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1 Introduction

Let us present some definitions, notation, and terminology.
In a Hilbert space H, we consider a linear operator L with domain D(L) and range R(L). By

the kernel of L we mean the set

KerL =
{
f ∈ D(L) : Lf = 0

}
.

Definition 1. An operator L is called a restriction of an operator L1, and L1 is called an extension
of L, briefly L ⊂ L1, if:

1) D(L) ⊂ D(L1),
2) Lf = L1f for all f from D(L).

Definition 2. A linear closed operator L0 in a Hilbert space H is called minimal if there exists the
bounded inverse operator L−1

0 on R(L0) and R(L0) 6= H.

Definition 3. A linear closed operator L̂ in a Hilbert space H is called maximal if R(L̂) = H and
Ker L̂ 6= {0}.

Definition 4. A linear closed operator L in a Hilbert space H is called correct if there exists the
bounded inverse operator L−1 defined on the whole space H.

Definition 5. We say that a correct operator L in a Hilbert space H is a correct extension of a
minimal operator L0 (a correct restriction of a maximal operator L̂) if L0 ⊂ L (L ⊂ L̂).
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Definition 6. We say that a correct operator L in a Hilbert space H is a boundary correct extension
of a minimal operator L0 with respect to a maximal operator L̂ if L is simultaneously a correct
restriction of the maximal operator L̂ and a correct extension of the minimal operator L0, that is,
L0 ⊂ L ⊂ L̂.

Let L̂ be a maximal linear operator in a Hilbert space H, let L be any known correct restriction
of L̂, and let K be an arbitrary linear bounded (in H) operator satisfying the following condition:

R(K) ⊂ Ker L̂.

Then the operator L−1
K defined by the formula (see [10])

L−1
K f = L−1f +Kf (1.1)

describes the inverse operators to all possible correct restrictions LK of L̂, i.e., LK ⊂ L̂.
Let L0 be a minimal operator in a Hilbert space H, let L be any known correct extension of L0,

and let K be a linear bounded operator in H satisfying the conditions
a) R(L0) ⊂ KerK,
b) Ker (L−1 +K) = {0},

then the operator L−1
K defined by formula (1.1) describes the inverse operators to all possible correct

extensions LK of L0 (see [10]).
Let L be any known boundary correct extension of L0, i.e., L0 ⊂ L ⊂ L̂. The existence of at least

one boundary correct extension L was proved by Vishik in [12]. Let K be a linear bounded (in H)
operator satisfying the conditions

a) R(L0) ⊂ KerK,
b) R(K) ⊂ Ker L̂,

then the operator L−1
K defined by formula (1.1) describes the inverse operators to all possible boundary

correct extensions LK of L0 (see [10]).

Definition 7. A bounded operator A in a Hilbert space H is called quasinilpotent if its spectral
radius is zero, that is, the spectrum consists of the single point zero.

Definition 8. An operator A in a Hilbert space H is called a Volterra operator if A is compact and
quasinilpotent.

Definition 9. A correct restriction L of a maximal operator L̂ (L ⊂ L̂), a correct extension L of
a minimal operator L0 (L0 ⊂ L) or a boundary correct extension L of a minimal operator L0 with
respect to a maximal operator L̂ (L0 ⊂ L ⊂ L̂), will be called Volterra if the inverse operator L−1 is
a Volterra operator.

Definition 10. A densely defined closed linear operator A in a Hilbert space H is called formally
normal if

D(A) ⊂ D(A∗), ‖Af‖ = ‖A∗f‖ for all f ∈ D(A).

Definition 11. A formally normal operator A is called normal if

D(A) = D(A∗).
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2 Preliminaries

In this section, we present some results for correct restrictions and extensions [4] which are used in
Section 3.

Let L0 be some minimal operator, and let M0 be another minimal operator related to L0 by the
equation (L0u, v) = (u,M0v) for all u ∈ D(L0) and v ∈ D(M0). Then L̂ = M∗

0 and M̂ = L∗0 are
maximal operators such that L0 ⊂ L̂ and M0 ⊂ M̂ . The existence of at least one boundary correct
extension L was proved by Vishik in [12], that is, L0 ⊂ L ⊂ L̂. In this case, L∗ is a boundary correct
extension of the minimal operator M0, that is, M0 ⊂ L∗ ⊂ M̂ . The inverse operators to all possible
correct restrictions LK of the maximal operator L̂ have the form (1.1), then D(LK) is dense in H if
and only if Ker (I + K∗L∗) = {0}. Thus, it is obvious that any correct extension MK of M0 is the
adjoint of some correct restriction LK with a dense domain, and vice versa [2]. Finally, all possible
correct extensions MK of M0 have inverses of the form

M−1
K f = (L∗K)−1f = (L∗)−1f +K∗f, (2.1)

where K is an arbitrary bounded linear operator in H with R(K) ⊂ Ker L̂ such that

Ker (I +K∗L∗) = {0}.

