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1 Introduction

For the first time the variable exponent Lebesgue space appeared in the literature already in the
thirties of the last century, being introduced by W. Orlicz. At the beginning these spaces had
theoretical interest. Later on the end of the last century, their first use beyond the function spaces
theory itself, was in variational problems and studies of p(x) - Laplacian, in Zhikov [9], [10], which in
its turn gave an essential impulse for the development of this theory. The extensive investigation of
these spaces was also widely stimulated by applications to various problems of Applied Mathematics,
e.g., in modelling of electrorheological fluids [7]. Variable Lebesgue space appeared as a special case
of the Musielak-Orlicz spaces introduced by H. Nakano and developed by J. Musielak and W. Orlicz.

The variable exponent Lebesgue spaces Lp(x) for p(x) ≥ 1 appeared in the literature for the first
time in [6]. Further developement of this theory was connected with the theory of modular functions.

Many investigations are devoted to the problem of boundedness of the Hardy operator in the
Lebesgue spaces Lp(x) for p(x) ≥ 1 (see for example [1] and [6]). But the investigations of the Hardy
inequality in variable exponent Lebesgue spaces Lp(x) for 0 < p(x) < 1 are much less known.

It is well known that for Lp-spaces with 0 < p < 1, the Hardy inequalities are not satisfied
for arbitrary non-negative measurable function, but are satisfied for non-negative quasi-monotone
functions with sharp constants (see [3] for more details). The object of this work is to obtain
weighted inequalities for the Hardy operators acting from one weighted variable exponent Lebesgue
space to another weighted variable exponent Lebesgue space for 0 < p(x) < 1, for the functions
defined on (0,∞) and satisfying conditions of quasi-monotonicity. Some results obtained in [2] are
generalized. Moreover, some new weighted integral inequalities are obtained.

2 Preliminaries

In this section, we state the following Definitions, Lemmas, Corollaries and Theorems that are useful
in the proofs of main results.
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Let Rn be the n-dimensional Euclidean space of points x = (x1, x2, . . . , xn), Ω be a Lebesgue
measurable subset of Rn. Suppose that p(x) is a Lebesgue measurable function on Ω such that
0 < p ≤ p(x) ≤ p < 1, p = ess infx∈Ω p(x), p = ess supx∈Ω p(x) and ω is a weight function, that is a
positive Lebesgue measurable function on Ω.

Definition 1. By Lp(x),ω(x)(Ω) we denote the set of all Lebesgue measurable function f on Ω such
that

ρp(x),ω(x)(f) =

∫
Ω

(|f(x)|ω(x))p(x)dx <∞. (2.1)

Note that the expression

‖f‖Lp(x),ω(x)(Ω) = inf{λ > 0;

∫
Ω

( |f(x)|ω(x)

λ

)p(x)

dx ≤ 1} (2.2)

defines a quasi-norm on Lp(x),ω(x)(Ω). Lp(x),ω(x)(Ω) is a quasi-Banach space equipped with this quasi-
norm (see [8]).

In [2] the following statement was proved.

Corollary 2.1. Let Ω ⊂ Rn be a measurable set and p, q be Lebesgue measurable functions on Ω,
0 < p ≤ p(x) ≤ q(x) ≤ q < ∞ and r(x) = p(x)q(x)

q(x)−p(x)
. Suppose that ω1 and ω2 are weight functions in

Ω satisfying the condition: ∥∥∥ω1

ω2

∥∥∥
Lr(x)(Ω)

<∞.

Then the inequality

‖f‖Lp(x),ω1
(Ω) ≤ (A1 +B1 + ‖χΩ2‖L∞(Ω))

1
p

∥∥∥ω1

ω2

∥∥∥
Lr(x)(Ω)

‖f‖Lq(x)ω2(x)(Ω) (2.3)

holds for every f ∈ Lq(x),ω2(x)(Ω), where

Ω1 = {x ∈ Ω : p(x) < q(x)}, Ω2 = {x ∈ Ω : p(x) = q(x)},

A1 = sup
x∈Ω1

p(x)

q(x)
, B1 = sup

x∈Ω1

q(x)− p(x)

q(x)
.

The following statement is known (see [1]).

