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approach to the factorization of triangular matrix functions to its matrix coefficient.
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1 Introduction

We consider the solvability of the so called R-linear boundary value problem (or Markushevich
problem)

ϕ+(t) = a(t)ϕ−(t) + b(t)ϕ−(t) + f(t), t ∈ T = {t ∈ C : |t| = 1}, (1.1)

where ϕ+(t), ϕ−(t) are the boundary values of the unknown functions, analytic respectively inside
and outside of the unit disc D. The second name of this problem is related to the paper by A.I.
Markushevich [8] in which the particular case of (1.1)

ϕ+(t) = ϕ−(t), t ∈ T,

was studied. Problem (1.1) was considered later by several authors (see a brief description of the
results in [6, § 20], [10]). In particular, in [5] it was shown that (1.1) on the unit circle is equivalent
to the vector-matrix C-linear conjugation problem

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ T, (1.2)

where

G(t) =

(
1

a(t)
0

0 1

a(t)

)(
|a(t)|2 − |b(t)|2 b(t)

−b(t) 1

)
,

g(t) =
1

a(t)

(
a(t)f(t)− b(t)f(t)

−f(t)

)
,

and

Φ+(z) =

(
Φ+

1 (z)
Φ+

2 (z)

)
=


ϕ+(z)

ϕ−(
1

z
)

 ,Φ−(z) =

(
Φ−1 (z)
Φ−2 (z)

)
=


ϕ−(z)

ϕ+(
1

z
)

 .
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It follows (see, e.g. [7, 12]) that the solvability of R-linear problem (1.1) is reduced to the factorization
of the matrix coefficient G(t) of vector-matrix problem (1.2).

2 Problem formulation. Notations

Let us introduce some preliminary facts and assumptions under which the problem will be studied
below. In order to avoid additional technical difficulties, we assume that coefficients of problem (1.1)
are Hölder-continuous functions on the unit circle.

Let æ = indT a(t) be the Cauchy index (winding number) of the coefficient a(t) in (1.1). Factor-
ization of the scalar function a(t) (see [4]) yields

a(t) = χ+(t)tæχ−(t), t ∈ T,

where χ+(t), χ−(t) are boundary values of functions, analytic and nonvanishing in D+ = D and
D− = C \ D, respectively. Denoting

φ+(z) =
ϕ+(z)

χ+(z)
, φ−(z) = ϕ−(z)χ−(z),

we rewrite boundary condition (1.1) in the following equivalent form:

φ+(t) = tæφ−(t) + q(t)φ−(t) + h(t), t ∈ T, (2.1)

with
q(t) =

b(t)

χ+(t)χ−(t)
, h(t) =

f(t)

χ+(t)
.

Any Hölder-continuous function can be represented (see, e.g., [4]) by the Sokhotsky-Plemelj formulas
as

q(t) = q+(t) + q−(t)

with functions q±(t) analytically extended to D±, respectively. Since the function q+(t)φ−(t) admits
an analytic extension to D+, then finally we have the following equivalent form of (1.1):

ψ+(t) = tæψ−(t) + p(t)ψ−(t) + h(t), t ∈ T, (2.2)

where ψ+(t) := φ+(t)− q+(t)φ−(t), ψ−(t) := φ−(t), p(t) := q−(t).
In the above notation problem (2.2) is equivalent to the vector-matrix C-linear conjugation prob-

lem

Ψ+(t) =

(
tæ 0
0 tæ

)(
1− p(t)p(t) p(t)

−p(t) 1

)
Ψ−(t) +H(t), t ∈ T. (2.3)

Each Hölder-continuous function on the unit circle analytically extendible to D− can be expanded
to absolutely converging Fourier series

p(t) = q−(t) =
∞∑
n=k

cn
tn
, k ≥ 1.

In what follows we assume that the function p(t) is rational, namely, we consider problem (2.2)
under the following

Assumption. Let the function p(t) be a finite segment of the Fourier series

p(t) = q−(t) =
m∑
n=k

cn
tn

=:
Cm−k(t)

tm
, (2.4)

with Cm−k(t) = cm + cm−1t+ . . .+ ckt
m−k being a polynomial of order m− k.
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Remark 1. The above assumption means the following condition on the coefficients a(t), b(t):

b(t)

|a(t)|
e

1
2πi

∫
T

ln |a(τ)| τ+t
τ−tdτ

=
∞∑
n=0

dnt
n +

m∑
n=k

cn
tn
, (2.5)

with converging series
∞∑
n=0

dnt
n and a finite sum corresponding to negative powers of t.