It is also clear that R(M0) ⊂ KerK∗. In particular, MK is a boundary correct extension of M0 if
and only if R(M0) ⊂ KerK∗ and R(K∗) ⊂ Ker M̂ .

Lemma 2.1. Let L be a densely defined correct restriction of the maximal operator L̂ in a Hilbert
space H. Then the operator KL is bounded on D(L) (that is, KL is bounded in H) if and only if

R(K∗) ⊂ D(L∗).

Proof. Let R(K∗) ⊂ D(L∗). Then, by virtue of (KL)∗ = L∗K∗, we have that KL is bounded in
H, where KL is the closure of the operator KL in H. Here we have used the boundedness of the
operator L∗K∗. Then the operator KL is bounded on D(L). Conversely, let KL be bounded on
D(L). Then KL is bounded on H, by virtue of (KL)∗ = (KL)∗ and that (KL)∗ is defined on the
whole space H. Then the operator K∗ transfers any element f in H to D(L∗). Indeed, for any
element g of D(L) we have

(Lg,K∗f) = (KLg, f) = (g, (KL)∗f).

Therefore, K∗f belongs to the domain D(L∗).

Lemma 2.2. Let LK be a densely defined correct restriction of the maximal operator L̂ in a Hilbert
space H. Then D(L∗) = D(L∗K) if and only if R(K∗) ⊂ D(L∗) ∩ D(L∗K), where L and K are the
operators from representation (1.1).

Proof. If D(L∗) = D(L∗K), then from representation (1.1) we easily get

R(K∗) ⊂ D(L∗) ∩D(L∗K) = D(L∗) = D(L∗K)

Let us prove the converse. If
R(K∗) ⊂ D(L∗) ∩D(L∗K),

then we obtain
(L∗K)−1f = (L∗)−1f +K∗f = (L∗)−1(I + L∗K∗)f, (2.2)

(L∗)−1f = (L∗K)−1f −K∗f = (L∗K)−1(I − L∗KK∗)f, (2.3)

for all f in H. It follows from (2.2) that D(L∗K) ⊂ D(L∗), and taking into account (2.3) this implies
that D(L∗) ⊂ D(L∗K). Thus D(L∗) = D(L∗K).
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Corollary 2.1. Let LK be any densely defined correct restriction of the maximal operator L̂ in a
Hilbert space H. If R(K∗) ⊂ D(L∗) and KL is a compact operator in H, then

D(L∗) = D(L∗K).

Proof. Compactness of KL implies compactness of L∗K∗. Then R(I + L∗K∗) is a closed subspace
in H. It follows from the dense definiteness of LK that R(I + L∗K∗) is a dense set in H. Hence
R(I + L∗K∗) = H. Then from equality (2.2) we get D(L∗) = D(L∗K).

Lemma 2.3. If R(K∗) ⊂ D(L∗) ∩ D(L∗K), then bounded operators I + L∗K∗ and I − L∗KK∗ from
(2.2) and (2.3), respectively, have a bounded inverse defined on H.

Proof. By virtue of the density of the domains of the operators L∗K and L∗ it follows that the operators
I + L∗K∗ and I − L∗KK∗ are invertible. Since from (2.2) and (2.3) we have Ker (I + L∗K∗) = {0}
and Ker (I − L∗KK

∗) = {0}, respectively. From representations (2.2) and (2.3) we also note that
R(I+L∗K∗) = H and R(I−L∗KK∗) = H, since D(L∗) = D(L∗K). The inverse operators (I+L∗K∗)−1

and (I − L∗KK∗)−1 of the closed operators I − L∗KK∗ and I + L∗K∗, respectively, are closed. Then
the closed operators (I + L∗K∗)−1 and (I − L∗KK∗)−1, defined on the whole of H, are bounded.

Under the assumptions of Lemma 2.3 the operators KL and KLK will be (see [3]) restrictions of
the bounded operators KL and KLK , respectively, where the bar denotes the closure of operators
in H. Thus (I − L∗KK∗)−1 = I + L∗K∗ and (I −KLK)−1 = I +KL.

Next we consider the following statement.

