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1 Introduction

Relative elliptic theory is a theory of elliptic operators associated with pairs (M,X), where X is
a submanifold in an ambient manifold M . It was introduced by Sternin [20, 22] as a theory of
boundary value problems with conditions on submanifolds of arbitrary dimension (for the first time
such a problem was considered for the polyharmonic equation by Sobolev [18]). More precisely, in
relative theory one studies matrix operators (morphisms) of the form

(
A C
B D

)
:
H(M)
⊕

H(X)
−→

H(M)
⊕

H(X)
, (1.1)

where

• H(M) and H(X) are some Sobolev spaces on M and X;

• A and D are pseudodifferential operators on M and X;

• B is a boundary operator equal to the composition of pseudodifferential operators on M and
X, and the operator of restriction u 7→ u|X of functions to the submanifold, while C is a
coboundary operator equal to the composition of pseudodifferential operators on M and X,
and the operator of extension of functions from the submanifold to the ambient manifold.

It turns out that compositions (and also almost inverses) of operators of form (1.1) contain an
additional summand in the left upper corner of the matrix, the so-called Green operator. We mention
the analogy between operators (1.1) and Green operators for them with matrix operators in the theory
of pseudodifferential boundary value problems in [26, 8, 5, 15, 16]).

Relative elliptic theory was studied by many authors. For instance, ellipticity condition and index
formulas for operators (1.1) were obtianed by Sternin [22]; Novikov and Sternin [12, 13] obtained
a Riemann-Roch type theorem in elliptic theory for the embedding X ⊂ M ; Sternin [21] studied
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relative theory for submanifolds with singularities and introduced a new class of operators called
translators, which act between different submanifolds; Sternin and Shatalov [19], Nazaikinskii and
Sternin [11] studied the algebra of general morphisms using the theory of Fourier integral operators;
Bohlen and Schulz [3] studied a generalization of relative theory to Lie groupoids, etc.

Meanwhile, complexes of operators often arise in applications. The fundamental examples are
given by the de Rham complex and Dolbeault complex on a complex manifold. One of the most
important results in the theory of elliptic complexes is the Atiyah–Bott–Lefschetz formula [1, 2],
which computes the Lefschetz numbers of endomorphisms of elliptic complexes on compact closed
manifolds in terms of invariants of fixed points. We refer the reader to the papers [7, 6, 14, 15, 17]
for further developments of the theory of elliptic complexes on closed manifolds and for boundary
value problems on manifolds with boundary.

The aim of this paper is to develop the theory of complexes in relative elliptic theory. We
consider complexes, whose differentials are given by operators of form (1.1). We describe an ellipticity
condition, which guarantees the Fredholm property of a complex in Sobolev spaces. Note that our
proof of the Fredholm property is more complicated than that in the classical elliptic theory on
compact closed manifolds. Indeed, for a complex of pseudodifferential operators one defines a single
operator (as the sum of the original complex and the complex of adjoint operators) such that the
original complex has the Fredholm property if and only if the operator has the Fredholm property. It
turns out that this construction does not define a bounded operator in relative elliptic theory, since
the boundary operators in the original complex act in Sobolev spaces of sufficiently smooth functions,
while the coboundary operators in the adjoint complex act in spaces of distributions. Hence, the sum
of the original and the adjoint complexes does not define a bounded operator in Sobolev spaces. We
overcome this difficulty by reducing our complex to the complex of zero-order operators in L2-spaces
(in this case the original and the adjoint complex can be added). Two examples are considered: the
relative de Rham complex and the relative Dolbeault complex.

2 Complexes in relative theory

In the relative theory, we deal with pairs (M,X), where M is a closed smooth manifold and X is
its submanifold of codimension ν, i : X ↪→ M denotes the corresponding embedding. We choose a
Riemannian metric on M , while X is endowed with the induced Riemannian metric.

Given a complex vector bundle E onM , we define the elementary boundary (restriction) operator

i∗ : Hs(M,E) −→ Hs−ν/2(X,E|X), i∗ : u 7−→ u|X , s > ν/2.

We fix a Hermitian metric on E. Then the dual elementary coboundary operator is defined (cf. [20])

i∗ : H−s+ν/2(X,E|X) −→ H−s(M,E), s > ν/2.