This follows from the direct calculation of the expression q(t) = b(t)

χ+(t)χ−(t)
and relation between

the Cauchy kernel and the Schwarz kernel on the unit circle T.
We also use the notation

p̃(t) = p(t) =
m∑
n=k

cnt
n.

Our aim is to establish a constructive algorithm for factorization of the coefficient of the homo-
geneous vector-matrix boundary value problem

Ψ+(t) =

(
tæ 0
0 tæ

)(
1− p(t)p̃(t) p(t)
−p̃(t) 1

)
Ψ−(t), t ∈ T, (2.6)

or what it the same, to factorize the matrix

A(t) =

(
1− p(t)p̃(t) p(t)
−p̃(t) 1

)
.

This algorithm is based on the recently proposed method of factorization of triangular matrix func-
tions of an arbitrary order [11] which generalizes G.N. Chebotarev’s approach [3].

Note that the matrix A(t) has a special property det A(t) ≡ 1 and by the assumption the entries
of A(t) are rational functions. An algorithm proposed here is simpler than known algorithm for
factorization of rational matrix [1] and uses the above property. At every step of transformation we
keep the value of determinant of the transformed matrix.

For convenience we use the following explicit matrix solutions X±(z) to the homogeneous vector-
matrix problem with the coefficient A(t)

X+(t) = A(t)X−(t), t ∈ T, (2.7)

namely, X+(z) = E2 is the unit 2× 2 matrix, and

X−(z) =
0
−m

(
1 −p(z)
p̃(z) 1− p(z)p̃(z)

)
k

−m+ k
. (2.8)

We write in (2.8) outside of the matrix X−(z) the orders at infinity of the corresponding elements
of X−(z). It follows that the order of the columns of this matrix are equal to −m and −m + k,
respectively. Hence, the partial indices of the matrix A(t) are integer numbers æ1,æ2 = −æ1 from
the interval [k −m,m − k]. Therefore, the first result on partial indices of vector-matrix boundary
value problem (2.6) follows.

Theorem 2.1. The partial indices of vector-matrix boundary value problem (2.6) are equal to æ +
æ1,æ+æ2, where æ1,æ2 = −æ1 are integer numbers from the interval [k−m,m−k] and æ = indT a(t).

Note that the order of a column at infinity is equal to minimal order of its elements.
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To illustrate the results of this theorem let us consider the following special case of the problem
(2.2).

Example 1. Let p(t) = c1
t

+ c2
t2
. Then the partial indices of the matrix A(t) are either æ1 = æ2 = 0

or æ1 = −1,æ2 = 1.

In this case p(t) = c1t+c2
t2

, p̃(t) = c1t+ c2t
2. Thus

1

p(t)
=

t2

c1t+ c2

=
t

c1

− c2

c2
1

+

c21
c22

c1t+ c2

.

Right multiplying both sides of equality (2.7) by the matrix(
1 0
t
c1
− c2

c21
1

)
we get

X−1 (t) =

(
c22
c21

1
t2

−p(t)
t
c1
− c2

c21
+

c22
c21

p̃(t)
t2

1− p(t)p̃(t)

)
.

Then, multiplying both sides of the equality X+
1 (t) = A(t)X−1 (t) by the matrix(

1
c21
c22

(c1t+ c2)

0 1

)

we get

X−2 (t) =

(
c22
c21

1
t2

0

t
c1

+ c2
c21

(|c2|2 − 1) +
c22
c21

c1
t

c21
c22
t2

)
.

Let us consider two different cases: a) |c2| = 1; b) |c2| 6= 1.
In the case a) we multiply the equality X+

2 (t) = A(t)X−2 (t) by the matrix(
1 − c31

c22
t

0 1

)

and get

X−3 (t) =

(
c22
c21

1
t2

− c1
t

t
c1

+
c22
c21

c1
t
−|c1|2

)
.

Finally, multiplying by (
1 0

t
c1|c1|2 1

)
we obtain in the case a) the function X−4 having the normal form at infinity

X−4 (t) =
0
1

(
c22
c21

1
t2
− 1
|c1|2 −

c1
t

c22
c21

c1
t

−|c1|2

)
1
0
.

