
ISSN (Print): 2077-9879
ISSN (Online): 2617-2658

Eurasian
Mathematical
Journal

2020, Volume 11, Number 3

Founded in 2010 by
the L.N. Gumilyov Eurasian National University

in cooperation with
the M.V. Lomonosov Moscow State University

the Peoples’ Friendship University of Russia (RUDN University)
the University of Padua

Starting with 2018 co-funded
by the L.N. Gumilyov Eurasian National University

and
the Peoples’ Friendship University of Russia (RUDN University)

Supported by the ISAAC
(International Society for Analysis, its Applications and Computation)

and
by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University
Nur-Sultan, Kazakhstan



EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors–in–Chief
V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Vice–Editors–in–Chief
K.N. Ospanov, T.V. Tararykova

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia),
N.K. Bliev (Kazakhstan), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud
(France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov
(Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia),
M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany),
A. Hasanoglu (Turkey), M. Huxley (Great Britain), P. Jain (India), T.Sh. Kalmenov (Kazakhstan),
B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin
(Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic),
L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), F. Lan-
zara (Italy), V.G. Maz’ya (Sweden), K.T. Mynbayev (Kazakhstan), E.D. Nursultanov (Kazakhstan),
R. Oinarov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-
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Abstract. In a degenerate domain, namely, the inverted cone, we consider a boundary value problem
of heat conduction. For this problem the solvability theorems are established in weighted spaces of
essentially bounded functions. The proofs of the theorems are based on the results of the solvability
for a nonhomogeneous integral equation of the third kind. The problem under study is reduced to
the study of this integral equation using the representation of the solution to the boundary value
problem in the form of a sum of constructed thermal potentials.

DOI: https://doi.org/10.32523/2077-9879-2020-11-3-89-94

1 Introduction

When studying thermophysical processes in an electric arc of high-current shutdown devices, there
is an effect of contracting the axial section of the arc into a contact spot in the cathode region.
Moreover, the diameter of this spot is much less than the diameter of the section of the developed
arc stream, and this allows us to consider this spot as a point.

From the mathematical point of view, the new features of the problem under consideration are,
firstly, that the boundary of the domain changes with time, the change in the boundary depends on
the conditions for opening the contacts. Secondly, the solution domain degenerates to a point at the
initial instant of time, since at the initial instant of time the contacts are in a closed state.

The fundamental difference between boundary value problems for parabolic equations in evolving
domains and classical problems (for cylindrical domains) is that methods of separation of variables
and integral transformations are not applicable to such problems. The application of the method
of thermal potentials allows us to reduce the boundary-value problem with a moving boundary to
an Volterra type integral equation of the second kind [10]. If the solution domain degenerates to a
point at the initial moment of time, the Volterra-type integral equation becomes special (singular),
since the corresponding homogeneous equation, and hence the original homogeneous boundary-value
problem, can have nonzero solutions [1]–[5].

A feature of the problem studied in this paper is, namely, the degeneracy of the solution domain
to a point at the initial moment of time and the need to study the problem for sufficiently small
values of time.
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In this paper, we study the following two-dimensional boundary value problem with respect to
spatial variables in the inverted cone G = {(x; y, t) : x2 + y2 < t2, 0 < t < T} for the equation

∂u(x, y, t)

∂t
= a2

(
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2

)
(1.1)

with the boundary value on the lateral surface of the cone

u(x, y, t) = uc(x, y, t),
√
x2 + y2 = t, 0 < t < T, (1.2)

where uc(x, y, t) is a given function.
Under certain physical and technical assumptions, (see [6]) the boundary value problem (1.1)–

(1.2) simulates the temperature field in a plasma body of an electrical discharge between high-voltage
disconnecting contacts. These contacts were initially in the closed state. Taking into account the
short duration of the process, there are no instruments that can measure the specified temperature
field. It is necessary, at least qualitatively, to describe the nature of these thermal processes using
methods of mathematical modeling.

In order to study (1.1)–(1.2), the solution to the problem was represented as the sum of the
constructed thermal potentials, and the problem was reduced to a Volterra type singular integral
equation of the second kind, which can be considered as an integral equation of the third kind:

t ψ(t)− λ√
π

t∫
0

ψ(τ)d τ√
t− τ

= F (t), 0 < t < T <∞, (1.3)

where λ is a given positive constant and {F (t), t ∈ (0, T )} is a given function.
Equations of form (1.3) have been the subject of study by many authors. Here, we indicate only

the papers [7], [8] and note the numerous studies that are cited in those papers.

