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1 Introduction

In this paper we preserve the notation and definitions of our paper [14]. We recall some conclusions
from [14]. Let L0 = L0(Rn) be the set of all Lebesgue-measurable functions f : Rn −→ C; L̇0 =
L̇0(Rn) be the subspace of all functions having the decreasing rearrangement f ∗ not identical to
infinity. Here, f ∗ is the decreasing rearrangement of the function f : Rn −→ C with respect to the
n−dimensional Lebesgue measure µn; namely,

f ∗(τ) = inf {y > 0 : λf (y) ≤ τ} , τ ∈ R+, (1.1)

where λf (y) is the Lebesgue distribution function:

λf (y) = µn {x ∈ Rn : |f(x)| > y} . (1.2)

For f ∈ L̇0 we also consider the symmetric rearrangements

f#(x) = f0(|x|), x ∈ Rn; f0(ρ) = f ∗(vnρ
n), ρ ∈ R+. (1.3)

Here, vn is the volume of a unit ball in Rn.We will use here the concepts of an ideal space (shortly:
IS) F = F (R+), and a generalized rearrangement invariant space (shortly: GRIS) E = E(Rn). For
definitions and properties of these spaces we refer to paper [14]; for more detailed discussion see [1].
The reader who does not need such level of generality may assume that F is a Banach function space
(shortly: BFS), and E is a rearrangement invariant space (shortly: RIS) in the system of axioms
developed by C. Bennett and R. Sharpley [2]. Many results in this direction may be found in the
book by S.G. Krein et al. [17].

For a basic GRIS E = E(Rn) and an outer IS F = F (R+) we consider the following variants of
general Morrey spaces.
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1. The local Morrey space:

LMEF = {f ∈ L0 : ||f ||LMEF
= || ||fχBt ||E||F <∞} . (1.4)

2. The global Morrey space:

GMEF =

{
f ∈ L0 : ||f ||GMEF

= sup
x∈Rn
|| ||fχB(x,t)||E||F <∞

}
. (1.5)

3. They are closely related to the general variant of Lorentz-type space:

MEF =
{
f ∈ L̇0 : ||f ||MEF

= || ||f#χBt ||E||F <∞
}
. (1.6)

Here,

B(x, t) = {y ∈ Rn : |y − x| < t} , Bt = B(0, t); χΩ(y) =

{
1, y ∈ Ω
0 y /∈ Ω

(1.7)

The inner (quasi)norm in (1.4)-(1.6) is calculated with respect to y in E(Rn); the outer
(quasi)norm is calculated with respect to t in F (R+).

The classical Morrey spaces LMλ
p and GMλ

p we obtain by setting

E = Lp, 1 ≤ p ≤ ∞; ||g||F = sup
t>0

[
t−λ|g(t)|

]
, 0 ≤ λ ≤ n/p.

The following assumptions give the guarantee of the nontriviality of these spaces

||1||F =∞; ||χ[t0,∞)||F <∞, ∀t0 ∈ R+; (1.8)

∃t1 ∈ R+ : ||ϕE(|Bt|)||F (0,t1) <∞; ϕE(τ) = ||χΩ||E, |Ω| := µn(Ω) = τ ∈ R+. (1.9)

Here ϕE is the so-called fundamental function of GRIS E.
Namely, under these assumptions we have MEF 6= {0} ,MEF 6= E, and

MEF ⊂ GMEF ⊂ LMEF ⊂ Eloc (1.10)

(all embeddings are strict). Moreover,

||f ||LMEF
≤ ||f ||GMEF

≤ ||f ||MEF
, ∀f ∈MEF . (1.11)

All the above results were established in [14].
Many examples and descriptions for classical Morrey spaces and their various generalizations can

be found in [7]-[13], [15, 16]. We refer to the surveys of V.I. Burenkov [4, 5] where many results and
references in this field are contained. This paper is organized as follows. In Section 2 some classes
of operators acting from a GRIS to a general Morrey spaces are considered and comparisons of their
norms for different variants of Morrey spaces are carried out. In Section 3 we apply this approach to
concrete operators, such as the embedding and symmetrization operators, Hardy-Littlewood maximal
function, generalized Riesz potential, Hardy-type operators.
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2 Classes of operators from a GRIS to a general Morrey-type spaces

We assume that all notation and definitions of Section 1 are preserved. Let
E1 = E1(Rn), E = E(Rn) be GRISs.