It follows that with |c2| = 1 the partial indices of the matrix A(t) are æ1 = æ2 = 0.
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In the case b) we multiply X+
2 (t) = A(t)X−2 (t) by the matrix(

1
c21
c2

(|c2|2 − 1)

0 1

)
and get

X−3 (t) =

(
c22
c21

1
t2

c2
t2

(|c2|2 − 1)− c1
t

t
c1

+ c2
c21

(|c2|2 − 1) +
c22
c21

c1
t

(|c2|2 − 1)2 − |c1|2 + c2c1
t

(|c2|2 − 1)

)
.

Two different situation occur:
b1) if (|c2|2 − 1)2 6= |c1|2, then æ1 = æ2 = 0;
b2) if (|c2|2 − 1)2 = |c1|2, then æ1 = −1,æ2 = 1.
Note that m > k matrix (2.8) does not have in general the normal form at infinity and thus

X±(z) is not a canonical matrix of problem (2.7) (see [9]). Therefore, in order to obtain a more exact
description of partial indices of the matrix A(t) we perform in the next section certain transformations
reducing X−(z) to the normal form at infinity.

3 Solution algorithm

Here we describe an algorithm of construction of the canonical matrix for boundary value (2.7) from
the matrix X±(z). The applied technique is similar to that in [11], i.e. we transform the matrix
X±(z) by multiplying by the rational matrix with the unit determinant whose elements are obtained
by expanding certain elements of the initial matrix into continuous fraction.

Let us start with the one-term representation of 1
p(t)

as the continuous fraction:

1

p(t)
=

tm

Cm−k(t)
= Qk(t) +

Cr1(t)

Cm−k(t)
, 0 ≤ r1 < m− k. (3.1)

Here Qk(t) is a polynomial of (exact) order k and Cr1(t) is a polynomial of order r1, 0 ≤ r1 < m− k.
It follows from (3.1) that

1− p(t)Qk(t) =
Cr1(t)

tm
. (3.2)

Now we right multiply both sides of (2.7) (or what is the same matrices X+(t) = E2 and X−(t))
by the polynomial matrix with the unit determinant

P1(t) =

(
1 0

Qk(t) 1

)
.

After transformation the matrix X−(t) becomes

X−1 (t) =

(
Cr1 (t)

tm
−p(t)

F1(t) 1− p(t)p̃(t)

)
,

where
F1(t) = Qk(t) +

Cr1(t)

tm
p̃(t).

The order at infinity of this rational function is equal to

d1 = −max{−(−k),−(−r1 +m−m)} = −max{−(−k),−(−r1)} ≤ 0.

Note [9] that the matrix (2.7) is called the canonical matrix of X±(z) if it satisfies the boundary condition, nowhere
vanishes in C and has the normal form at infinity, i.e. the sum of orders of its columns is equal to the index of the
determinant of the matrix coefficient A(t).
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Remark 2. If d1 = 0, then it means that the main (polynomial) part of Cr1 (t)

tm
p̃(t) is equal to

−Qk(t) + Qk(0), i.e. F1(t) contains only non-positive powers of t and F1(∞) 6= 0 (F1(t) = a0 +
a1t
−1 + . . . + am−kt

k−m, a0 6= 0); necessarily r1 = k. In what follows we discuss this situation
separately.

Note that such situation can occur only if k < m
2
. Vice versa, if k ≥ m

2
, then necessarily d1 < 0.

Let d1 < 0. Then the orders at infinity of the matrix X−1 are described in the following diagram:

X−1 (t) =
m− r1

d1

(
Cr1 (t)

tm
−p(t)

F1(t) 1− p(t)p̃(t)

)
k

−m+ k
. (3.3)

Thus, the orders at infinity of the column of X−1 (z) are equal to d1 < 0 and −m+k < 0, respectively.
It follows that this matrix also does not have normal form at infinity and we have to continue
transformations. To do this we continue expanding 1

p(t)
as a continuous fraction:

1

p(t)
=

tm

Cm−k(t)
= Qk(t) +

1
Cm−k(t)

Cr1 (t)

= Qk(t) +
1

Qm−k−r1(t) +
Cr2 (t)

Cr1 (t)

, 0 ≤ r2 < r1, (3.4)

where Cr2(t) is a polynomial of order r2. It gives, in particular, the identity

Cm−k(t) = Qm−k−r1(t)Cr1(t) + Cr2(t). (3.5)