Lemma 2.1. Let Ω1 ⊂ Rn, Ω2 ⊂ Rm be measurable sets, p be a Lebesgue measurable function on Ω1

and q be a Lebesgue measurable function on Ω2, 1 ≤ p ≤ p(x) ≤ q(y) ≤ q < ∞ for all x ∈ Ω1 and
y ∈ Ω2. If p ∈ C(Ω1), q ∈ C(Ω2), then the inequality∥∥∥‖f‖Lp(x)(Ω1)

∥∥∥
Lq(x)(Ω2)

≤ Cp,q

∥∥∥‖f‖Lq(x)(Ω2)

∥∥∥
Lp(x)(Ω1)

(2.4)

is valid, where

Cp,q =
(
‖χ∆1‖∞ + ‖χ∆2‖∞ +

p

q
+
p

q

)
(‖χ∆1‖∞ + ‖χ∆2‖∞), (2.5)

q = ess inf
Ω2

q(x), q = ess sup
Ω2

q(x),

∆1 = {(x, y) ∈ Ω1 × Ω2; p(x) = q(y)}, ∆2 = (Ω1 × Ω2)\∆1,

C(Ω1), C(Ω2) are the spaces of continuous functions in Ω1, Ω2 and f : Ω1×Ω2 → R is any measurable
function such that

∥∥∥‖f‖Lq(x)(Ω2)

∥∥∥
Lp(x)(Ω1)

<∞.
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The following theorems were proved in [2].

Theorem 2.1. Let p, q be Lebesgue measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1,
r(x) =

pp(x)

p(x)−p , x ∈ (0,∞) and f be a non-negative and non-increasing function defined on (0,∞).
Suppose that ω1 and ω2 are weight functions defined on (0,∞).

Then the inequality

‖Hf‖Lq(x),ω2(x)(0,∞) ≤ p
1
pCp,qdp

∥∥∥t 1
p′ ‖ω2(x)

x
‖Lq(x)(t,∞)

ω1(x)

∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),ω1(x)(0,∞) (2.6)

holds, where

Cp,q =

(
‖χ∆1‖L∞(0,∞) + ‖χ∆2‖L∞(0,∞) + p

(
1

q
− 1

q

))(
‖χS1‖L∞(0,∞) + ‖χS2‖L∞(0,∞)

)
,

S1 = {x ∈ (0,∞) : p(x) = p}, S2 = (0,∞)\S1 and

dp =
(

1 +
p− p
p

+ ‖χS1‖L∞(0,∞)

) 1
p
.

Theorem 2.2. Let p, q be Lebesgue measurable functions on (0, 1), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1,
r(x) =

pp(x)

p(x)−p , x ∈ (0, 1) and f be a non-negative and non-decreasing function defined on (0, 1).
Suppose that ω1 and ω2 are weight functions defined on (0, 1).

Then the inequality

‖Hf‖Lq(x),ω2(x)(0,1) ≤ p
1
pCp,qdp

∥∥∥∥∥
∥∥ (x−t)1/p′ω2(x)

x

∥∥
Lq(x)(t,1)

ω1(x)

∥∥∥∥∥
Lr(x)(0,1)

‖f‖Lp(x),ω1(x)(0,1) (2.7)

holds, where Cp,q and dp are the constants in Theorem 2.1.

The following definition was introduced in [3].

Definition 2. We say that a non-negative function f is quasimonotone on ]0,∞[, if for some real
number α, xαf(x) is a decreasing or an increasing function of x. More precisely, given β ∈ R, we
say that f ∈ Qβ if x−βf(x) is non-increasing and f ∈ Qβ if x−βf(x) is non-decreasing.

The following proposition was proved in [3].

Proposition 2.1. (a) Let −∞ < β < ∞, f ∈ Qβ, 0 ≤ a < ∞ for β > −1 and 0 < a < b ≤ ∞
for β ≤ −1. If 0 < p ≤ 1 and β 6= −1, then(∫ b

a

f(y)dy

)p
≤ p|β + 1|1−p

∫ b

a

(
|yβ+1 − aβ+1|

yβ

)p−1

fp(y)dy. (2.8)

If 0 < p ≤ 1 and β = −1, then(∫ b

a

f(y)dy

)p
≤ p

∫ b

a

(
y ln

y

a

)p−1

fp(y)dy. (2.9)
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The inequalities hold in the reversed direction if 1 ≤ p <∞.
(b) Let −∞ < β < ∞, f ∈ Qβ and 0 ≤ a < b ≤ ∞ for β < −1 and 0 ≤ a < b < ∞ for

β ≥ −1. If 0 < p ≤ 1 and β 6= −1, then(∫ b

a

f(y)dy

)p
≤ p|β + 1|1−p

∫ b

a

(
|yβ+1 − bβ+1|

yβ

)p−1

fp(y)dy. (2.10)

If 0 < p ≤ 1 and β = −1, then(∫ b

a

f(y)dy

)p
≤ p

∫ b

a

(
y ln

b

y

)p−1

fp(y)dy. (2.11)

The inequalities hold in the reversed direction if 1 ≤ p <∞.
(c) The constants in these inequalities are the best possible in all cases.