Let F (R+) be an IS with additional properties:

a) ||1||F =∞; (2.1)
b) ||χ[t0,∞]||F <∞, ∀t0 ∈ R+. (2.2)

Moreover, we assume that

∃t1 ∈ R+ : ||ϕE(|Bt|)||F (0,t1) <∞. (2.3)

We shall use the notation of spaces LMEF , GMEF ,MEF , see formulas (1.4)-(1.6).
For a positively homogeneous operator A : E1(Rn)→ L0(Rn) we introduce the following norms

||A||G = sup {||Af ||GMEF
: f ∈ E1; ||f ||E1 ≤ 1} ; (2.4)

||A||L = sup {||Af ||LMEF
: f ∈ E1; ||f ||E1 ≤ 1} ; (2.5)

||A||∗ = sup {||Af ||MEF
: f ∈ E1; ||f ||E1 ≤ 1} ; (2.6)

||A||∗,K = sup {||Af ||MEF
: f ∈ E1 ∩K; ||f ||E1 ≤ 1} . (2.7)

Let us note that formulas (2.6), (2.7) make sense if A : E1(Rn) → L̇0(Rn). Here, we use the
following notation:

K̃ = {h : R+ → [0,∞) : h ↓, h(ρ+ 0) = h(ρ), ρ ∈ R+} ; (2.8)

K =
{
f(x) = f0(|x|), x ∈ Rn, f0 ∈ K̃

}
. (2.9)

According to (1.11)
||f ||LMEF

≤ ||f ||GMEF
≤ ||f ||MEF

. (2.10)

Therefore, for the norms of the operator A we obtain

||A||L ≤ ||A||G ≤ ||A||∗, (2.11)

and also, obviously,
||A||∗,K ≤ ||A||∗. (2.12)

Theorem 2.1. Let E1, E be GRISs, and the operator A : E1 → L̇0 satisfy the following condition:

∃c0 ∈ [1,∞); (Af)∗ ≤ c0(Af#)∗ ⇔ (Af)# ≤ c0(Af#)#. (2.13)

Then the two-sided estimate holds

||A||∗,K ≤ ||A||∗ ≤ c0||A||∗,K . (2.14)
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Proof. Let f ∈ E1. Then f# ∈ E1 ∩K, ||f#||E1 = ||f ||E1 because E1 is a GRIS. Moreover, by (2.13)
we have

(Af)#χBt ≤ c0(Af#)#χBt ⇒ ||(Af)#||E(Bt) ≤ c0||(Af#)#||E(Bt). (2.15)

By taking into account the monotonicity of || · ||F we obtain

||Af ||MEF
= || ||(Af)#||E(Bt)||F ≤ c0

[
|| ||(Af#)#||E(Bt)||F

]
= c0||Af#||MEF

.

Thus,

||A||∗ = sup {||Af ||MEF
: f ∈ E1; ||f ||E1 ≤ 1} ≤ c0 sup

{
||Af#||MEF

: f ∈ E1; ||f ||E1 ≤ 1
}
.

Also,

f ∈ E1; ||f ||E1 ≤ 1⇒ h = f# ∈ E1 ∩K; ||h||E1 ≤ 1.

Consequently,

sup
{
||Af#||MEF

: f ∈ E1; ||f ||E1 ≤ 1
}
≤ sup {||Ah||MEF

: h ∈ E1 ∩K; ||h||E1 ≤ 1} = ||A||∗,K ,

and we obtain (2.14).