In this paper we study complexes of bounded operators acting in Sobolev spaces

0→
Hs0(M,E0)

⊕
H t0(X,F0)

d0−→
Hs1(M,E1)

⊕
H t1(X,F1)

d1−→
Hs2(M,E2)

⊕
H t2(X,F2)

d2−→ . . .
dm−1−→

Hsm(M,Em)
⊕

H tm(X,Fm)
→ 0 (2.1)

where

• Ej, Fj are complex vector bundles on M and X respectively, Hs are Sobolev spaces of vector
bundle sections;



Complexes in relative elliptic theory 47

• the operators dj are morphisms in the sense of [21]

dj =

(
Aj Cj
Bj Dj

)
.

More precisely, this means that Aj and Dj are pseudodifferential operators (ψDOs in what
follows) on M and X, respectively, of orders ordAj = sj − sj+1, ordDj = tj − tj+1, while the
boundary and coboundary operators Bj and Cj are equal to

Bj = D′′X,ji
∗D′′M,j, Cj = D′M,ji∗D

′
X,j (2.2)

for some ψDOsD′M,j, D
′′
M,j andD′X,j, D′′X,j onM andX respectively. The orders of the operators

should also satisfy the conditions

ordD′′X,j + ν/2 + ordD′′M,j = sj − tj+1, ordD′M,j + ν/2 + ordD′X,j = tj − sj+1,

sj − ordD′′M,j − ν/2 > 0, tj − ordD′X,j < 0.

• finally, we suppose that (2.1) is a complex: dj+1dj = 0 for all j.

Let us note that we can also consider complexes with more general morphisms dj, in which the right
hand sides in (2.2) contain finite sums of operators. Below we treat only boundary operators as in
(2.2) for short.

3 Ellipticity condition and main theorem

Let us recall that a complex

0→ H0
A0−→ H1

A1−→ H2
A2−→ . . .

Am−1−→ Hm → 0,

where Hj are Hilbert spaces and Aj are bounded operators, has the Fredholm property if all its
cohomology spaces kerAj/ImAj−1 are finite dimensional.

Our aim is to obtain the ellipticity conditions, which guarantee that complex (2.1) has the Fred-
holm property. To obtain these conditions, we use the method of frozen coefficients. More precisely,
by locality, the ellipticity condition is obtained at each point in M . There are two types of points:
points in M \X and points in X.

First, given a point inM \X, the components Bj, Cj, Dj are smoothing in a neighborhood of this
point. Hence, in this neighborhood our complex reduces to the sequence

0→ Hs0(M,E0)
A0−→ Hs1(M,E1)

A1−→ Hs2(M,E2)
A2−→ . . .

Am−1−→ Hsm(M,Em)→ 0. (3.1)

Moreover, this sequence is a complex modulo lower order operators, i.e., Aj+1Aj is equal to zero
modulo lower order operators. Hence, we require the usual ellipticity condition for this (almost)
complex: the symbol complex

0→ π∗E0
σ(A0)−→ π∗E1

σ(A1)−→ π∗E2
σ(A2)→ . . .→ π∗Em → 0 (3.2)

should be exact on T ∗M \ 0, where π : T ∗M →M is the natural projection and σ(Aj) stands for the
principal symbol of Aj.

Secondly, we consider a point in X ⊂ M . In a neighborhood of this point we choose local
coordinates (x, t) ∈ Rk × Rν , k = dimX, such that X is given by the equation t = 0. Moreover, we
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choose coordinates such that the volume forms on M and X are equal to dxdt and dx respectively.
We also denote by (ξ, τ) the dual coordinates in the fibers of T ∗M . We freeze the coefficients of the
operators in complex (2.1) and make Fourier transform in x (i.e., along the submanifold). This gives
us the complex

0→
Hs0(Rν , E0,x)

⊕
F0,x

σ(d0)(x,ξ)−→
Hs1(Rν , E1,x)

⊕
F1,x

σ(d1)(x,ξ)−→
Hs2(Rν , E2,x)

⊕
F2,x

σ(d2)(x,ξ)−→ . . .

. . .
σ(dm−1)(x,ξ)−→

Hsm(Rν , Em,x)
⊕
Fm,x

→ 0. (3.3)

Here

• Ej,x and Fj,x stand for the fibers of the vector bundles Ej and Fj over x;

• Hs(Rν) stand for the Sobolev spaces in the transverse directions to X;

• the operator-valued symbol of the morphism dj is equal to

σ(dj)(x, ξ) =

(
σ(Aj) σ(Cj)
σ(Bj) σ(Dj)

)
(x, ξ), where

σ(Aj)(x, ξ)u(t) = Aj(x, ξ, 0,−i∂)u(t),

σ(Bj)(x, ξ)u(t) = D′′X,j(x, ξ)j
∗D′′M,j(x, ξ, 0,−i∂)u(t), here j∗ : u(t) 7→ u(0),

σ(Cj)(x, ξ)q = D′M,j(x, ξ, 0,−i∂)j∗D
′
X,j(x, ξ)q, here j∗ : q 7→ qδ(t),

σ(Dj)(x, ξ)q = Dj(x, ξ)q.