2 Preliminary results

In this section, we study solvability issues in the class of essentially bounded functions ψ ∈
L∞(0; +∞) for the integral equation of the third kind (1.3), where λ is a given positive constant
and F is a given function such that F (t)/t ∈ L∞(0; +∞).

The following lemmas hold.

Lemma 2.1. The homogeneous integral equation

tψ(t)− λ√
π

t∫
0

1√
t− τ

ψ(τ)d τ = 0, ψ ∈ L∞(0; +∞),

along with the trivial solution has the following nontrivial solution

ψhom(t) =
λ√
π
t−3/2 exp

{
−λ

2

t

}
, t > 0.

Lemma 2.2. A particular solution ψpart of nonhomogeneous integral equation (1.3) has the form

ψpart(t) =
F (t)

t
+

t∫
0

[τR(t, τ)]
F (τ)

τ
dτ,



On the solution to a two-dimensional heat conduction problem in a degenerate domain 91

where

R(t, τ) =
λ

√
π · τt2

√
t− τ

exp

{
− 4λ2

t− τ

}

+
λ2

t3/2τ 3/2
exp

 λ2

t− τ

(√
τ

t
−
√
t

τ

)2
 erfc

{
λ√
t− τ

(√
τ

t
+

√
t

τ

)}
,

and erfc is the erfc integral:

erfc(z) =
2√
π

∫ +∞

z

e−ξ
2

dξ.

Moreover, for some C > 0

τR(t, τ) ≤ C λ√
π(t− τ)3/2

exp

{
− 2λ2

t− τ

}
, 0 < τ < t <∞.

The following statement follows from Lemmas 2.1–2.2.

Lemma 2.3. For all F (t)/t ∈ L∞(0; +∞) integral equation (1.3) is solvable in the class of essentially
bounded functions ψ ∈ L∞(0; T ), T < +∞.

3 Main results

In this section we study BVP (1.1)–(1.2) in the case of the isotropy property for the angular coordinate
using the polar coordinates, and we reduce the problem to an integral equation of form (1.3). Then
we prove a solvability theorem (Theorem 3.1) for the obtained integral equation on the base of
Preliminary results. Further results of this section are stated in Theorem 3.2 (classes of solutions to
the BVP of heat conduction in the polar coordinates) and Theorem 3.3 (classes of solutions to BVP
(1.1)–(1.2)). The proofs of these theorems are based on Theorem 3.1.

3.1 Reducing a boundary value problem to an integral equation

Converting to the polar coordinates in problem (1.1)–(1.2) and assuming that the isotropy property
is fulfilled for the angular coordinate (the case of the axial symmetry), we encounter the following
problem: to find in the domain Ω = {(r, t) : 0 < r < t, 0 < t < T} a solution to the BVP:

∂u(r, t)

∂t
=
a2

r

∂

∂r

(
r
∂u(r, t)

∂r

)
, (3.1)

lim
r→ 0

u(r, t)

ln (1/r)
= u0(t), 0 < t < T, (3.2)

lim
r→ t

u(r, t) = u1(t) ≡ uc(x, y, t)
∣∣√

x2+y2=t
, 0 < t < T. (3.3)

Usually, instead of condition (3.2), a limit relation on the boundedness of the solution is required,
that is, |u(r, t)| 6=∞ as r → 0. We assume that the solution u(r, t) may have a singularity as r → 0,
that is, we assume that u(r, t) may have some growth as r → 0. We associate this assumption with
the property of a fundamental solution to the Laplace operator in the center of the circle. Thus, we
admit some growth property of the required solution u(r, t) to equation (3.1) (this will be specified
below in Theorems 3.2 and 3.3.



92 M.T. Jenaliyev, M.I. Ramazanov, M.T. Kosmakova, Zh.M. Tuleutaeva

As is known ([9], p. 76, problem 1.2.2-7), the function

G(r, ξ, t) =
ξ

2a2t
exp

{
−r

2 + ξ2

4a2t

}
· I0

(
rξ

2a2t

)
is a fundamental solution to equation (3.1), where ξ is a parameter. Here and below, Iµ(η) is the
modified Bessel function.