Right multiplying both sides of the equality P1(t) = A(t)X−1 (t) by the matrix

P2(t) =

(
1 Qm−k−r1(t)
0 1

)
we obtain by using (3.5) the minus-matrix in the form

X−2 (t) =

(
Cr1 (t)

tm
−Cr2 (t)

tm

F1(t) F2(t)

)
,

where
F2(t) = F1(t)Qm−k−r1(t) + 1− p(t)p̃(t)

= Qk(t)Qm−k−r1(t) + 1 + p̃(t)

[
Cr1(t)Qm−k−r1(t)

tm
− Cm−k(t)

tm

]
= Qk(t)Qm−k−r1(t) + 1− p̃(t)Cr2(t)

tm
.

Denote by d2 the order at infinity of the function F2(t),

d2 = −max {−(r1 −m),−(−r2)} ≤ 0.

Thus, the orders at infinity of the matrix X−2 are described in the following diagram:

X−2 (t) =
m− r1

d1

(
Cr1 (t)

tm
−Cr2 (t)

tm

F1(t) F2(t)

)
m− r2

d2
, (3.6)

and the order at infinity of the columns of X−2 (z) are equal to d1 and d2, respectively.
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Remark 3. The main (polynomial) part of p(t)p̃(t) is equal to p0(t) = b1t + b2t
2 + . . . + bm−kt

m−k,
bm−k = ckcm 6= 0.

Let d1 = 0. Then right multiplying both sides of the equality X+
1 (t) = A(t)X−1 (t) by the matrix

P
(0)
2 (t) =

(
1 − bm−kt

m−k

a0

0 1

)
,

we get that the order at infinity of the (1, 2)-element of the matrix X−1 (t)P
(0)
2 (t) is equal to 0, but

another element of the second column has the non- negative order at infinity. Hence the matrix
X−1 (t)P

(0)
2 (t) has the normal form at infinity and the partial indices are equal to æ1 = æ2 = 0.

If both d1, d2 are negative we can continue expansion of the function 1
p(t)

in a continuous fraction

(next step is a division of Cr1 (t)

Cr2 (t)
etc.) Since the sequence r1, r2, . . . , rs, . . . is strictly decreasing, we

note that this sequence is finite: r1, r2, . . . , rν−1, rν , 0.
Therefore, two situations are possible with C being a complex constant:

• i) Crν−1(t)
Crν (t)

= Qrν−1−rν (t) + C
Crν (t)

⇔ Crν−1(t) = Qrν−1−rν (t)Crν (t) + C;

• ii) Crν−1 (t)

Crν (t)
= Qrν−1−rν (t) + 0 ⇔ Crν−1(t) = Qrν−1−rν (t)Crν (t).

Further transformation and formulation of the final result depends on the division of the polyno-
mials on the former step (i.e. i) or ii) occurres) and on the parity of the number ν.

If ν is an odd number, then in the case ii) the matrix X−ν (z) has the form

X−ν (t) =

(
Crν (t)
tm

−Crν−1 (t)

tm

Fν(t) Fν−1(t)

)
.

Right multiplying both sides of the equality P1(t)P2(t) . . . Pν(t) = A(t)X−ν (t) by the matrix

Pν+1(t) =

(
1 Qrν−1−rν (t)
0 1

)
we obtain X−ν+1(t) in the form

X−ν+1(t) =

(
Crν−1 (t)

tm
0

Fν(t) Fν+1(t)

)
,

where Fν+1(t) = Fν−1(t) + Fν(t)Qrν−1−rν (t) = tm

Crν−1 (t)
.

If ν is an even number, then in the case ii) the matrix X−ν (z) has the form

X−ν (t) =

(
Crν−1 (t)

tm
−Crν (t)

tm

Fν−1(t) Fν(t)

)
.

Right multiplying both sides of the equality P1(t)P2(t) . . . Pν(t) = A(t)X−ν (t) by the matrix

Pν+1(t) =

(
1 0

Qrν−1−rν (t) 1

)
we obtain X−ν+1(t) in the form

X−ν+1(t) =

(
0 −Crν (t)

tm

Fν+1(t) Fν(t)

)
,
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where Fν+1(t) = Fν−1(t) + Fν(t)Qrν−1−rν (t) = tm

Crν (t)
.

