

ωp
′

k v
−p′
k

 1
p′

.

Moreover, ‖A‖lp,v→lq,u ≈ F.

Proof. Necessity. Suppose that operator (1.1) is bounded from lp,v to lq,u that equivalently means
the validity of the following inequality ∞∑

n=1

uqn

 β(n)∑
k=α(n)

an,kfk

q
1
q

≤ ‖A‖

(
∞∑
n=1

fpnv
p
n

) 1
p

, ∀f ≥ 0. (2.1)
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Here and in the sequel ‖A‖ ≡ ‖A‖lp,v→lq,u .
Let m ∈ N and m ≤ s ≤ α−1(β(m)). Then we take the following test sequence f̄i =

χ[α(s),β(m)](i)a
p′−1
m,i v

−p′
i , where χ[α(s),β(m)](i) =

{
1, i ∈ [α(s), β(m)];
0, i /∈ [α(s), β(m)].

Substituting the test sequence in the right-hand side of (2.1) we have

‖f̄‖p,v =

(
∞∑
i=1

f̄pi v
p
i

) 1
p

=

 β(m)∑
i=α(s)

ap
′

m,iv
−p′
i

 1
p

, (2.2)

Substituting the test sequence in the left-hand side of inequality (2.1) and using (1.5) we obtain
that

‖Af̄‖q,u =

 ∞∑
n=1

uqn

 β(n)∑
k=α(n)

an,kf̄k

q
1
q

≥

 s∑
n=m

uqn

 β(m)∑
k=α(s)

an,ka
p′−1
m,k v

−p′
k

q
1
q

≥ 1

d

 β(m)∑
k=α(s)

ap
′

m,kv
−p′
k

( s∑
n=m

uqn

) 1
q

. (2.3)

From (2.1), (2.2) and (2.3) it follows that β(m)∑
k=α(s)

ap
′

m,kv
−p′
k

 1
p′ ( s∑

n=m

uqn

) 1
q

� ‖A‖

for all m, s ≥ 1 such that m ≤ s ≤ α−1(β(m)). Therefore

F1 � ‖A‖. (2.4)

Now we assume that f̃i = χ[α(s),β(m)](i)ω
p′−1
i v−p

′

i , and we apply the test sequence to (2.1). For the
right-hand side of (2.1) it yelds that

‖f̃‖p,v =

(
∞∑
i=1

f̃pi v
p
i

) 1
p

=

 β(m)∑
i=α(s)

ωp
′

i v
−p′
i

 1
p

. (2.5)

Substituting f̃ in the left-hand side of inequality (2.1) and using (1.6) we find that

‖Af̃‖q,u =

 ∞∑
n=1

uqn

 β(n)∑
k=α(n)

an,kf̃k

q
1
q

≥

 s∑
n=m

uqn

 β(m)∑
k=α(s)

an,kω
p′−1
k v−p

′

k

q
1
q

≥ 1

d

(
s∑

n=m

uqnb
q
n,m

) 1
q

 β(m)∑
k=α(s)

ωp
′

k v
−p′
k

 . (2.6)

Since m, s ≥ 1 are arbitrary, such that m ≤ s ≤ α−1(β(m)), then (2.1), (2.5) and (2.6) imply that

F2 � ‖A‖. (2.7)

Sufficiency. Let F < ∞ and 0 ≤ f ∈ lp,v. To prove the boundedness of operator (1.1) we use
the discrete case of the block-diagonal method (see [2]). The continuous analogue of this method is
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called the Batuev-Stepanov block-diagonal method [4]. For given sequences α(n), β(n) which satisfy
(1.3) we select the sequences of natural numbers {nk}k∈N and {n′k}k∈N the following way

n1 = 1, n′k = α−1 (β(nk)) and n′k + 1 = nk+1, k ≥ 1.