Theorem 2.1. Let LK be a densely defined correct restriction of the maximal operator L̂ in a Hilbert
space H. If R(K∗) ⊂ D(L∗)∩D(L∗K), where L and K are the operators in representation (1.1), then

1) the operator BK = (I+KL)LK is relatively bounded correct perturbations of correct restriction
LK and the spectra of the operators BK and L coincide, that is, σ(BK) = σ(L);

2) the operator L is a quasinilpotent (the Volterra) boundary correct extension of L0, and BK is
a quasinilpotent (the Volterra) correct operator, simultaneously;

3) if L is an operator with discrete spectrum, then the system of root vectors of L is complete (the
basis) in H if and only if the system of root vectors of BK is complete (the basis) in H;

4) in particular, when L is a normal operator with discrete spectrum, then the system of root
vectors of the operator BK forms a Riesz basis in H.

Proof. 1. Note that B−1
K = L−1

K (I−KLK), and (I−KLK)L−1
K = L−1

K −K = L−1. The correctness
of the operator BK is obvious. For bounded operators R and S it is known (see [1]) that
σ(RS) \ {0} = σ(SR) \ {0}. Thus, Statement 1) is proved.

2. Note that B−1
K = (I −KLK)−1L−1(I −KLK). It follows easily by Lemma 2.2 and Lemma 2.3

that the operators I−KLK and (I−KLK)−1 are bounded and defined on the whole of H. It is
then obvious that the operators L−1 and B−1

K are quasinilpotent (the Volterra), simultaneously.
Statement 2) is proved.

3. From the known facts of functional analysis (see [11]) it follows that the systems root vectors
of the operators L and BK are complete (the basis), simultaneously.

4. The system of root vectors of the normal discrete correct operator L forms an orthonormal
basis in H. Hence, the system of root vectors of the correct operator BK forms a Riesz basis
in H.
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Example 1. In the Hilbert space L2(0, 1), let us consider the minimal operator L0 generated by the
differentiation operator

L̂y = y′, D(L̂) = W 1
2 (0, 1).

Then
D(L0) = {y ∈ W 1

2 (0, 1) : y(0) = y(1) = 0}.

The action of the maximal operator M̂ = L∗0 has the form

M̂v = −v′, D(M̂) = W 1
2 (0, 1).

Then
D(M0) = {v ∈ W 1

2 (0, 1) : v(0) = v(1) = 0}.

As a fixed boundary correct extension L of L0 we take the operator acting as the maximal operator
L̂ on the domain

D(L) = {y ∈ D(L̂) : y(0) = 0}.

Then all possible correct restrictions LK of L̂ have the following inverses

L−1
K f(x) = L−1f(x) +Kf(x) =

∫ x

0

f(t)dt+

∫ 1

0

f(t)σ(t)dt,

where σ ∈ L2(0, 1) defines the operator K. The domain D(LK) of LK is defined as

D(LK) = {y ∈ W 1
2 (0, 1) : y(0) =

∫ 1

0

y′(t)σ(t)dt}.

Then D(LK) is not dense in L2(0, 1) if and only if σ ∈ W 1
2 (0, 1), σ(1) = 0, and σ(0) = −1. If we

exclude such σ from L2(0, 1), then there exists L∗K which has the inverse of the form

(L∗K)−1g = (L−1
K )∗g = (L∗)−1g +K∗g for all g ∈ L2(0, 1).

This is a description of inverse operators of all possible correct extensions L∗K ofM0. Let the condition
of Theorem 2.1 hold. Then σ ∈ W 1

2 (0, 1), σ(1) = 0, and σ(0) 6= −1. Let us construct the following
operators

KLf = −
∫ 1

0

f(t)σ′(t)dt,

KLKf = − 1

1 + σ(0)

∫ 1

0

f(t)σ′(t)dt.

Note that

L∗Kv(x) = −v′(x) +
σ′(x)

1 + σ(0)
v(0),

D(L∗K) = D(L∗) = {v ∈ W 1
2 (0, 1) : v(1) = 0}.

Then the operator BK has the following form

BKu(x) = u′(x)−
∫ 1

0

u′(t)σ′(t)dt,

D(BK) = D(LK) = {u ∈ W 1
2 (0, 1) : u(0) =

∫ 1

0

u′(t)σ(t)dt},
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where σ ∈ W 1
2 (0, 1), σ(1) = 0, and σ(0) 6= −1. By virtue of Theorem 2.1 BK is a Volterra correct

operator. We know that for a first order differentiation operator there are no Volterra correct re-
strictions or correct extensions, except for the Cauchy problem at some point x = d, 0 ≤ d ≤ 1.
However, the operator BK is neither a correct restriction of L̂ nor a correct extension of L0. This
Volterra problem is obtained by perturbation of the differentiation operator itself and the Cauchy
boundary conditions, simultaneously.

