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Introduction

The notion of a quite o-minimal theory was introduced and studied in [5]. This notion is a variation
of weakly o-minimality [9]. This notion occurred fruitful enough producing both the structural
description of models of these theories and the generalization of Mayer theorem [10]: it was shown
that any countable quite o-minimal theory has either finitely many countable models, namely 3k · 6s
for any integers k, s ≥ 0, or maximum, i.e. 2ω countable models [7].

In the present paper, using a general theory of classification of countable models of complete
theories [18, 19] as well as the description [7] of specificity for quite o-minimal theories, we describe
distributions of countable models of quite o-minimal Ehrenfeucht theories in terms of Rudin–Keisler
preorders and distribution functions of numbers of limit models. Moreover, we derive decomposition
formulas for these distributions.

1 Preliminaries

In this section we give the necessary information from [18, 19].
Throughout the paper we consider countable complete first-order theories with infinite models.
Recall that the number of pairwise non-isomorphic models of a theory T that have cardinality λ

is denoted by I(T, λ).

Definition 1. [11] A theory T is called Ehrenfeucht if 1 < I(T, ω) < ω.

Definition 2. [2] A type p(x̄) ∈ S(T ) is said to be powerful in a theory T if every modelM of T
realizing p also realizes every type q ∈ S(T ), i.e.,M |= S(T ).

Since for any type p ∈ S(T ) there exists a countable modelM of T , realizing p, and the model
M realizes exactly countably many types, the availability of a powerful type implies that T is small ,
that is, the set S(T ) is countable. Hence for any type q ∈ S(T ) and its realization ā, there exists a
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prime modelM(ā) over ā, i. e., a model of T containing ā withM(ā) |= q(ā) and such thatM(ā) is
elementarily embeddable to any model realizing the type q. Since all prime models over realizations
of q are isomorphic, we denote these models by Mq. Models Mq are also called finitely generated
[12, 4], almost prime [3], or q-prime.

Definition 3. [18, 8, 14] Let p and q be types in S(T ). We say that the type p is dominated by the type
q, or p does not exceed q under the Rudin–Keisler preorder (denoting this by p ≤RK q), ifMq |= p,
that is, Mp is an elementary submodel of Mq (denoting this by Mp � Mq). Moreover, we say
that a modelMp is dominated by a model Mq, orMp does not exceedMq under the Rudin–Keisler
preorder , and writeMp ≤RK Mq.

Syntactically, the condition p ≤RK q (and hence alsoMp ≤RK Mq) is expressed as follows: there
exists a formula ϕ(x̄, ȳ) such that the set q(ȳ) ∪ {ϕ(x̄, ȳ)} is consistent and q(ȳ) ∪ {ϕ(x̄, ȳ)} ` p(x̄).
Since we deal with a small theory (there are only countably many types over any tuple ā and so any
consistent formula with parameters in ā is deducible from a principal formula with parameters in ā),
ϕ(x̄, ȳ) can be chosen so that for any formula ψ(x̄, ȳ), the set q(ȳ)∪{ϕ(x̄, ȳ), ψ(x̄, ȳ)} being consistent
implies that q(ȳ)∪ {ϕ(x̄, ȳ)} ` ψ(x̄, ȳ). In this case the formula ϕ(x̄, ȳ) is said to be (q, p)-principal .

Definition 4. [18, 8, 14] Types p and q are said to be domination-equivalent , realization-equivalent ,
Rudin–Keisler equivalent , or RK-equivalent (denoting this by p ∼RK q) if p ≤RK q and q ≤RK p.
Models Mp and Mq are said to be domination-equivalent , Rudin–Keisler equivalent , or RK-
equivalent (denoting this by Mp ∼RK Mq).

As in [20], types p and q are said to be strongly domination-equivalent , strongly realization-
equivalent , strongly Rudin–Keisler equivalent , or strongly RK-equivalent (denoting this by p ≡RK q)
if for some realizations ā and b̄ of p and q respectively, both tp(b̄/ā) and tp(ā/b̄) are principal. Models
Mp and Mq are said to be strongly domination-equivalent , strongly Rudin–Keisler equivalent , or
strongly RK-equivalent (denoting this byMp ≡RK Mq).