If in (2.8), we set a = 0 and in (2.10) we put b = ∞, we get the following special cases of
Proposition which are useful in the proofs of main results.

Corollary 2.2. Let 0 < p ≤ 1.
(a) If β > −1, f ∈ Qβ and 0 < b ≤ ∞, then(∫ b

0

f(y)dy

)p
≤ p(β + 1)1−p

∫ b

0

yp−1fp(y)dy. (2.12)

(b) If β < −1, f ∈ Qβ and 0 ≤ a <∞, then(∫ ∞
a

f(y)dy

)p
≤ p|β + 1|1−p

∫ ∞
a

yp−1fp(y)dy. (2.13)

If in (2.10), we take a = 0, b = x, β > −1, we have the following statement.

Corollary 2.3. Let 0 < p ≤ 1, β > −1, f ∈ Qβ and 0 ≤ x <∞, then(∫ x

0

f(y)dy

)p
≤ p(β + 1)1−p

∫ x

0

[
y−β

(
xβ+1 − yβ+1

)]p−1
fp(y)dy. (2.14)

3 Main results

Let us consider the Hardy operators

(H1f)(x) =
1

x

∫ x

0

f(t)dt, (H2f)(x) =
1

x

∫ ∞
x

f(t)dt,

where f is a non-negative Lebesgue measurable function on (0,∞).

Theorem 3.1. Let p, q be Lebesgue measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1,
r(x) =

pp(x)

p(x)−p , for x ∈ (0,∞), β > −1 and f ∈ Qβ. Suppose that ω1 and ω2 are weight functions
defined on (0,∞).

Then the inequality

‖H1f‖Lq(x),ω2(x)(0,∞) ≤ p
1
p (β + 1)

− 1

p′Cp,qdp

∥∥∥t 1
p′ ‖ω2(x)

x
‖Lq(x)(t,∞)

ω1(x)

∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),ω1(x)(0,∞) (3.1)



62 A. Senouci, A. Zanou

holds, where

Cp,q =

(
‖χ∆1‖L∞(0,∞) + ‖χ∆2‖L∞(0,∞) + p

(
1

q
− 1

q

))(
‖χS1‖L∞(0,∞) + ‖χS2‖L∞(0,∞)

)
,

S1 = {x ∈ (0,∞) : p(x) = p}, S2 = (0,∞)\S1 and

dp =
(

1 +
p− p
p

+ ‖χS1‖L∞(0,∞)

) 1
p
.

Proof. By applying Corollary 2.2 (a) with p = p, we obtain

‖H1f‖Lq(x),ω2(x)(0,∞) = ‖ω2(x)H1f‖Lq(x)(0,∞) =
∥∥∥ω2(x)

x

∫ x

0

f(t)dt
∥∥∥
Lq(x)(0,∞)

≤ p
1
p

(β + 1)
− 1

p′
∥∥∥ω2(x)

x

(∫ x

0

fp(t)tp−1dt
) 1
p
∥∥∥
Lq(x)(0,∞)

.

Let
J1 =

∥∥∥ω2(x)

x

(∫ x

0

fp(t)tp−1dt
) 1
p
∥∥∥
Lq(x)(0,∞)

,

then
J1 =

∥∥∥(∫ ∞
0

fp(t)χ(0,x)(t)
[ω2(x)

x

]p
tp−1dt

) 1
p
∥∥∥
Lq(x)(0,∞)

=
∥∥∥(∫ ∞

0

fp(t)χ(0,x)(t)
[ω2(x)

x

]p
tp−1dt

)∥∥∥ 1
p

L q(x)
p

(0,∞)

=
∥∥∥∥∥∥fp(t)χ(0,x)(t)

[ω2(x)

x

]p
tp−1

∥∥∥
L1(0,∞)

∥∥∥ 1
p

L q(x)
p

(0,∞)
.

Next, by applying Lemma 2.2, we get

J1 ≤ Cp,q

(∫ ∞
0

∥∥∥[fp(t)]χ(0,x)(t)
[ω2(x)

x

]p
tp−1

∥∥∥
L q(x)

p

(0,∞)
dt
) 1
p

= Cp,q

(∫ ∞
0

fp(t)tp−1
∥∥∥χ(0,x)(t)

[ω2(x)

x

]p∥∥∥
L q(x)

p

(0,∞)
dt
) 1
p

= Cp,q

(∫ ∞
0

fp(t)tp−1
∥∥∥ω2(x)

x

∥∥∥p
Lq(x)(t,∞)

dt
) 1
p

= Cp,q

∥∥∥f(t)t
1
p′
∥∥∥ω2(x)

x

∥∥∥
Lq(x)(t,∞)

∥∥∥
Lp(0,∞)

.