Using Green’s formula as in ([10], p. 476–480) we write the integral representation of the solution
to equation (3.1):

u(r, t) =

t∫
0

∂G(r, ξ, t− τ)

∂ξ

∣∣∣
ξ=0

ν(τ) d τ +

t∫
0

∂G(r, ξ, t− τ)

∂ξ

∣∣∣
ξ=τ

ϕ(τ) d τ. (3.4)

In equality (3.4), the functions ν and ϕ are unknown and to be determined. Note that the function
u defined by (3.4) for any given functions ν and ϕ satisfies equation (3.1).

A solution of (3.4) should satisfy conditions (3.2) – (3.3). We obtain ν(t) = a2u0(t) and an
integral equation of form (1.3) (an integral equation of the third kind):

tϕ1(t)− λ√
π

t∫
0

1√
t− τ

ϕ1(τ) d τ = f1(t), 0 < t < T, λ =
a

2
, (3.5)

where

ϕ1(t) = t−1/2 exp

{
t

4a2

}
ϕ(t) ∈ L∞(0, T ), (3.6)

f1(t) = −2a2t1/2 exp

{
t

4a2

}f0(t)− exp {−t/(4a2)}
4a3
√
π

t∫
0

τ

t1/2(t− τ)1/2
ϕ1(τ)d τ

 ,

f0(t) = −
t∫

0

1

2(t− τ)
exp

{
− t2

4a2(t− τ)

}
u0(τ)d τ + u1(t)−

2∑
k=0

[Kkϕ1](t),

[K0ϕ1](t) =

t∫
0

1

2a2(t− τ)
exp

{
− t2 + τ 2

4a2(t− τ)

}
∆I0

(
tτ

2a2(t− τ)

)
ϕ1(τ)d τ,

[K1ϕ1](t) =

t∫
0

τ

4a4(t− τ)
exp

{
− t2 + τ 2

4a2(t− τ)

}
∆I0

(
tτ

2a2(t− τ)

)
ϕ1(τ)d τ,

[K2ϕ1](t) =

t∫
0

tτ

4a4(t− τ)2
exp

{
− t2 + τ 2

4a2(t− τ)

}
∆I01

(
tτ

2a2(t− τ)

)
ϕ1(τ)d τ,

∆I0(α) = I0(α)− Ĩ0(α), Ĩ0(α) =
exp{α}√

2πα
, Ĩ01(α) =

exp{α}
2
√

2πα3/2
, α ∈ (0,∞).
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3.2 Solvability theorems

In order to apply the preliminary results, namely, the result of Lemma 2.3, we show that the function
f1(t)/t is bounded on the interval (0, T ).

Note also that according to (3.6), the function ϕ1 is a bounded function on R+.
Hence, the following theorem on the solvability of integral equation (3.5) is valid:

Theorem 3.1. Let t−1/2f1(t) ∈ L∞(0, T ). Then integral equation (3.5) has the general solution

ϕ1(t) = Cϕ1hom(t) + ϕ1part(t) ∈ L∞((0, T ); t−1/2),

i.e., t−1/2ϕ1(t) ∈ L∞(0, T ), where C = const, ϕ1hom(t) and ϕ1part(t) are solutions to homogeneous
(when f(t) ≡ 0) and nonhomogeneous integral equations (3.5), respectively.

We formulate the main results of this section.

Theorem 3.2. Let t−1u0(t), t−1/2u1(t) ∈ L∞(0, T ). Then BVP (3.1)–(3.3) has the general solution

u(r, t) = Cuhom(r, t) + upart(r, t) ∈ L∞(Ω; r1/2),

i.e., r1/2u(r, t) ∈ L∞(Ω), where C = const, uhom(r, t) and upart(r, t) are solutions to homogeneous
(when u0(t) ≡ 0, u1(t) ≡ 0) and nonhomogeneous boundary value problems (3.1)–(3.3), respectively.

For the axisymmetric case, the following result follows from Theorem 3.2.

Theorem 3.3. Let t−1/2u1(t) ≡ t−1/2uc(x, y, t)
∣∣√

x2+y2=t
∈ L∞(0, T ). Then BVP (1.1)–(1.2) has the

general solution

u(x, y, t) = Cuhom(x, y, t) + upart(x, y, t) ∈ L∞(G; (x2 + y2)1/4),

i.e., (x2 + y2)1/4u(x, y, t) ∈ L∞(G), where C = const, uhom(x, y, t) and upart(x, y, t) are solutions
to homogeneous (when uc(x, y, t) ≡ 0) and nonhomogeneous boundary value problems (1.1)–(1.2),
respectively.
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