Clearly, domination relations form preorders, and (strong) domination-equivalence relations are
equivalence relations. Here, Mp ≡RK Mq impliesMp ∼RK Mq.

If Mp and Mq are not domination-equivalent then they are non-isomorphic. Moreover, non-
isomorphic models may be found among domination-equivalent ones.

In Ehrenfeucht examples, models Mn
p0
, . . . ,Mn

pn−3
are domination-equivalent but pairwise

non-isomorphic.
A syntactic characterization for the model isomorphism between Mp and Mq is given by the

following proposition. It asserts that the existence of an isomorphism between Mp and Mq is
equivalent to the strong domination-equivalence of these models.

Proposition 1.1. [18, 14] For any types p(x̄) and q(ȳ) of a small theory T , the following conditions
are equivalent:

(1) the modelsMp andMq are isomorphic;
(2) the modelsMp andMq are strongly domination-equivalent;
(3) there exist (p, q)- and (q, p)-principal formulas ϕp,q(ȳ, x̄) and ϕq,p(x̄, ȳ) respectively, such that

the set
p(x̄) ∪ q(ȳ) ∪ {ϕp,q(ȳ, x̄), ϕq,p(x̄, ȳ)}

is consistent;
(4) there exists a (p, q)- and (q, p)-principal formula ϕ(x̄, ȳ), such that the set

p(x̄) ∪ q(ȳ) ∪ {ϕ(x̄, ȳ)}

is consistent.
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Definition 5. [18, 14] Denote by RK(T ) the set PM of all the isomorphism types of modelsMp,
p ∈ S(T ), on which the relation of domination is induced by ≤RK, a relation deciding domination
among Mp, that is, RK(T ) = 〈PM;≤RK〉. We say that isomorphism types M1,M2 ∈ PM are
domination-equivalent (denoting this by M1 ∼RK M2) if so are their representatives.

Clearly, the preordered set RK(T ) has a least element, which is an isomorphism type of a prime
model.

Proposition 1.2. [18, 14] If I(T, ω) < ω then RK(T ) is a finite preordered set whose factor set
RK(T )/∼RK, with respect to domination-equivalence ∼RK, forms a partially ordered set with a greatest
element.

Definition 6. [18, 19, 14, 16] A modelM of a theory T is called limit ifM is not prime over tuples
andM =

⋃
n∈ω
Mn for some elementary chain (Mn)n∈ω of prime models of T over tuples. In this case

the modelM is said to be limit over a sequence q of types or q-limit, where q = (qn)n∈ω,Mn =Mqn ,
n ∈ ω. If the sequence q consists of unique type q then the q-limit model is called limit over the type
q.

Denote by Ip(T ) the number of pairwise non-isomorphic countable models of the theory T ,
each of which is prime over a tuple, by Il(T ) the number of limit models of T , and by Il(T, q) the
number of limit models over a type q ∈ S(T ).

Definition 7. [19, 16] A theory T is called p-categorical (respectively, l-categorical, p-Ehrenfeucht,
and l-Ehrenfeucht) if Ip(T ) = 1 (respectively, Il(T ) = 1, 1 < Ip(T ) < ω, 1 < Il(T ) < ω).

Clearly, a small theory T is p-categorical if and only if T countably categorical, and if and only if
Il(T ) = 0; T is p-Ehrenfeucht if and only if the structure RK(T ) finite and has at least two elements;
and T is p-Ehrenfeucht with Il(T ) < ω if and only if T is Ehrenfeucht.

Let M̃ ∈ RK(T )/∼RK be the class consisting of isomorphism types of domination-equivalent
modelsMp1 , . . . ,Mpn . Denote by IL(M̃) the number of isomorphism types of models each of which
is limit over some type pi.