Obviously that n′1 = 1 and

α(n′k) = α
(
α−1(β(nk))

)
≤ β(nk) < α(nk+1). (2.8)

Splitting the set N into the sequences {nk}k∈N and {n′k}k∈N we have

‖Af‖qq,u =
∞∑
n=1

uqn

 β(n)∑
i=α(n)

an,ifi

q

=
∑
k

n′k∑
n=nk

uqn

 β(n)∑
i=α(n)

an,ifi

q

=

(use the relations α(nk) ≤ α(n) ≤ α(n′k) ≤ β(nk) )

≈
∑
k

n′k∑
n=nk

uqn

 β(nk)∑
i=α(n)

an,ifi +

β(n)∑
i=β(nk)

an,ifi

q

≈
∑
k

n′k∑
n=nk

uqn

 β(nk)∑
i=α(n)

an,ifi

q

+
∑
k

n′k∑
n=nk

uqn

 β(n)∑
i=β(nk)

an,ifi

q

=
∑
k

n′k∑
n=nk

uqn(Tkf)qk +
∑
k

n′k∑
n=nk

uqn(Skf)qn =

=
∑
k

‖Tkf‖qlq,u[nk,n
′
k

]
+
∑
k

‖Skf‖qlq,u[nk,n
′
k

]

≤
∑
k

‖Tk‖q‖f‖qlp,v [α(nk),β(nk)] +
∑
k

‖Sk‖q‖f‖qlp,v [β(nk),β(n′k)]

≤
(

sup
k
‖Tk‖+ sup

k
‖Sk‖

)q
‖f‖qp,v

Hence
‖A‖lp,v→lq,u �

(
sup
k
‖Tk‖+ sup

k
‖Sk‖

)
. (2.9)

Therefore, for the proof of the boundedness of the operator A we need to prove the boundedness of
the operators Tk and Sk.

Now we consider the operator Tk. Using that an,i ≈ bn,nkωi + ank,i if 1 ≤ nk ≤ n ≤ n′k, α(n) ≤
i ≤ β(nk) we have that

(Tkf)n =

β(nk)∑
i=α(n)

an,ifi ≈
β(nk)∑
i=α(n)

(bn,nkωi + ank,i)fi

= bn,nk

β(nk)∑
i=α(n)

ωifi +

β(nk)∑
i=α(n)

ank,ifi = (Tk,1f)n + (Tk,2f)n

and
‖Tkf‖lq,u[nk,n

′
k

]
≈ ‖Tk,1f‖lq,u[nk,n

′
k

]
+ ‖Tk,2f‖lq,u[nk,n

′
k

]
(2.10)

From (2.10) we have that ‖Tk‖ ≤ ‖Tk,1‖ + ‖Tk,2‖, where ‖Tk,i‖ is the norm of the operator Tk,i :
lp,v[α(nk), β(nk)]→ lq,u[nk, n

′
k], i = 1, 2.
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The values ‖Tk,1‖, ‖Tk,2‖ are the best constants in the following inequalities, respectively. n′k∑
n=nk

bqn,nku
q
n

 β(nk)∑
i=α(n)

ωifi

q
1
q

≤ ‖Tk,1‖

 β(nk)∑
i=α(nk)

(vifi)
p

 1
p

, (2.11)

 n′k∑
n=nk

uqn

 β(nk)∑
i=α(n)

ank,ifi

q
1
q

≤ ‖Tk,1‖

 β(nk)∑
i=α(nk)

(vifi)
p

 1
p

. (2.12)

Let wi = 1, i ∈ [nk, n
′
k], wi = 0, i 6∈ [nk, n

′
k] and di = 1, i ∈ [α(nk), β(nk)], di = 0, i 6∈ [α(nk), β(nk)].

We consider the inequality ∞∑
n=1

bqn,nku
q
nw

q
n

 ∞∑
i=α(n)

diωifi

q
1
q

≤ C

(
∞∑
i=1

(vifi)
p

) 1
p

. (2.13)

If the inequality (2.13) holds with the constant C, then the inequality (2.11) holds with the estimate
‖Tk,1‖ ≤ C. Since the inequality (2.13), in fact is the Hardy inequality with a lower variable limit,
then by Theorem 1 in [2] and using (2.8) we obtain

‖Tk,1‖ � sup
n≥1

(
n∑
j=1

wqju
q
jb
q
j,nk

) 1
q

 ∞∑
j=α(n)

dp
′

j ω
p′

j v
−p′
j

 1
p′

= sup
nk≤n≤α−1(β(nk))

(
n∑

j=nk

uqjb
q
j,nk

) 1
q

 β(nk)∑
j=α(n)

ωp
′

j v
−p′
j

 1
p′

.