Here ∂ = ∂/∂t, and for a ψDO D
(
x,−i ∂

∂x
, t,−i ∂

∂t

)
we denote its principal symbol by

D(x, ξ, t, τ).

Definition 1. Complex (2.1) is elliptic if the following conditions are satisfied:

1) symbol complex (3.2) is exact on T ∗M \ 0;

2) symbol complex (3.3) is exact on T ∗X \ 0.

Theorem 3.1. If complex (2.1) is elliptic, then it has the Fredholm property.

Remark 1. We will show in the proof that the condition of exactness of complex (3.3) can be reduced
to a finite-dimensional condition.

Remark 2. Theorem 3.1 and its proof can be generalized to the case of complexes (2.1), where
the differentials include the so-called Green operators and are taken from the algebras of morphisms
studied in [11]. We did not consider this case explicitly in the present paper because, first, the
computations in the proof become even more cumbersome and, secondly, the ellipticity condition in
this more general case cannot be reduced to a finite-dimensional condition.
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Proof. 1. Let us reduce complex (2.1) to a complex of zero order operators. We consider the
commutative diagram

Hsj(M,Ej)
⊕

H tj(X,Fj)

dj−−−→
Hsj+1(M,Ej+1)

⊕
H tj+1(X,Fj+1)

Ij

y yIj+1

L2(M,Ej)
⊕

L2(X,Fj)

d̃j−−−→
L2(M,Ej+1)

⊕
L2(X,Fj+1)

, where Ij =

(
∆
sj/2
j 0

0 ∆
tj/2
j

)
.

Here ∆j are nonnegative Laplacians on respective vector bundles. So, we obtain the complex

0→
L2(M,E0)
⊕

L2(X,F0)

d̃0−→
L2(M,E1)
⊕

L2(X,F1)

d̃1−→
L2(M,E2)
⊕

L2(X,F2)

d̃2−→ . . .
d̃m−1−→

L2(M,Em)
⊕

L2(X,Fm)
→ 0, (3.4)

where d̃j = Ij+1djI
−1
j =

(
∆
sj+1/2
j+1 0

0 ∆
tj+1/2
j+1

)(
Aj Cj
Bj Dj

)(
∆
−sj/2
j 0

0 ∆
−tj/2
j

)
=

=

(
∆
sj+1/2
j+1 Aj∆

−sj/2
j ∆

sj+1/2
j+1 Cj∆

−tj/2
j

∆
tj+1/2
j+1 Bj∆

−sj/2
j ∆

tj+1/2
j+1 Dj∆

−tj/2
j

)
=

(
Ãj C̃j
B̃j D̃j

)
.

Clearly, complexes (2.1) and (3.4) are isomorphic.
2. It is well known (see e.g. [15]) that a complex is Fredholm if and only if all its Laplacians are

Fredholm operators. The j-th Laplacian associated with complex (3.4) is equal to

Lj = d̃j−1d̃
∗
j−1 + d̃∗j d̃j :

L2(M,Ej)
⊕

L2(X,Fj)
−→

L2(M,Ej)
⊕

L2(X,Fj)
,

where we take adjoint operators with respect to inner products in L2-spaces associated with the
metrics on the manifolds and in the vector bundles. We obtain

Lj = (
Ãj−1Ã

∗
j−1 + Ã∗jÃj + B̃∗j B̃j + C̃j−1C̃

∗
j−1 Ãj−1B̃

∗
j−1 + C̃j−1C̃

∗
j−1 + Ã∗j C̃j + B̃∗j D̃j

B̃j−1Ã
∗
j−1 + D̃j−1C̃

∗
j−1 + C̃∗j Ãj + D̃∗j B̃j C̃∗j C̃j + D̃∗j D̃j + B̃j−1B̃

∗
j−1 + D̃j−1D̃

∗
j−1

)
.