Theorem 2.2. Let E1, E be GRISs, and the operator A : E1 → L̇0 satisfy the following condition:

∃c1 ∈ [1,∞); (Ah)#χBt ≤ c1((Ah)χBt)
#, ∀h ∈ E1 ∩K, ∀t ∈ R+. (2.16)

Then
||A||∗,K ≤ c1||A||L. (2.17)

Proof. By (2.16), we have, for h ∈ E1 ∩K,

||(Ah)#||E(Bt) = ||(Ah)#χBt||E ≤ c1||((Ah)χBt)
#||E = c1||(Ah)χBt||E.

Therefore, for h ∈ E1 ∩K,

||Ah||MEF
= || ||(Ah)#||E(Bt)||F ≤ c1|| ||(Ah)χBt||E||F = c1||Ah||LMEF

.

Finally,
||A||∗,K = sup {||Ah||MEF

: h ∈ E1 ∩K; ||h||E1 ≤ 1}
≤ c1 sup {||Ah||LMEF

: h ∈ E1 ∩K; ||h||E1 ≤ 1} ≤ c1||A||L.

Remark 1. Let us note that the following inequality holds (see [14])

(Af)#χBt ≥ ((Af)χBt)
#, f ∈ E1. (2.18)

In Theorem 2.2 we select the class of operators having inverse estimate (2.16) on the cone E1 ∩K.

We also introduce cones of functions on R with monotonicity properties. Let us fix a constant
c ∈ [1,∞). Denote

K̃c = {g : R→ [0,∞), g(−x) = g(x), x ∈ R; 0 < x1 < x2 ⇒ g(x2) ≤ cg(x1)} (2.19)

Kc =
{
f : Rn → [0,∞), f(x) = f0(|x|), x ∈ Rn, f0 ∈ K̃c

}
. (2.20)

Note that g ∈ K̃1 ⇒ g|R+ ∈ K̃; g ∈ K̃, g̃(x) = g(|x|), x ∈ R⇒ g̃ ∈ K̃1, (see (2.8), (2.9)).
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Theorem 2.3. The following assertions hold

f ∈ K1 ⇒ f#χBt = (fχBt)
#; (2.21)

f ∈ Kc, c ∈ (1,∞)⇒ (fχBt)
# ≤ f#χBt ≤ c(fχBt)

#. (2.22)

Proof. First, we have implications f ∈ K1 ⇒ fχBt ∈ K1 ⇒ (fχBt)
# = fχBt = f#χBt , and (2.21)

follows. Now we prove (2.22). The left-hand-side inequality was already proved (in [14]). Let us
prove the right-hand-side inequality. Let f ∈ Kc. Then, f(x) = f0(|x|), x ∈ Rn, f0 ∈ K̃c. For f0 ∈ K̃c

we define
f̃0(t) = sup

τ≥t
f0(τ), t ≥ 0; f̃0(y) = f̃0(|y|), y ∈ R.

Then, f̃0 ∈ K̃1; f0 ≤ f̃0 ≤ cf0. Thus, for f̃(x) = f̃0(|x|) ∈ K1, x ∈ Rn, we have the following:

f ≤ f̃ ≤ cf ; f̃ ∈ K1 ⇒ f̃#χBt =
(
f̃χBt

)#

(see (2.21)), and we obtain

f ≤ f̃ ⇒ f# ≤ f̃# ⇒ f#χBt ≤ f̃#χBt ,

f̃ ≤ cf ⇒ f̃#χBt =
(
f̃χBt

)#

≤ c (fχBt)
# .

As a result, we come to inequality (2.22).

Corollary 2.1. Let the operator A : E1 → L̇0 be such that A : E1 ∩K1 → L̇0 ∩Kc,
c ∈ [1,∞). Then, the following inequality holds for h ∈ E1 ∩K1

( (Ah)χBt)
# ≤ (Ah)# χBt ≤ c ( (Ah)χBt)

# . (2.23)

Here, if c = 1, we obtain the equality

( (Ah)χBt)
# = (Ah)# χBt , ∀h ∈ E1 ∩K, ∀t ∈ R+. (2.24)

In particular, we have (2.16) with c1 = 1.