Theorem 1.1. [18, 14] For any countable complete theory T , the following conditions are equivalent:
(1) I(T, ω) < ω;
(2) T is small, |RK(T )| < ω and IL(M̃) < ω for any M̃ ∈ RK(T )/∼RK.
If (1) or (2) holds then T possesses the following properties:
(a) RK(T ) has a least element M0 (an isomorphism type of a prime model) and IL(M̃0) = 0;
(b) RK(T ) has a greatest ∼RK-class M̃1 (a class of isomorphism types of all prime models over

realizations of powerful types) and |RK(T )| > 1 implies IL(M̃1) ≥ 1;
(c) if |M̃| > 1 then IL(M̃) ≥ 1.
Moreover, the following decomposition formula holds:

I(T, ω) = |RK(T )|+
|RK(T )/∼RK|−1∑

i=0

IL(M̃i), (1.1)

where M̃0, . . . , M̃|RK(T )/∼RK|−1 are all elements of the partially ordered set RK(T )/∼RK.
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Definition 8. [22] The disjoint union
⊔
n∈ω
Mn of pairwise disjoint structuresMn for pairwise disjoint

predicate languages Σn, n ∈ ω, is the structure of language
⋃
n∈ω

Σn ∪{P (1)
n | n ∈ ω} with the universe⊔

n∈ω
Mn, Pn = Mn, and interpretations of predicate symbols in Σn coinciding their interpretations in

Mn, n ∈ ω. The disjoint union of theories Tn for pairwise disjoint languages Σn accordingly, n ∈ ω,
is the theory ⊔

n∈ω

Tn 
 Th

(⊔
n∈ω

Mn

)
,

whereMn |= Tn, n ∈ ω.

Clearly, the theory T1 t T2 does not depend on the choice of disjoint unionM1 tM2 of models
M1 |= T1 and M2 |= T2. Moreover, the cardinality of RK(T1 t T2) is equal to the product of
cardinalities for RK(T1) and RK(T2), and the relation ≤RK on RK(T1tT2) equals the Pareto relation
[17] defined by preorders in RK(T1) and RK(T2). Indeed, each type p(x̄) of T1 t T2 is isolated by set
consisting of some types p1(x̄1) and p2(x̄2) of theories T1 and T2 respectively, as well as of formulas
P 1(x1

i ) and P 2(x2
j) for all coordinates in tuples x̄1 and x̄2. For types p(x̄) and p′(ȳ) of T1 t T2, we

have p(x̄) ≤RK p′(ȳ) if and only if p1(x̄1) ≤RK p′1(ȳ1) (in T1) and p2(x̄2) ≤RK p′2(ȳ2) (in T2).
Thus, the following proposition holds.

Proposition 1.3. [19, 15] For any small theories T1 and T2 of disjoint predicate languages Σ1 and Σ2

respectively, the theory T1 t T2 is mutually RK-coordinated with respect to its restrictions to Σ1 and
Σ2. The cardinality of RK(T1 t T2) is equal to the product of cardinalities for RK(T1) and RK(T2),
i. e.,

Ip(T1 t T2, ω) = Ip(T1, ω) · Ip(T2, ω), (1.2)

and the relation ≤RK on RK(T1 t T2) equals the Pareto relation defined by preorders in RK(T1) and
RK(T2).

Remark 1. [19, 15] An isomorphism of limit models of theory T1tT2 is defined by isomorphisms
of restrictions of these models to the sets P1 and P2. In this case, a countable model is limit if and
only if some its restriction (to P1 or to P2) is limit and the following equality holds:

I(T1 t T2, ω) = I(T1, ω) · I(T2, ω). (1.3)

Thus, the operation t preserves both p-Ehrenfeuchtness and l-Ehrenfeuchtness (if components are
p-Ehrenfeucht), and, by (1.3), we obtain the equality

Il(T1 t T2) = Il(T1) · Ip(T2, ω) + Ip(T1, ω) · Il(T2) + Il(T1) · Il(T2). (1.4)

2 O-minimal and quite o-minimal theories

Recall [13] that a linearly ordered structureM is o-minimal if any definable (with parameters) subset
of M is a finite union of singletons and open intervals (a, b), where a ∈M ∪ {−∞}, b ∈M ∪ {+∞}.
A theory T is o-minimal if each model of T is o-minimal.