Denote the upper left corner of Lj by Lj11 and decompose this operator as

Lj11 = LMj
+Gj,

where LMj
= Ãj−1Ã

∗
j−1 + Ã∗jÃj is a ψDO on M and Gj = B̃∗j B̃j + C̃j−1C̃

∗
j−1 is the so-called Green

operator, see [19, 11, 10].
3. The operator LMj

is elliptic (as a Laplacian of the complex of zero-order operators associated
with complex (3.1)). We denote its inverse modulo lower order operators by L−1

Mj
and consider the

product

L′j =

(
L−1
Mj

0

0 1

)
Lj ≡

(
1 +G′j C ′j
B′j D′j

)
:
L2(M,Ej)
⊕

L2(X,Fj)
−→

L2(M,Ej)
⊕

L2(X,Fj)
, (3.5)
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where G′j = L−1
Mj
Gj, B

′
j = Lj21 , C

′
j = L−1

Mj
Lj12 and D′j = Lj22 .

4. By [11, 10] the symbol of Green operator (3.5) is the operator-function

σ(L′j)(x, ξ) =

(
1 + σ(G′j) σ(C ′j)
σ(B′j) σ(D′j)

)
:
L2(Rν , Ej,x)

⊕
Fj,x

(x, ξ) −→
L2(Rν , Ej,x)

⊕
Fj,x

(3.6)

on the cotangent bundle T ∗X \ 0. Its components are equal to

σ(G′j)(x, ξ)=
[
∆
sj/2
j Aj−1∆

−sj−1

j−1 A∗j−1∆
sj/2
j (x, ξ, 0,−i∂) + ∆

−sj/2
j A∗j∆

sj+1

j+1 Aj∆
−sj/2
j (x, ξ, 0,−i∂)

]−1
×
[
∆
−sj/2
j (x, ξ, 0,−i∂)B∗j∆

tj+1

j+1 (x, ξ)Bj∆
−sj/2
j (x, ξ, 0,−i∂)

+ ∆
sj/2
j (x, ξ, 0,−i∂)Cj−1∆

−tj−1

j−1 (x, ξ)C∗j−1∆
sj/2
j (x, ξ, 0,−i∂)

]
,

σ(B′j)(x, ξ) = ∆
tj/2
j (x, ξ)Bj−1∆

sj−1

j−1 A
∗
j−1∆

sj/2
j (x, ξ, 0,−i∂)

+ ∆
tj/2
j Dj−1∆

−tj−1

j−1 (x, ξ)C∗j−1∆
sj/2
j (x, ξ, 0,−i∂)

+ ∆
−tj/2
j (x, ξ)C∗j∆

sj+1

j+1 Aj∆
−sj/2
j (x, ξ, 0,−i∂) + ∆

−tj/2
j D∗j∆

tj+1

j+1 (x, ξ)Bj∆
−sj/2
j (x, ξ, 0,−i∂),

σ(Cj)(x, ξ) =
[
∆
sj/2
j Aj−1∆

−sj−1

j−1 A∗j−1∆
sj/2
j (x, ξ, 0,−i∂) + ∆

−sj/2
j A∗j∆

sj+1

j+1 Aj∆
−sj/2
j (x, ξ, 0,−i∂)

]−1
×
[
∆
sj/2
j Aj−1∆

−sj−1

j−1 (x, ξ, 0,−i∂)B∗j−1∆
tj/2
j (x, ξ)

+ ∆
sj/2
j (x, ξ, 0,−i∂)Cj−1∆

−tj−1

j−1 (x, ξ)C∗j−1∆
sj/2
j (x, ξ, 0,−i∂t)

+ ∆
−sj/2
j A∗j∆

sj+1

j+1 (x, ξ, 0,−i∂)Cj∆
−tj/2
j (x, ξ) + ∆

−sj/2
j (x, ξ, 0,−i∂)B∗j∆

tj+1

j+1Dj∆
−tj/2
j (x, ξ)

]
,

σ(D′j)(x, ξ) = ∆
−tj/2
j (x, ξ)C∗j∆

sj+1

j+1 (x, ξ, 0,−i∂)Cj∆
−tj/2
j (x, ξ) + ∆

−tj/2
j D∗j∆

tj+1

j+1Dj∆
−tj/2
j (x, ξ)

+ ∆
tj/2
j (x, ξ)Bj−1∆

−sj−1

j−1 (x, ξ, 0,−i∂)B∗j−1∆
tj/2
j (x, ξ) + ∆

tj/2
j Dj−1∆

−tj−1

j−1 D∗j−1∆
tj/2
j (x, ξ).

By [11, 10] the Fredholm property of (3.5) is equivalent to the invertibility of symbol (3.6) for all
(x, ξ) ∈ T ∗X \ 0.