Example 2. If in Example 1 as a fixed boundary correct operator L we take the operator L̂ with
the domain

D(L) = {y ∈ W 1
2 (0, 1) : y(0) + y(1) = 0},

then L is a normal operator. In this case, the operator BK has the form

BKy(x) = y′(x)−
∫ 1

0

y′(t)σ′(t)dt,

D(BK) = {y ∈ W 1
2 (0, 1) : y(0) + y(1) = 2

∫ 1

0

y′(t)σ(t)dt},

where σ(x) ∈ W 1
2 (0, 1), σ(0) + σ(1) = 0, and σ(0) 6= −1

2
. The operator BK is correct and its system

of root vectors forms a Riesz basis in L2(0, 1). The eigenvalues of the normal operator L and the
correct operator BK coincide.

Corollary 2.2. The results of Theorem 2.1 are also valid for the operator

B∗K = L∗K(I + L∗K∗).

All four statements are valid for the pair of operators B∗K and L∗.

Remark 1. The results of Examples 1–2 are also valid for the operator B∗K , which has the form

B∗Kv(x) = − d

dx
[v(x)− σ′(x)

∫ 1

0

v(t)dt],

D(B∗K) = {v ∈ L2(0, 1) : v(x)− σ′(x)

∫ 1

0

v(t)dt ∈ D(L∗)},

where σ ∈ W 1
2 (0, 1), σ(1) = 0, and σ(0) 6= −1, in the case of Example 1, and

σ ∈ W 1
2 (0, 1), σ(0) + σ(1) = 0,

and σ(0) 6= −1
2
, in the case of Example 2.

We recall that the conditions σ(0) 6= −1 and σ(0) 6= −1
2
provide the density of the domain D(LK)

in H.
The latest results that are closely related to our area of study one may find in [6]-[9]. In these

papers singular perturbations of the Laplace operator were investigated. There the method of Green’s
function was used. They studied various spectral properties of the singular perturbations of Laplace
operator.

In this paper, we study correct singular perturbations of the Laplace operator in explicit form by
using Theorem 2.1.
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3 Main results

In the Hilbert space L2(Ω), where Ω is a bounded domain in Rm with an infinitely smooth boundary
∂Ω, let us consider the minimal L0 and maximal L̂ operators generated by the Laplace operator

−∆u = −
(
∂2u

∂x2
1

+
∂2u

∂x2
2

+ · · ·+ ∂2u

∂x2
m

)
. (3.1)

The closure L0, in the space L2(Ω) of Laplace operator (3.1) with the domain C∞0 (Ω), is the
minimal operator corresponding to the Laplace operator. The operator L̂, adjoint to the minimal
operator L0 corresponding to Laplace operator, is the maximal operator corresponding to the Laplace
operator (see [5]). Note that

D(L̂) = {u ∈ L2(Ω) : L̂u = −∆u ∈ L2(Ω)}.

Denote by LD the operator, corresponding to the Dirichlet problem with the domain

D(LD) = {u ∈ W 2
2 (Ω) : u|∂Ω = 0}.

Then, by virtue of (1.1), the inverse operators L−1 to all possible correct restrictions of the maximal
operator L̂ corresponding to the Laplace operator (3.1) have the following form:

L−1f = L−1
D f +Kf,

where, by virtue of (1.1), K is an arbitrary linear operator bounded in L2(Ω) with

R(K) ⊂ Ker L̂ = {u ∈ L2(Ω) : −∆u = 0}.

Then the operator L is determined by
L̂u = −∆u,

D(L) = {u ∈ D(L̂) : [(I −KL̂)u]|∂Ω = 0},

where I is the identity operator in L2(Ω). There are no other linear correct restrictions of the operator
L̂ (see [2]). The operators (L∗)−1, corresponding to the adjoint operators L∗

(L∗)−1g = L−1
D g +K∗g,

describe the inverse operators to all possible correct extensions of L0 if and only if K satisfies the
condition (see [2])

Ker (I +K∗L∗) = {0}.