Similarly for (2.12) we obtain

‖Tk,2‖ � sup
nk≤n≤α−1(β(nk))

(
n∑

j=nk

uqj

) 1
q

 β(nk)∑
j=α(n)

ap
′

nk,j
v−p

′

j

 1
p′

.

Then on the basis (2.10) we have

‖Tk‖ � sup
nk≤n≤α−1(β(nk))

(
n∑

j=nk

uqjb
q
j,nk

) 1
q

 β(nk)∑
j=α(n)

ωp
′

j v
−p′
j

 1
p′

+ sup
nk≤n≤α−1(β(nk))

(
n∑

j=nk

uqj

) 1
q

 β(nk)∑
j=α(n)

ap
′

nk,j
v−p

′

j

 1
p′

.

Hence

sup
k≥1
‖Tk‖ ≤ sup

k≥1
sup

nk≤n≤α−1(β(nk))

(
n∑

j=nk

uqjb
q
j,nk

) 1
q

 β(nk)∑
j=α(n)

ωp
′

j v
−p′
j

 1
p′
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+ sup
k≥1

sup
nk≤n≤α−1(β(nk))

(
n∑

j=nk

uqj

) 1
q

 β(nk)∑
j=α(n)

ap
′

nk,j
v−p

′

j

 1
p′

≤ sup
m≥1

sup
m≤n≤α−1(β(m))

(
n∑

j=m

uqjb
q
j,m

) 1
q

 β(m)∑
j=α(n)

ωp
′

j v
−p′
j

 1
p′

+ sup
m≥1

sup
m≤n≤α−1(β(m))

(
n∑

j=m

uqj

) 1
q

 β(m)∑
j=α(n)

ap
′

m,jv
−p′
j

 1
p′

= F1 + F2. (2.14)

Now we estimate ‖Sk‖, k ∈ N. The value ‖Sk‖ is the best constant in the following inequality n′k∑
n=nk

uqn

 β(n)∑
i=β(nk)

an,ifi

q
1
q

≤ ‖Sk‖

 β(n′k)∑
i=β(nk)

fpi v
p
i

 1
p

, ∀f ≥ 0.

Here after replacing i = β(j) we have n′k∑
n=nk

uqn

(
n∑

j=nk

ãn,j f̃j

)q
 1

q

≤ ‖Sk‖

 n′k∑
j=nk

f̃pj ṽ
p
j

 1
p

,

where f̃j = fβ(j), ṽj = vβ(j) and ãn,j := an,β(j). From (1.2) we have an,i ≈ bn,mωi+am,i when 1 ≤ m ≤ n
and α(n) ≤ i ≤ β(m). Then ãn,j ≈ bn,mω̃j + ãm,j for n ≥ m ≥ j, satisfies the assumption 1.1 in [11].
Then by Theorem 2.1 in [11] we have that

‖Sk‖ ≈ sup
nk≤m≤n′k

 n′k∑
n=m

bqn,mu
q
n

 1
q ( m∑

j=nk

ω̃p
′

j ṽ
−p′
j

) 1
p′

+ sup
nk≤m≤n′k

 n′k∑
n=m

uqn

 1
q ( m∑

j=nk

ãp
′

m,j ṽ
−p′
j

) 1
p′

.