5. Now, let us make steps 1-3 for symbol complex (3.3). First, we reduce (3.3) to a complex of
operators of order zero

L2(Rν, E0,x)
⊕
F0,x

σ̃(d0)(x,ξ)−→
L2(Rν, E1,x)

⊕
F1,x

σ̃(d1)(x,ξ)−→
L2(Rν, E2,x)

⊕
F2,x

σ̃(d2)(x,ξ)−→ . . .
σ̃(dm−1)(x,ξ)−→

L2(Rν, Em,x)
⊕
Fm,x

(3.7)

where

σ̃(dj) =

(
(ξ2 − ∂2)sj+1/2σ(Aj)(ξ

2 − ∂2)−sj/2 (ξ2 − ∂2)sj+1/2σ(Cj)|ξ|−tj

|ξ|tj+1σ(Bj)(ξ
2 − ∂2)−sj/2 |ξ|tj+1σ(Dj)|ξ|−tj

)
≡

(
σ̃(Aj) σ̃(Cj)

σ̃(Bj) σ̃(Dj)

)
. (3.8)

6. The Laplacians Lj for complex (3.7) are equal to

Lj =


σ̃(Aj−1)σ̃∗(Aj−1) + σ̃∗(Aj)σ̃(Aj)+ σ̃(Aj−1)σ̃∗(Bj−1) + σ̃(Cj−1)σ̃∗(Cj−1)+
+σ̃∗(Bj)σ̃(Bj) + σ̃(Cj−1)σ̃∗(Cj−1) +σ̃∗(Aj)σ̃(Cj) + σ̃∗(Bj)σ̃(Dj)

σ̃(Bj−1)σ̃∗(Aj−1) + σ̃(Dj−1)σ̃∗(Cj−1)+ σ̃∗(Cj)σ̃(Cj) + σ̃∗(Dj)σ̃(Dj)+
+σ̃∗(Cj)σ̃(Aj) + σ̃∗(Dj)σ̃(Bj) +σ̃(Bj−1)σ̃∗(Bj−1) + σ̃(Dj−1)σ̃∗(Dj−1)

 :

L2(Rν , Ej,x)
⊕
Fj,x

−→
L2(Rν , Ej,x)

⊕
Fj,x

. (3.9)
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The upper left corner of Lj has the following decomposition

Lj11 = LMj
+ Gj,

LMj
= σ̃(Aj−1)σ̃∗(Aj−1) + σ̃∗(Aj)σ̃(Aj),

Gj = σ̃∗(Bj)σ̃(Bj) + σ̃(Cj−1)σ̃∗(Cj−1).
(3.10)

7. The operator LMj
is invertible (it is the Laplacian for the exact complex with the differentials

σ̃(Aj−1)). We now define the operator-function

L′j =

(
L−1
Mj

0

0 1

)
Lj ≡

(
1 + G ′j Cj
Bj Dj

)
:
L2(Rν , Ej,x)

⊕
Fj,x

−→
L2(Rν , Ej,x)

⊕
Fj,x

, (3.11)

where G ′j = L−1
Mj
Gj, Cj = L−1

Mj
Lj12 and Bj,Dj are lower left and lower right corners of operator (3.9)

respectively. Here (we skip arguments for brevity)

G′j = [(ξ2 − ∂2)sj/2σ(Aj−1)(ξ2 − ∂2)−sj−1σ∗(Aj−1)(ξ2 − ∂2)sj/2

+ (ξ2 − ∂2)−sj/2σ∗(Aj)(ξ
2 − ∂2)sj+1σ(Aj)(ξ

2 − ∂2)−sj/2]−1

× [(ξ2 − ∂2)−sj/2σ∗(Bj)|ξ|2tj+1σ(Bj)(ξ
2 − ∂2)−sj/2 + (ξ2 − ∂2)sj/2σ(Cj−1)|ξ|−2tj−1σ∗(Cj−1)(ξ2 − ∂2)sj/2],

Bj = |ξ|tjσ(Bj−1)(ξ2 − ∂2)sj−1/2σ∗(Aj−1)(ξ2 − ∂2)sj/2 + |ξ|tjσ(Dj−1)|ξ|−2tj−1σ∗(Cj−1)(ξ2 − ∂2)sj/2