Let J2 =
∥∥∥f(t)t

1
p′
∥∥∥ω2(x)

x

∥∥∥
Lq(x)(t,∞)

∥∥∥
Lp(0,∞)

, then by applying Corollary 2.1, we obtain

J2 ≤ dp

∥∥∥t 1
p′ ‖ω2(x)

x
‖Lq(x)(t,∞)

ω1(x)

∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),ω1(x)(0,∞),

consequently

‖H1f‖Lq(x),ω2(x)(0,∞) ≤ p
1
p (β + 1)

− 1

p′Cp,qdp

∥∥∥t 1
p′ ‖ω2(x)

x
‖Lq(x)(t,∞)

ω1(x)

∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),ω1(x)(0,∞).



Some integral inequalities for quasimonotone functions 63

Remark 1. If in inequality (3.1) we put β = 0, we get inequality (2.6) of Theorem 2.1.

By using Corollary 2.2 (b) with a = 0, the following theorem is proved similarly.

Theorem 3.2. Let p, q Lebesgue measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1,
r(x) =

pp(x)

p(x)−p , for x ∈ (0,∞), β < −1 and f ∈ Qβ. Suppose that ω1 and ω2 are weight functions
defined on (0,∞). Then the inequality

‖H1f‖Lq(x),ω2(x)(0,∞) ≤ p
1
p |β + 1|−

1

p′Cp,qdp

∥∥∥t 1
p′ ‖ω2(x)

x
‖Lq(x)(0,t)

ω1(x)

∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),ω1(x)(0,∞) (3.2)

holds, where Cp,q and dp are the constants in Theorem 3.1.

Theorem 3.3. Let p, q Lebesgue measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1,
r(x) =

pp(x)

p(x)−p , for x ∈ (0,∞), β > −1 and f ∈ Qβ. Suppose that ω1 and ω2 are weight functions
defined on (0,∞).

Then the inequality
‖H1f‖Lq(x),ω2

(0,∞)

≤ p
1
p (β + 1)

− 1

p′Cp,qdp

∥∥∥‖[t−β(xβ+1 − tβ+1)]
1

p′ ω2(x)
x
‖Lq(x)(t,∞)

ω1(x)

∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),ω1(x)(0,∞) (3.3)

holds, where Cp,q and dp are the constants in Theorem 3.1.

Proof. By applying Corollary 2.3 with p = p, we have

‖H1f‖Lq(x),ω2(x)(0,∞) = ‖ω2(x)H1f‖Lq(x)(0,∞) =
∥∥∥ω2(x)

x

∫ x

0

f(t)dt
∥∥∥
Lq(x)(0,∞)

≤ p
1
p

|β + 1|−
1

p′
∥∥∥ω2(x)

x

(∫ x

0

[t−β(xβ+1 − tβ+1)]p−1fp(t)dt
) 1
p
∥∥∥
Lq(x)(0,∞)

.

Let K1 =
∥∥∥ω2(x)

x

( ∫ x
0

[t−β(xβ+1 − tβ+1)]p−1fp(t)dt
) 1
p
∥∥∥
Lq(x)(0,∞)

, then

K1 =
∥∥∥(∫ x

0

fp(t)χ(0,x)(t)
[ω2(x)

x

]p
[t−β(xβ+1 − tβ+1)]p−1dt

) 1
p
∥∥∥
Lq(x)(0,∞)

=
∥∥∥(∫ 1

0

fp(t)χ(0,x)(t)
[ω2(x)

x

]p
[t−β(xβ+1 − tβ+1)]p−1dt

)∥∥∥ 1
p

L q(x)
p

(0,∞)
.