Note that the last condition is equivalent to D(L) = L2(Ω).
By applying Theorem 2.1 to this particular case we have

Theorem 3.1. Let the operator K have the form

Kf(x) = ω(x)

∫∫
Ω

f(ξ)g(ξ)dξ, x, ξ ∈ Ω ⊂ Rm,

where ω is a harmonic function in L2(Ω), g ∈ L2(Ω), and

K∗f(x) = g(x)

∫∫
Ω

f(ξ)ω(ξ)dξ.
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If K satisfies the assumptions of Theorem 2.1, then g ∈ W 2
2 (Ω), g(x) |∂Ω= 0,∫∫

Ω

(∆g)(ξ)ω(ξ)dξ 6= 1,

and the correct operator

BKu(x) = −∆u(x)− ω(x)

∫∫
Ω

(∆u)(ξ)(∆g)(ξ)dξ,

D(BK) =
{
u ∈ W 2

2 (Ω) :
(
u(x) + ω(x)

∫∫
Ω

(∆u)(ξ)g(ξ)dξ
)
|∂Ω= 0

}
describes a relatively bounded perturbation of L which has the same eigenvalues as the Dirichlet
operator LD.

The system of root vectors of BK forms a Riesz basis in L2(Ω). Morever, if {vk} is an orthonormal
system of eigenfunctions of LD (Dirichlet problem), then the system of eigenvectors {uk} of BK has
the form

uk(x) = ((I +KL)vk)(x) = vk(x) + ω(x)

∫∫
Ω

vk(ξ)(∆g)(ξ)dξ, k = 1, 2, . . .

Consider a more visual case when m = 2, that is, Ω ⊂ R2. To do this, we define the operator K
by using the function g constructed in the following way. Let x(k) = (x

(k)
1 , x

(k)
2 ) ∈ Ω, k = 1, 2, ..., n

be points lying strictly inside the closed domain Ω. We take a holomorphic function F (z) ∈ L2(Ω)

in the domain Ω such that F (zk) = 0, where zk = x
(k)
1 + ix

(k)
2 , k = 1, 2, . . . , n, with multiplicities

mk. As functions g(x1, x2) we take the solution of the following Dirichlet problem

−(∆g)(x) = ln |F (z)|, g|∂Ω = 0. (3.2)

Then, in a neighborhood of the point z where F (z) 6= 0 there is an analytic branch Φ(z) of the
function lnF , hence ln |F | = Re Φ is a harmonic function. In a neighborhood of zk we can write

F (z) = (z − zk)mkΦ(z),

ln |F (z)| = mk ln |z − zk|+ ln |Φ(z)|,

where Φ(zk) 6= 0, k = 1, n. Then by Theorem 3.3.2 of [5] and the harmonicity of the function ln |Φ(z)|
we get

(∆ ln |F |)(x) = 2πmkδ(x− x(k))

in this neighborhood. We verify the assumptions of Theorem 2.1, taking into account that Ω and

Kf(x) = w(x)

∫∫
Ω

f(ξ)g(ξ)dξ, x ∈ Ω,

where w is a harmonic function from L2(Ω) and g is a solution of the Dirichlet problem (3.2). Then
g ∈ W 2

2 (Ω), g(x)|∂Ω = 0, and ∫∫
Ω

ln |F (ζ)|w(ξ)dξ 6= 1,
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where ζ = ξ1 + iξ2 and ξ = (ξ1, ξ2). If we denote by T the following bounded operator in L2(Ω)

Tu(x) = w(x)

∫
∂Ω

[
∂u(ξ)

∂n
ln |F (ζ)| − u(ξ)

∂

∂n
ln |F (ζ)|

]
ds,

we get the following

BKu(x) = −(∆u)(x) + 2πw(x)
n∑
k=1

mku(x(k))− (Tu)(x),

where x(k) = (x
(k)
1 , x

(k)
2 ) ∈ Ω. The domain of the operator BK has the form

D(BK) =

{
u ∈W 2

2 (Ω) :[
u(x) + w(x)

∫
∂Ω

u(ξ)
∂ ln |F (ζ)|

∂n
ds− w(x)

∫∫
Ω

u(ξ) ln |F (ζ)|dξ
]∣∣∣∣
∂Ω

= 0

}
.

We have obtained a relatively bounded perturbation BK of LD which has the same eigenvalues as
the operator LD. The system of root vectors of BK forms a Riesz basis in L2(Ω). If {vk} is an
orthonormal system of eigenfunctions of LD, then the system of eigenfunctions {uk} of BK has the
form

uk(x) = ((I +KL)vk)(x) = vk(x) + w(x)

∫∫
Ω

vk(ξ) ln |F (ζ)|dξ, k = 1, 2, . . . .

Thus, we have constructed a singular perturbation of the Dirichlet problem for the Laplace
operator with a basic system of root vectors. This perturbation is a correct non-self-adjoint operator
with real spectrum, which is not a restriction of the maximal operator L̂ and is not an extension of
the minimal operator L0.

Using the properties of subharmonic functions, one can obtain a similar result in the case m > 2.
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