+ |ξ|−tjσ∗(Cj)(ξ2 − ∂2)sj+1σ(Aj)(ξ
2 − ∂2)−sj/2 + |ξ|−tjσ∗(Dj)|ξ|2tj+1σ(Bj)(ξ

2 − ∂2)−sj/2 ,

Cj = [(ξ2 − ∂2)sj/2σ(Aj−1)(ξ2 − ∂2)−sj−1σ∗(Aj−1)(ξ2 − ∂2)sj/2

+ (ξ2 − ∂2)−sj/2σ∗(Aj)(ξ
2 − ∂2)sj+1σ(Aj)(ξ

2 − ∂2)−sj/2]−1

× [(ξ2 − ∂2)sj/2σ(Aj−1)(ξ2 − ∂2)−sj−1σ∗(Bj−1)|ξ|tj + (ξ2 − ∂2)sj/2σ(Cj−1)|ξ|−2tj−1σ∗(Cj−1)(ξ2 − ∂2)sj/2

+ (ξ2 − ∂2)−sj/2σ∗(Aj)(ξ
2 − ∂2)sj+1σ(Cj)|ξ|−tj + (ξ2 − ∂2)−sj/2σ∗(Bj)|ξ|2tj+1σ(Dj)|ξ|−tj ],

Dj = |ξ|−tjσ∗(Cj)(ξ2 − ∂2)sj+1σ(Cj)|ξ|−tj + |ξ|−tjσ∗(Dj)|ξ|2tj+1σ(Dj)|ξ|−tj

+ |ξ|−tjσ(Bj−1)(ξ2 − ∂2)−sj−1σ∗(Bj−1)|ξ|tj + |ξ|tjσ(Dj−1)|ξ|−2tj−1σ∗(Dj−1)|ξ|tj .

8. On one hand, by Steps 1-4 above, the Fredholm property of original complex (2.1) is equivalent
to the invertibility of symbol (3.6). On the other hand, the exactness of symbol complex (3.3) is
equivalent to the invertibility of symbol (3.11). However, we can see that operators (3.11) and (3.6)
coincide.

Remark 3. It follows from the proof of Theorem 3.1 that the exactness of symbol complex (3.3) is
equivalent to the invertibility of operator (3.11). However, the latter operator is actually equal to the
identity plus a finite rank operator. Moreover, if we apply Fourier transform in t ∈ Rν in (3.11) we
reduce this operator to the identity plus an integral operator with a degenerate kernel. This shows
that the ellipticity condition can be checked explicitly.

Remark 4. Note that complexes (2.1) in relative elliptic theory are well defined typically only for
a bounded interval I ⊂ R of Sobolev smoothness exponents s0 (all other smoothness exponents in
the complex are uniquely determined by s0) because the boundary operator i∗ acts between spaces
of sufficiently smooth functions, while the coboundary operator i∗ acts in spaces of distributions
(see [11]). It is expected that the ellipticity condition and the cohomology spaces actually do not
depend on the Sobolev smoothness exponent s0 ∈ I, but this problem requires further study, which
we intend to carry out elsewhere.
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4 Mapping cones

Let us present examples of elliptic complexes. Consider the diagram

0 −−−→ Hs0(M,E0)
A0−−−→ Hs1(M,E1)

A1−−−→ . . .
Am−1−−−→ Hsm(M,Em) −−−→ 0

B0

y B1

y Bm

y
0 −−−→ H t0(X,F0)

D0−−−→ H t1(X,F1)
D1−−−→ . . .

Dm−1−−−→ H tm(X,Fm) −−−→ 0

(4.1)

where the rows are elliptic complexes of pseudodifferential operators Aj and Dj on M and X, while
the Bj’s are boundary operators as in (2.2). We suppose that the diagram is commutative, in other
words, the vertical mappings define a morphism of complexes. Let us consider the mapping cone for
this morphism:

0→
Hs0(M,E0)

⊕
{0}

d0−→
Hs1(M,E1)

⊕
H t0(X,F0)

d1−→
Hs2(M,E2)

⊕
H t1(X,F1)

d2−→ . . .
dm+1−→

{0}
⊕

H tm(X,Fm)
→ 0, (4.2)

where
dj =

(
−Aj 0
Bj Dj−1

)
.

The symbol complex for (4.2) at a point (x, ξ) ∈ T ∗X \ 0 is equal to

0→
Hs0(Rν , E0,x)

⊕
{0}

σ(d0)(x,ξ)−→
Hs1(Rν , E1,x)

⊕
F0,x

σ(d1)(x,ξ)−→
Hs2(Rν , E2,x)

⊕
F1,x

σ(d2)(x,ξ)−→ . . .