Making replacement β(j) = i and using (2.8) we obtain

‖Sk‖ � sup
nk≤m≤n′k

 n′k∑
n=m

bqn,mu
q
n

 1
q
 β(m)∑
i=α(n′k)

ωp
′

i v
−p′
i

 1
p′

+ sup
nk≤m≤n′k

 n′k∑
n=m

uqn

 1
q
 β(m)∑
i=α(n′k)

ap
′

m,iv
−p′
i

 1
p′

and

sup
k≥1
‖Sk‖ � sup

k≥1
sup

nk≤m≤n′k

 n′k∑
n=m

bqn,mu
q
n

 1
q
 β(m)∑
i=α(n′k)

ωp
′

i v
−p′
i

 1
p′

+ sup
k≥1

sup
nk≤m≤n′k

 n′k∑
n=m

uqn

 1
q
 β(m)∑
i=α(n′k)

ap
′

m,iv
−p′
i

 1
p′

.
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Hence using that m ≤ n′k ≤ α−1 (β(m)) we have

sup
k≥1
‖Sk‖ ≤ sup

m≥1
sup

m≤n′k≤α−1(β(m))

 n′k∑
n=m

bqn,mu
q
n

 1
q
 β(m)∑
i=α(n′k)

ωp
′

i v
−p′
i

 1
p′

+ sup
m≥1

sup
m≤n′k≤α−1(β(m))

 n′k∑
n=m

uqn

 1
q
 β(m)∑
i=α(n′k)

ap
′

m,iv
−p′
i

 1
p′

≤ sup
m≥1

sup
m≤s≤α−1(β(m))

(
s∑

n=m

bqn,mu
q
n

) 1
q

 β(m)∑
i=α(s)

ωp
′

i v
−p′
i

 1
p′

+ sup
m≥1

sup
m≤s≤α−1(β(m))

(
s∑

n=m

uqn

) 1
q

 β(m)∑
i=α(s)

ap
′

m,iv
−p′
i

 1
p′

≤ F1 + F2. (2.15)

From (2.9), (2.14) and (2.15) it follows that ‖A‖ � F1 + F2 = F < +∞

Now we state our compactness result for operator (1.1) from lp,v to lq,u.

Theorem 2.2. Let 1 < p ≤ q < ∞ and the elements of the matrix (an,k) satisfy condition (1.2).
Then operator (1.1) is compact from lp,v to lq,u if and only if

lim
m→∞

(F1)m = 0, (2.16)

lim
m→∞

(F2)m = 0, (2.17)

where

(F1)m = sup
m≤s≤α−1(β(m))

(
s∑

n=m

uqn

) 1
q

 β(m)∑
k=α(s)

ap
′

m,kv
−p′
k

 1
q

;

(F2)m = sup
m≤s≤α−1(β(m))

(
s∑

n=m

uqnb
q
n,m

) 1
q

 β(m)∑
k=α(s)

ωp
′

k v
−p′
k

 1
q

.

Proof. Necessity. Let operator (1.2) be compact. For all m, s ∈ N : m ≤ s ≤ α−1(β(m)) we define
the following sequence: g̃ = {g̃k}∞k=1 : g̃k = f̃k

‖f̃‖p,v
, where

f̃k =

{
ap
′−1
m,k v

−p′
k , α(s) ≤ k ≤ β(m),

0, k > β(m), k < α(s).

It is obvious that ‖g̃‖ = 1. Since operator (1.2) is compact from lp,v to lq,u, it yelds that the set
{uAϕ, ‖ϕ‖p,v = 1} is precompact in lq. Therefore by using the criterion of precompactness of sets in
lp [7] we conclude that

lim
m→∞

sup
‖ϕ‖p,v=1

(
∞∑
n=m

uqn(Aϕ)qn

) 1
q

= 0. (2.18)
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Using (1.5) we have that

sup
‖ϕ‖p,v=1

(
∞∑
n=m

uqn(Aϕ)qn

) 1
q

≥

(
∞∑
n=m

uqn(Ag̃)qn

) 1
q

=

 ∞∑
n=m

uqn

 β(n)∑
k=α(n)

an,kg̃k

q
1
q

≥ 1

d

 s∑
n=m

uqn

 β(m)∑
k=α(s)

am,k
ap
′−1
m,k v

−p′
k

‖f̃‖p,v

q
1
q

=
1

d

(
s∑

n=m

uqn

) 1
q

 β(m)∑
k=α(s)

ap
′

m,kv
−p′
k

 1
p′

for all m, s ∈ N : 1 ≤ m ≤ s ≤ α−1(β(m)).
Hence

sup
‖ϕ‖p,v=1

(
∞∑
n=m

uqn(Aϕ)qn

) 1
q

� sup
m≤s≤α−1(β(m))