In both situations X−ν+1(t) is a triangular matrix. Hence, further transformations (if necessary)
can be performed by G.N. Chebotarev’s method (see [3], cf. [11]).

Therefore, during our transformations we obtain a collection of rational functions
F1, F2, . . . , Fν , Fν+1 having the order at infinity d1, d2, . . . , dν , dν+1, respectively. It leads to the fol-
lowing result for partial indices.

Theorem 3.1. Let for certain k, 1 ≤ k ≤ ν, the numbers d satisfy inequalities

d1 < 0, . . . , dk−1 < 0, dk ≥ 0. (3.7)

(i) If dk = 0, then æ1 = æ2 = 0.
(ii) If dk > 0, then æ1 = −min{m− rk, dk}, æ2 = −min{m− rk, dk}.

Theorem 3.2. Let all numbers dj be negative

d1 < 0, . . . , dν < 0, dν+1 < 0, (3.8)

then partial indices æ1,æ2 belong to the segment [k −m+ 1,m− k − 1].

The interval of possible values of the partial indices becomes smaller (cf. Theorem 2.1) since
d1 ≤ −1.

As for the case i) after the same transformation we obtain either

X−ν+1(t) =

(
Crν−1 (t)

tm
− C
tm

Fν(t) Fν+1(t)

)
, for ν odd,

or

X−ν+1(t) =

(
C
tm

−Crν (t)
tm

Fν+1(t) Fν(t)

)
, for ν even.

Right multiplying the transformed boundary condition by

Pν+2(t) =

(
1 0

Crν (t)
C

1

)
or Pν+2(t) =

(
1 Crν (t)

C

0 1

)
we again obtain triangular minus-factors

X−ν+2(t) =

(
0 C

tm

Fν+2(t) Fν+1(t)

)
or X−ν+2(t) =

(
C
tm

0
Fν+1(t) Fν+2(t)

)
,

where Fν+2(t) = Fν(t) + Crν (t)
C

Fν+1(t) = ∓ tm

C
, which we can also transform by G.N. Chebotarev’s

method.
Thus, the corresponding results for partial indices can be formulated in the same manner as in

case ii).

4 The case of the coefficient being an infinite series

Let us consider the homogeneous problem corresponding to (2.2)

ψ+(t) = tæψ−(t) + p(t)ψ−(t), t ∈ T, (4.1)
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in the case when main assumption (2.4) is not satisfied, i.e. p(t) = q−(t) is an infinite (absolutely
converging) Fourier series

p(t) =
∞∑
n=k

cn
tn
. (4.2)

As before, boundary value problem (4.1) is equivalent to the vector-matrix R-linear conjugation
problem

Ψ+(t) =

(
tæ 0
0 tæ

)(
1− p(t)p(t) p(t)

−p(t) 1

)
Ψ−(t), t ∈ T. (4.3)

The solvability of the latter (as well as the solvability of (4.1)) depends on the factorization of the
matrix

A(t) =

(
1− p(t)p(t) p(t)

−p(t) 1

)
.

Following the idea of [13] (see also [2]) we find a minimal positive integer number N such that∣∣∣∣∣p(t)−
N∑
n=k

cn
tn

∣∣∣∣∣ < |tæ| = 1. (4.4)

The same argument as in [13] and the above results for the case of the coefficient p(t) being a finite
sum leads to the following theorem.

Theorem 4.1. Let the coefficient p(t) of the problem (4.1) be of the form (4.2) and a positive integer
number N,N ≥ k, be defined by inequality (4.4).

Then partial indices æ1, æ1 of the matrix A(t) belong to the segment [k −N,N − k].
The number l of solutions to (4.1), linear independent over the field R, satisfies the following

relations:
(a) if æ ≥ N − k, then l = 2æ;
(b) if 0 ≤ æ < N − k and N − k − æ is an even number, then 2æ ≤ l < æ +N − k;
(c) if 0 ≤ æ < N − k and N − k − æ is an odd number, then 2æ ≤ l < æ +N − k − 1;
(d) if k −N < æ < 0 and N − k − æ is an even number, then 0 ≤ l ≤ æ +N − k;
(e) if k −N < æ < 0 and N − k − æ is an odd number, then 0 ≤ l ≤ æ +N − k − 1;
(f) if æ ≤ k −N , then l = 0.
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