. . .
σ(dm+1)(x,ξ)−→

{0}
⊕
Fm,x

→ 0, (4.3)

where
σ(dj) =

(
−σ(Aj) 0
σ(Bj) σ(Dj−1)

)
.

Theorem 4.1. If the rows in (4.1) are elliptic, then mapping cone (4.2) is elliptic and the cohomology
groups of (4.2) and the subcomplex of smooth sections of vector bundles are isomorphic.

Proof. 1. Let us prove the ellipticity using Theorem 3.1. Since (4.3) is a complex, we have
σ(dj+1)σ(dj) = 0. Consequently, σ(Aj+1)σ(Aj) = 0, σ(Dj+1)σ(Dj) = 0 and σ(Bj+1)σ(Aj) =
σ(Dj)σ(Bj).

Since the rows in (4.3) are elliptic by the assumption, their symbol complexes are exact:
Im(σ(Aj)) = ker(σ(Aj+1)) and Im(σ(Dj)) = ker(σ(Dj+1)). Let us show that (4.3) is exact. Let
us find its kernel:

ker(σ(dj)) =


(
u
v

)
∈
Hsj(Rν , Ej,x)

⊕
Fj+1,x

∣∣∣∣∣
(
−σ(Aj) 0
σ(Bj) σ(Dj−1)

)(
u
v

)
=

(
0
0

) .

It corresponds to the system (we use ellipticity of the rows in (4.2)){
−σ(Aj)u = 0

σ(Bj)u+ σ(Dj−1)v = 0
⇐⇒

{
u = −σ(Aj−1)u0

−σ(Bj)σ(Aj−1)u0 + σ(Dj−1)v = 0
⇐⇒
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⇐⇒
{
u = −σ(Aj−1)u0

v = σ(Bj−1)u0 + σ(Dj−2)v0.

This is equivalent to (u, v) ∈ Im(σ(dj−1)). As Im(σ(dj−1)) = ker(σ(dj)), complex (4.3) is exact and
mapping cone (4.2) is elliptic.

2. Let us now give a direct proof of the Fredholm property for complex (4.2). Since its rows are
elliptic by the assumption, there exist parametrices {Pk}, {Rk} modulo smoothing operators for the
rows. This means (e.g., see [15]) that

Ak−1Pk−1 + PkAk = 1 + Ck, Dk−1Rk−1 +RkDk = 1 + C ′k, for all k,

where Ck and C ′k are integral operators with smooth kernels. It is straightforward that a parametrix
modulo smoothing operators for complex (4.2) is equal to

pk =

(
−Pk 0

Rk−1BkPk Rk−1

)
.

Indeed, we have

dk−1pk−1 + pkdk =

=

(
Ak−1Pk−1 + PkAk 0

−Bk−1Pk +Dk−2Rk−2Bk−1Pk−1 −Rk−1BkPkAk +Rk−1Bk Dk−1Rk−1 +RkDk

)
=(

1 + Ck 0

−Bk−1Pk + (1−Rk−1Dk−1 + C ′k−1)Bk−1Pk−1 −Rk−1Bk(1−Ak−1Pk−1 + Ck−1) +Rk−1Bk 1 + C ′k−1

)

=

(
1 + Ck 0

C
′′

k 1 + C ′k−1

)
. (4.4)

Since {pk} is a parametrix for (4.2), the latter complex has the Fredholm property.
3. Denote the subspace of smooth sections in the kernel by

kerC∞ dk ⊂ ker dk ⊂ Hsk(M,Ek)⊕H tk−1(X,Fk−1)

and the range of dk−1 on smooth sections by

ImC∞dk−1 ⊂ Imdk−1 ⊂ Hsk(M,Ek)⊕H tk−1(X,Fk−1).

We have to show that the identity mapping u 7→ u defines an isomorphism of cohomology groups

α : kerC∞ dk/ImC∞dk−1
'−→ ker dk/Imdk−1.

Let us show that α is surjective. Indeed, given u ∈ ker dk, we use (4.4) and obtain

dk−1pk−1u+ pkdku = u+ Cu,

where C is a smoothing operator. Since dku = 0, we obtain u = −Cu− dk−1pk−1u. This means that
u is cohomologous to the smooth section −Cu. This proves the surjectivity of α.

Let us show that α is injective. Indeed, given a smooth section u such that [u] ∈ kerα is equivalent
to u ∈ Imdk, or u = dv, where v is in a suitable Sobolev space. We obtain

dk−1pk−1v + pkdkv = v + Cv.