3 Application to concrete operators of analysis

Let us consider some examples of operators.

Example 1. Identy and symmetrization operators
Let us consider the following embedding:

E1(Rn) ⊂ L̇0(Rn). (3.1)

Let A = I (the embedding operator). Then,

(Af)# = f# = (f#)# =
(
Af#

)#
, (3.2)

and (2.13) holds with c0 = 1. It gives the equality in (2.14)

||A||∗,K = ||A||∗. (3.3)

Moreover, Corollary 2.1 is applicable here, and (2.24) is also true. Thus, we obtain (2.16), (2.17)
with c1 = 1. As a result, we have for the identical operator A = I:

||A||L = ||A||G = ||A||∗ = ||A||∗,K . (3.4)

The same is true for the symmetrization operator A : Af = f#.



40 M.L. Goldman, E.G. Bakhtigareeva

Example 2. The Hardy-Littlewood maximal operator
Let us consider the maximal operator M : E1(Rn)→ L̇0(Rn), where:

(Mf)(x) = sup
t>0

{
|Bt|−1

∫
B(x,t)

|f(y)|dµn(y)

}
, x ∈ Rn. (3.5)

Then,
(Mf)# ≤ c0(Mf#)#, (3.6)

where c0 = d2d
−1
1 , and 0 < d1 ≤ d2 <∞ are constants in the well- known inequality (see [2])

d1(Mf)∗(t) ≤ t−1

∫ t

0

f ∗(τ)dτ ≤ d2(Mf)∗(t), t ∈ R+. (3.7)

Indeed, we have (see details below)

(Mf)∗(t) ≤ d−1
1 t−1

∫ t

0

f ∗(τ)dτ = d−1
1 t−1

∫ t

0

(f#)∗(τ)dτ ≤ d−1
1 d2(Mf#)∗(t).

At the first step we apply the the left-hand-side inequality of (3.7), then we use the equality
f ∗ = (f#)∗. The final step is based on the right -hand-side inequality in (3.7) for the function f#

instead of f. As a result, we obtain (3.6). Inequality (3.6) implies

||M ||∗,K ≤ ||M ||∗ ≤ c0||M ||∗,K , (3.8)

according to (2.13), (2.14). Now, let us note that

h ∈ E1 ∩K ⇒Mh ∈ L̇0 ∩K, (3.9)

(see, for example, the corresponding conclusion in [1, (22)-(26)]. Thus, Corollary 2.1 is applicable
here, and (2.24) is also true for A = M. Thus, we obtain (2.16), (2.17) with c1 = 1. As a result, we
have for the maximal operator A = M : E1 → L̇0 the following chain of inequalities:

||A||∗,K ≤ ||A||L ≤ ||A||G ≤ ||A||∗ ≤ c0||A||∗,K . (3.10)

Remark 2. In [13, Section 3] it was shown that in fact we have the equality ‖M‖L = ‖M‖G because
the operator M commutes with the shift operator.

Example 3. Generalized Riesz potential
Let us consider the convolution operator

A : E1(Rn)→ L̇0(Rn). (3.11)

Here,

Af(x) = (G ∗ f)(x) = (2π)−n/2
∫
Rn
G(x− y)f(y)dy; f ∈ E1(Rn); (3.12)

The kernel G satisfies the following conditions

G(x) ∼= Φ(|x|), x ∈ Rn, (3.13)

where Φ ∈ Jn : that is (see (2.8), (2.9))

Φ ∈ K; ∃c ∈ R+ :

∫ r

0

Φ(ρ)ρn−1dρ ≤ cΦ(r)rn, r ∈ R+.
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We obtain the classical Riesz potential if Φ(ρ) = ρα−n, 0 < α < n.
We introduce