As examples of Ehrenfeucht o-minimal theories, we mention the theories T 1 
 Th((Q;<, cn)n∈ω
and T 2 
 Th((Q;<, cn, c

′
n)n∈ω, where < is an ordinary strict order on the set Q of rationals, constants

cn form a strictly increasing sequence, and constants c′n form a strictly decreasing sequence, cn < c′n,
n ∈ ω.
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The theory T 1 is an Ehrenfeucht’s example [21] with I(T 1, ω) = 3. It has two almost prime
models and one limit model:
• a prime model with empty set of realizations of type p(x) isolated by the set {cn < x | n ∈ ω}

of formulas;
• a prime model over a realization of the type p(x), with the least realization of that type;
• one limit model over the type p(x), with the set of realizations of p(x) forming an open convex

set.
The Hasse diagram for the Rudin–Keisler preorder ≤RK and values of the function IL of distri-

butions of numbers of limit models for ∼RK-classes of T 1 is represented in Fig. 1.
The theory T 2 has six pairwise non-isomorphic countable models:
• a prime model with empty set of realizations of type p(x) isolated by the set {cn < x | n ∈

ω} ∪ {x < c′n | n ∈ ω};
• a prime model over a realization of p(x), with a unique realization of this type;
• a prime model over a realization of type q(x, y) isolated by the set p(x) ∪ p(y) ∪ {x < y}; here

the set of realizations of p(x) forms a closed interval [a, b];
• three limit models over the type q(x, y), in which the sets of realizations of q(x, y) are convex

sets of forms (a, b], [a, b), (a, b) respectively.
In Figure 2 we represent the Hasse diagram of Rudin–Keisler preorders ≤RK and values of distri-

bution functions IL of numbers of limit models on ∼RK-equivalence classes for the theory T 2.
The following theorem shows that the number of countable models of Ehrenfeucht o-minimal

theories is exhausted by combinations of these numbers for the theories T1 and T2.

Theorem 2.1. [10] Let T be an o-minimal theory in a countable language. Then either T has 2ω

countable models or T has exactly 3k · 6s countable models, where k and s are natural numbers.
Moreover, for any k, s ∈ ω there is an o-minimal theory T with exactly 3k · 6s countable models.

The notion of weak o-minimality was initially deeply studied by D. Macpherson, D. Marker, and
C. Steinhorn in [9]. A subset A of a linearly ordered structure M is convex if for any a, b ∈ A and
c ∈ M whenever a < c < b we have c ∈ A. A weakly o-minimal structure is a linearly ordered
structureM = 〈M,=, <, . . .〉 such that any definable (with parameters) subset of the structureM
is a finite union of convex sets inM. Real closed fields with a proper convex valuation ring provide
an important example of weakly o-minimal (not o-minimal) structures.

In the following definitions we assume that M is a weakly o-minimal structure, A,B ⊆M , M is
|A|+-saturated, and p, q ∈ S1(A) are non-algebraic types.

Definition 9. (B.S. Baizhanov, [1]) We say that p is not weakly orthogonal to q (p 6⊥w q) if there
are an A-definable formula H(x, y), a ∈ p(M), and b1, b2 ∈ q(M) such that b1 ∈ H(M,a) and
b2 6∈ H(M,a).
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Lemma 2.1. ([1], Corollary 34 (iii)) The relation 6⊥w of the weak non-orthogonality is an equivalence
relation on S1(A).

In [5], quite o-minimal theories were introduced forming a subclass of the class of weakly o-
minimal theories and preserving a series of properties for o-minimal theories. For instance, in [6],
ℵ0-categorical quite o-minimal theories were completely described. This description implies their
binarity (the similar result holds for ℵ0-categorical o-minimal theories).