Hence, v−dk−1pk−1v = pkdkv−Cv = pku−Cv is a smooth section. Therefore, u = dk(v−dk−1pk−1v).
This implies that [u] = 0 and completes the proof of the injectivity of α.
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Example 1. Let us define the relative de Rham complex. To this end, we denote by Ω∗(M) and
Ω∗(X) the spaces of all differential forms on M and X. Then we consider the diagram

0 −−−→ Ω0(M)
d−−−→ Ω1(M)

d−−−→ . . .
d−−−→ Ωn(M) −−−→ 0

i∗

y i∗

y i∗

y
0 −−−→ Ω0(X)

d−−−→ Ω1(X)
d−−−→ . . .

d−−−→ 0 −−−→ 0

n = dimM. (4.5)

Its rows are the de Rham complexes on M and X and the vertical mappings are induced by the
embedding i : X → M . The commutativity di∗ = i∗d follows from the naturality of the exterior
differential d. Hence, the cone of the morphism i∗ is defined

0→
Ω0
s(M)
⊕
{0}

d0−→
Ω1
s−1(M)
⊕

Ω0
s−ν/2(X)

d1−→
Ω2
s−2(M)
⊕

Ω1
s−ν/2−1(X)

d2−→ · · · → 0, (4.6)

where Ω∗s stand for differential forms with coefficients in Hs, s > dimX + ν/2 and

dj =

(
−d 0
i∗ d

)
.

We can apply Theorem 4.1 and obtain that cone (4.6) is a Fredholm complex and its cohomology
coincides with the cohomology of the complex of smooth differential forms.

Denote by H∗dR(M,X) the cohomology spaces of the subcomplex in (4.6) of all smooth differential
forms. Since the restriction mapping i∗ is surjective, it follows (cf. [17]) that this cohomology group
is isomorphic to that of the subcomplex

Ω∗(M,X) = {ω ∈ Ω∗(M) | i∗ω = 0}. (4.7)

It is well known that H∗dR(M,X) is isomorphic to the singular cohomology H∗(M,X) of the pair
(M,X) (e.g., see [4, 9]). Moreover, an explicit isomorphism is defined by the mapping:

ω ∈ Ω∗(M,X) 7−→ IdRω ∈ C∗(M,X),

where C∗(M,X) = Hom(C∗(M)/C∗(X),R) is the space of all singular cochains with real coefficients,
C∗(M), C∗(X) are spaces of all singular chains on M and X respectively, while

(IdRω)(γ) =

∫
γ

ω, for γ ∈ C∗(M).

Example 2. Let us define the relative Dolbeault complex (cf. [24, 23, 25]). To this end, we suppose
that M is a complex manifold and X is its complex submanifold of complex codimension ν. Denote
by Ω0,∗(M) and Ω0,∗(X) the spaces of all antiholomorphic differential forms onM and X respectively.
In local coordinates z1, ..., zn antiholomorphic differential forms are equal to

ω =
∑
I

ωI(z)dzI , where I = (i1, ..., ik), dzI = dzi1 ∧ · · · ∧ dzik .

Then we consider the diagram

0 −−−→ Ω0,0(M)
∂−−−→ Ω0,1(M)

∂−−−→ . . .
∂−−−→ Ω0,n(M) −−−→ 0

i∗

y i∗

y i∗

y
0 −−−→ Ω0,0(X)

∂−−−→ Ω1,0(X)
∂−−−→ . . .

∂−−−→ 0 −−−→ 0

(4.8)
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Its rows are the ∂-complexes on M and X. Recall the definition of the differential:

∂

(∑
I

ωI(z)dzI

)
=
∑
I

∑
j

∂ωI
∂zj

dzj ∧ dzI .

The vertical mappings in (4.8) are induced by the embedding i : X → M . The commutativity
∂i∗ = i∗∂ follows from the naturality of the ∂-operator. Hence, the cone of the morphism i∗ is
defined

0→
Ω0,0
s (M)
⊕
{0}

d0−→
Ω0,1
s−1(M)
⊕

Ω0,0
s−ν(X)

d1−→
Ω0,2
s−2(M)
⊕

Ω0,1
s−ν−1(X)

d2−→ · · · → 0, (4.9)

where Ω0,∗
s stand for differential forms with coefficients in Hs and

dj =

(
−∂ 0

i∗ ∂

)
.

We can apply Theorem 4.1 and obtain that cone (4.9) is a Fredholm complex and its cohomology
coincides with the cohomology of the subcomplex of all smooth differential forms.
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