(
s∑

n=m

uqn

) 1
q

 β(m)∑
k=α(s)

ap
′

m,kv
−p′
k

 1
p′

= (F1)m. (2.19)

From (2.18) and (2.19) (2.16) follows.
To prove (2.17) for all 1 ≤ m ≤ s ≤ α−1(β(m)) we introduce the following sequence ḡ = {ḡk}∞k=1 :

ḡk = f̄k
‖f̄‖p,v , where

f̄k =

{
ωp
′−1
k v−p

′

k , α(s) ≤ k ≤ β(m),

0, k < α(s), k > β(m).

Using (1.6) in (2.18) we get that

sup
‖ϕ‖p,v=1

(
∞∑
n=m

uqn(Aϕ)qn

) 1
q

≥

 ∞∑
n=m

uqn

 β(n)∑
k=α(n)

an,kḡk

q
1
q

≥ 1

d

 ∞∑
n=m

uqn

 β(m)∑
k=α(s)

bn,mωk
f̄k
‖f̄‖p,v

q
1
q

=
1

d

(
∞∑
n=m

bqn,mu
q
n

) 1
q

 β(m)∑
k=α(s)

ωp
′

k v
−p′
k

 1
p′

for all 1 ≤ m ≤ s ≤ α−1(β(m)). Hence

sup
‖ϕ‖p,v=1

(
∞∑
n=m

uqn (Aϕ)qn

) 1
q

� sup
m≤s≤α−1(β(m))

(
s∑

n=m

bqn,mu
q
n

) 1
q

 β(m)∑
k=α(s)

ωp
′

k v
−p′
k

 1
p′

= (F2)m. (2.20)

From (2.18) and (2.20) (2.17) follows.
Sufficiency. Assume that (2.16) and (2.17) hold. Then by Theorem 2.1 operator (1.1) is bounded

from lp,v to lq,u. Therefore, the set {uAf, ‖f‖p,v ≤ 1} is bounded in lq. Let us show that this set is
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precompact in lq. By the criterion of precompactness of sets in lq, the bounded set {uAf, ‖f‖p,v ≤ 1}
is compact in lq if

lim
r→∞

sup
‖f‖p,v≤1

(
∞∑
n=r

uqn|(Af)n|q
) 1

q

= 0. (2.21)

Then by Theorem 2.1 we have that

sup
‖f‖p,v≤1

(
∞∑
n=r

uqn|(Af)n|q
) 1

q

� F (r), (2.22)

where F (r) = F1(r) + F2(r),

F1(r) = sup
m≥r

sup
m≤s≤α−1(β(m))

(
s∑

n=m

uqn

) 1
q

 β(m)∑
k=α(s)

ap
′

m,kv
−p′
k

 1
p′

= sup
m≥r

(F1)m, (2.23)

F2(r) = sup
m≥r

sup
m≤s≤α−1(β(m))

(
s∑

n=m

uqnb
q
n,m

) 1
q

 β(m)∑
k=α(s)

ωp
′

k v
−p′
k

 1
p′

= sup
m≥r

(F2)m. (2.24)

From (2.16), (2.17), (2.23) and (2.24) we obtain that

lim
r→∞

F1(r) = lim
r→∞

sup
m≥r

(F1)m = lim
r→∞

(F1)r = lim
r→∞

(F1)r = 0,

lim
r→∞

F2(r) = lim
r→∞

sup
m≥r

(F2)m = lim
r→∞

(F2)r = lim
r→∞

(F2)r = 0.

Hence, by using (2.22) we obtain (2.21).
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