ϕ(τ) = Φ
(
(τ/vn)1/n

)
∈ J1, τ ∈ R+. (3.14)

Note that

ϕ ∈ K̃; ϕ(t) ≤ 1

t

∫ t

0

ϕ(τ)dτ ≤ c̃ϕ(t), t ∈ R+. (3.15)

By (3.13) we have
G#(x) ∼= Φ(|x|), x ∈ Rn; G∗(τ) ∼= ϕ(τ), τ ∈ R+. (3.16)

Spaces of potentials A(E1) were studied in papers [3, 11, 12], where some criteria were found for
the boundedness of operator (3.11)-(3.12) and optimal RISs were described for this problem. Here,
the following inequalities are of special interest. For
f ∈ E1(Rn), t ∈ R+,

(Af)∗(t) = (G ∗ f)∗(t) ≤ c3

(
ϕ(t)

∫ t

0

f ∗(τ)dτ +

∫ ∞
t

ϕ(τ)f ∗(τ)dτ

)
. (3.17)

(see [11, (3.8)-(3.11)]). In the case f = f# the inverse inequality takes place

(Af#)∗(t) ≥ c4

(
ϕ(t)

∫ t

0

f ∗(τ)dτ +

∫ ∞
t

ϕ(τ)f ∗(τ)dτ

)
. (3.18)

(see [11, (3.14)-(3.26)]). Therefore, we have inequality (2.13) with c0 = c3c
−1
4 .

Moreover, if h ∈ K∩E1, then Ah = (G∗h) ∈ L̇0 is the convolution of two functions h,G ∈ K. Note
that for such functions, the convolution preserves the properties of radial symmetry and decreases
with respect to the spherical radius. Then, Ah = (G ∗ h) ∈ L̇0 ∩K, and we can apply the result of
Corollary 2.1. Therefore, assertions (2.24) and (3.10) hold for this operator.

Example 4. Generalized Hardy operator
For v ∈ Lloc1 (R), we use the following notation (see (2.19))

K̇v,c =

{
ψ : R→ R, ψ(−x) = −ψ(x), x ∈ R; ψ(x)

∫ x

0

vdy ∈ K̃c

)
. (3.19)

Let us consider a Hardy-type operator

A : E1(R)→ L̇0(R).

Here,

Af(x) = ψ(x)

∫ x

0

f(y)v(y)dy, f ∈ E1(R). (3.20)

Theorem 3.1. Let

0 ≤ v ∈ Lloc1 (R); v(−x) = v(x), ψ(−x) = −ψ(x), x ∈ R; ψ(x) ∈ [0,∞), x ∈ R+.

Then, the following assertions take place:

1. v ∈ K̃C(R), C ∈ [1,∞)⇒ |(Af)| ≤ 2C(Af#). (3.21)

2.Let ψ ∈ K̇v,D, D ∈ [1,∞).Then, f ∈ K̃1 ⇒ Af ∈ K̃D. (3.22)
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Proof. 1. For v ∈ K̃C(R) we introduce ṽ(t) = sup
τ≥t

v(τ), t ≥ 0; ṽ(y) = ṽ(|y|), y ∈ R.

Then,
ṽ ∈ K̃1(R), v ≤ ṽ ≤ Cv; v∗ ≤ ṽ∗ ≤ Cv∗. (3.23)

First, we prove that

|(Af)(x)| ≤ 2ψ(|x|)
∫ |x|/2

0

f#(ξ)ṽ(2ξ)dξ, |x| > 0. (3.24)

For x > 0 we have (see explanation below)

|(Af)(x)| ≤ ψ(x)

∫ x

0

|f |ṽdy ≤ ψ(x)

∫ x

0

f ∗+(y)ṽ∗+(y)dy.