Definition 10. [5] We say that p is not quite orthogonal to q (p 6⊥q q) if there is an A-definable
bijection f : p(M)→ q(M). We say that a weakly o-minimal theory is quite o-minimal if the relations
of weak and quite orthogonality coincide for 1-types over arbitrary sets of models of the given theory.

Clearly, any o-minimal theory is quite o-minimal, since for non-weakly orthogonal 1-types over
an arbitrary set A there is an A-definable strictly monotone bijection between the sets of realizations
of these types.

Example 1. Let M = 〈M,<,P 1
1 , P

1
2 , E

2
1 , E

2
2 , f

1〉 be a linearly ordered structure such that M is
a disjoint union of interpretations of unary predicates P1 and P2, where P1(M) < P2(M). We
identify the interpretations of P1 and P2 with Q × Q having the lexicographical order. For the
interpretations of binary predicates E1(x, y) and E2(x, y) we take equivalence relations on P1(M)
and P2(M), respectively, such that for every x = (n1,m1), y = (n2,m2) ∈ Q×Q,

Ei(x, y)⇔ n1 = n2, where i = 1, 2.

The symbol f is interpreted by partial unary function with Dom(f) = P1(M) and Range(f) =
P2(M) such that f((n,m)) = (n,−m) for all (n,m) ∈ Q×Q.

It is easy to see that E1(x, y) and E2(x, y) are ∅–definable equivalence relations dividing P1(M)
and P2(M), respectively, into infinitely many infinite convex classes. We assert that f is strictly
decreasing on each class E1(a,M), where a ∈ P1(M), and f is strictly increasing on P1(M)/E1. It
is clear that Th(M) is a quite o-minimal theory. The theory Th(M) is not o-minimal, since E1(a,M)
defines a convex set which is not a union of finitely many intervals inM.

The following theorem, proved in [7], strengthens Theorem 2.1.

Theorem 2.2. Let T be a quite o-minimal theory in a countable language. Then either T has 2ω

countable models or T has exactly 3k · 6s countable models, where k and s are natural numbers.
Moreover, for any k, s ∈ ω there is an o-minimal theory T with exactly 3k · 6s countable models.

It was shown in [7] that quite o-minimal Ehrenfeucht theories are binary. But this does not hold
in general:

Example 2. LetM = 〈M ;<,P 1
1 , P

1
2 , P

1
3 , f

2〉 be a linearly ordered structure such thatM is a disjoint
union of interpretations of unary predicates P1, P2, and P3, where P1(M) < P2(M) < P3(M). We
identify each interpretation of Pi (1 ≤ i ≤ 3) with the set Q of rational numbers, with ordinary
orders. The symbol f is interpreted by partial binary function with Dom(f) = P1(M)×P2(M) and
Range(f) = P3(M) such that f(a, b) = a+ b for all (a, b) ∈ Q×Q.

Clearly, Th(M) is a quite o-minimal theory. Take arbitrary a ∈ P1(M), b ∈ P2(M). Obviously,
the functions fb(x) := f(x, b) and ga(y) := f(a, y) are strictly increasing on P1(M) and P2(M),
respectively. Take an arbitrary a1 ∈ P1(M) with a < a1 and consider the following formulas:

Φ1(y, a, a1, b) := (fb(a) = fy(a1) ∧ P2(y)),

Φn(y, a, a1, b) := ∃y0[Φn−1(y0, a, a1, b) ∧ fy0(a) = fy(a1) ∧ P2(y)], n ≥ 2.
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Clearly, M |= ∃!yΦn(y, a, a1, b) for each n < ω, i.e., dcl({a, a1, b}) infinite. Then considering the
following set of formulas:

{P2(x)} ∪ {x < b} ∪ {∀y[Φn(y, a, a1, b)→ x < y] | n ∈ ω}

and checking its local consistency, we obtain that there exists a non-principal 1-type over {a, a1, b}
extending the given set of formulas. Whence, Th(M) has 2ω countable models. Since for each finite
set A ⊆ M there are only at most countably many 1-types over A, we conclude that the theory
ThM) is small.