Next, by using Lemma 2.2, we get

I1 ≤ Cp,q

(∫ 1

0

∥∥∥[fp(t)]χ(0,x)(t)
[ω2(x)

x

]p
[t−β(xβ+1 − tβ+1)]p−1

∥∥∥
L q(x)

p

(0,∞)
dt
) 1
p

= Cp,q

(∫ 1

0

fp(t)
∥∥∥χ(0,x)(t)

[ [t−β(xβ+1 − tβ+1)]
1

p′ ω2(x)

x

]p∥∥∥
L q(x)

p

(0,∞)
dt
) 1
p

= Cp,q

(∫ 1

0

fp(t)
∥∥∥ [t−β(xβ+1 − tβ+1)]

1

p′ ω2(x)

x

∥∥∥p
Lq(x)(t,∞)

dt
) 1
p
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= Cp,q

∥∥∥f(t)
∥∥∥ [t−β(xβ+1 − tβ+1)]

1

p′ ω2(x)

x

∥∥∥
Lq(x)(t,1)

∥∥∥
Lp(0,∞)

.

Let
K2 =

∥∥∥f(t)[t−β(xβ+1 − tβ+1)]
1

p′
∥∥∥ω2(x)

x

∥∥∥
Lq(x)(t,∞)

∥∥∥
Lp(0,∞)

,

then by applying Corollary 2.1, we obtain

K2 ≤ dp

∥∥∥ [t−β(xβ+1 − tβ+1)]
1

p′ ‖ω2(x)
x
‖Lq(x)(t,∞)

ω1(x)

∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),ω1(x)(0,∞),

consequently
‖H1f‖Lq(x),ω2(x)(0,∞)

≤ p
1
p (β + 1)

− 1

p′Cp,qdp

∥∥∥‖[t−β(xβ+1 − tβ+1)]
1

p′ ω2(x)
x
‖Lq(x)(t,∞)

ω1(x)

∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),ω1(x)(0,∞).

Remark 2. If in inequality (3.3) we put β = 0, we get inequality (2.7) of Theorem 2.2.

Remark 3. For constant p(x) = q(x) = p and ω1(x) = ω2(x) = xα, inequalities (3.1), (3.2) and
(3.3) with sharp constants, were proved in [3] and inequalities (3.1) and (3.3) for β = 0, were earlier
proved in [4] and [5].

Now we consider the case β = −1.

Theorem 3.4. Let p, q Lebesgue measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1,
r(x) =

pp(x)

p(x)−p for x ∈ (0,∞) and β = −1. Suppose that ω1 and ω2 are weight functions defined on
(0,∞).

1) If f ∈ Q−1, then the inequality

‖H2f‖Lq(x),ω2(x)(0,∞) ≤ p
1
pCp,qdp

∥∥∥t 1
p′ (ln t

x
)

1
p′ ‖ω2(x)

x
‖Lq(x)(0,t)

ω1(x)

∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),ω1(x)(0,∞) (3.4)

holds.
2) If f ∈ Q−1, then the inequality

‖H1f‖Lq(x),ω2(x)(0,∞) ≤ p
1
pCp,qdp

∥∥∥t 1
p′ (lnx

t
)

1
p′ ‖ω2(x)

x
‖Lq(x)(t,∞)

ω1(x)

∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),ω1(x)(0,∞) (3.5)

holds.

Proof. 1) Let a = x and b = +∞ in (2.9), the(∫ ∞
x

f(t)dt

)
≤ p

1
p

(∫ ∞
x

(t ln
t

x
)p−1fp(t)dt

) 1
p

.

We apply this inequality with p = p and the rest is similar to the proof of Theorem 3.1.
2) Let a = 0 and b = x in (2.11). The rest is similar to the proof of Theorem 3.1.
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Dévéloppement Technologique, Algeria.



Some integral inequalities for quasimonotone functions 65

References

[1] R.A. Bandaliev, On an inequality in Lebesgue space with mixed norm and with variable summability. Matem.
Zametki 3 (84) (2008), 323-333 (in Russian). English translation in Math. Notes 3 (2008), no. 84, 303-313.

[2] R.A. Bandaliev, On Hardy-type inequalities in weighted variable exponent Lebesgue spaces for 0<p<1. Eurasian
Math. Journal 4 (2013), no. 4, 5-16.

[3] J. Bergh, V. Burenkov, L.-E. Persson, Best constants in reversed Hardy’s inequalities for quasimonotone func-
tions. Acta Sci. Math. (Szeged) 59 (1994), 223-241.

[4] V.I. Burenkov, Function spaces. Main integral inequalities related to the Lebesgue spaces. Publishing house of the
Peoples’ Friendship University of Russia, Moscow, 1989. 96 pp. (in Russian).

[5] V.I. Burenkov, On the best constants in Hardy’s inequalities for 0<p<1 for monotone functions. Trudy Matem.
Inst. Steklov 194 (1992), 58-62 (in Russian). English translation in Proc. Steklov Inst. Math. 194 (1993), no. 4,
59-63.
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