The first step is evident; at the second one we define

f+(y) = f(y)χ(0,∞)(y); ṽ+(y) = ṽ(y)χ(0,∞)(y),

and apply the well-known property of rearrangements (see [2, Theorem 2.2]). Furthermore,

|f+| ≤ |f | ⇒ f ∗+(y) ≤ f ∗(y) = f#(
y

2
), y > 0;

ṽ ∈ K̃1 ⇒ ṽ∗+(y) = ṽ∗(2y) = ṽ#(y) = ṽ(y), y > 0.

Therefore,

|(Af)(x)| ≤ ψ(x)

∫ x

0

f#(
y

2
)ṽ(y)dy = 2ψ(x)

∫ x/2

0

f#(ξ)ṽ(2ξ)dξ,

and (3.24) holds.

For x < 0 we have (see explanation below)

|(Af)(x)| ≤ ψ(|x|)
∫ |x|

0

|f(−y)|ṽ(−y)dy ≤ ψ(|x|)
∫ |x|

0

f ∗−(y)ṽ∗−(y)dy.

At the first step we change variables in (3.20), and take into account that v ≤ ṽ. At the second
one we define

f−(y) = f(y)χ(−∞,0)(y); ṽ−(y) = ṽ(y)χ(−∞,0)(y).

Then we apply the well-known property of rearrangements. Further steps are the same as
before. Namely,

|f−| ≤ |f | ⇒ f ∗−(y) ≤ f ∗(y) = f#(
y

2
), y > 0;

ṽ ∈ K̃1 ⇒ ṽ∗−(y) = ṽ∗(2y) = ṽ#(y) = ṽ(y), y > 0.

Thus, we obtain estimate

|(Af)(x)| ≤ ψ(|x|)
∫ |x|

0

f#(
y

2
)ṽ(y)dy = 2ψ(|x|)

∫ |x|/2
0

f#(ξ)ṽ(2ξ)dξ,

which implies (3.24) for x < 0. Since ṽ(2ξ) ≤ ṽ(ξ) ≤ Cv(ξ), we obtain

|(Af)(x)| ≤ 2Cψ(|x|)
∫ |x|

0

f#(ξ)v(ξ)dξ = 2C(Af#)(|x|), |x| > 0. (3.25)

Now, we take into account that (Af#)(|x|) = (Af#)(x), and (3.21) follows.



Some classes of operators in general Morrey-type spaces 43

2. Let us prove (3.22). The functions v, f ∈ K̃1 are even, and ψ ∈ K̇v,D is odd, thus Af is even,
and Af ≥ 0. Moreover, the function

F (x) =

(∫ x

0

vdy

)−1 ∫ x

0

fvdy, x ∈ R,

decreases on R+ (as a mean value of the decreasing function f). For function ψ(x)
∫ x

0
vdy ∈ K̃D

we have:
0 < x1 < x2 ⇒ ψ(x2)

∫ x2

0

vdy ≤ Dψ(x1)

∫ x1

0

vdy.

Since, for 0 < x1 < x2

Af(x2) =

[
ψ(x2)

∫ x2

0

vdy

][(∫ x2

0

vdy

)−1 ∫ x2

0

fvdy

]

≤ D

[
ψ(x1)

∫ x1

0

vdy

][(∫ x1

0

vdy

)−1 ∫ x1

0

fvdy

]
= Dψ(x1)

∫ x1

0

fvdy = DAf(x1).

This proves (3.22).

Remark 3. As a result, for the operator A we have inequalities (2.13), (2.14) with c0 = 2C, and
(2.16), (2.17) with c1 = D.

Corollary 3.1. Let

v ∈ K̃1; ψ(x) =

(∫ x

0

vdy

)−1

. (3.26)

Then, ψ ∈ K̇v,1, and assertions (3.21) and (3.22) hold with C = D = 1. In particular, this is true
for the classical Hardy operator

Hf(x) =
1

x

∫ x

0

f(y)dy. (3.27)

Here we have v = 1, ψ(x) = 1/x ∈ K̇v,1.
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