Thus, the following proposition is proved:

Proposition 2.1. There exists a small quite o-minimal theory which is not binary.

Definition 11. [18, 15] We say that small theories T1 and T2 are characteristically equivalent and
write T1 ∼ch T2 if the structure RK(T1) is isomorphic to the structure RK(T2) and, by the correspond-
ing replacement of isomorphism types in RK(T1) to isomorphism types in RK(T2), the distribution
function IL for numbers of limit models of T1 is transformed to the distribution function for numbers
of limit models of T2.

Recall that theories T0 and T1 of languages Σ0 and Σ1 respectively are said to be similar if for
any models Mi |= Ti, i = 0, 1, there are formulas of Ti, defining in Mi predicates, functions and
constants of language Σ1−i such that the corresponding structure of Σ1−i is a model of T1−i.

The following theorem is a refinement of Theorem 2.2 for quite o-minimal Ehrenfeucht theories
producing the direct generalization of Theorem 1.1.5.3 in [18].

Theorem 2.3. Any model of a quite o-minimal Ehrenfeucht theory T is densely ordered except,
possibly, finitely many elements with successors or predecessors laying in the definable closure of the
empty set. The theory T is characteristically equivalent to some finite disjoint union of theories of

form T 1, T 2 (T ∼ch

k⊔
i=1

T 1
i t

l⊔
j=1

T 2
j , where T 1

i are similar to T 1 and T 2
j are similar to T 2) and has

3k · 6l pairwise non-isomorphic countable models.

3 Distributions of countable models

In this section, using Theorems 1.1 and 2.3 we give a description of Rudin–Keisler preorders and
distribution functions of numbers of limit models for quite o-minimal Ehrenfeucht theories, as well
as propose representations of this distributions, based on decomposition formula (1.1).

In view of Proposition 1.3 and Theorem 2.3 the Hasse diagrams for distributions of countable
models for quite o-minimal Ehrenfeucht theories are constructed as figures of Pareto relations for
disjoint unions of copies of theories T 1 and T 2, i.e., they are combinations of the Hasse diagrams
shown in Fig. 1 and 2.

Now we describe the distributions above for the theories
k⊔
i=1

T 1
i .

In Fig. 3 and 4 the Hasse diagrams are shown for the theories T 1
1 tT 1

2 and T 1
1 tT 1

2 tT 1
3 , respectively.

Adding new disjoint copies of T 1 we note that RK(T ), where T =
k⊔
i=1

T 1
i , forms a k-dimensional

cube Qk [17], i.e., represented as a finite Boolean algebra Bk with k atoms u1, . . . , uk. These atoms
correspond to models realizing unique 1-types in the set {p1(x), . . ., pk(x)} of all non-principal 1-
types. Thus, each element ui1 ∨ . . . ∨ uit of the Boolean algebra Bk corresponds to an almost prime
model of T , realizing only non-principal 1-types pi1(x), . . . , pit(x).
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Figure 3: Figure 4:

The number of limit models for the element ui1 ∨ . . . ∨ uit , i. e., of limit models over (unique)
completion qi1,...,it(x1, . . . , xt) of the type pi1(x1)∪ . . .∪pit(xt) equals 2t−1. Indeed, choosing a prime
model over the type qi1,...,it we have 2t possibilities characterizing an independent choice either prime
or limit model over each type pij . Removing the (unique) possibility of choice of prime model for
each type pij , i. e., of prime model over the type qi1,...,it , we obtain the following value of the number
of limit models over the type qi1,...,it :

Il(T, qi1,...,it) = 2t − 1 (3.1)

Since there are 3k countable models, 2k of them are almost prime, and the remaining are limit
ones, the total number of limit models, calculated on the basis of relations (3.1) (see also (1.4)) leads
to the following: ∑

qi1,...,im

Il(T, qi1,...,it) =
k∑
t=1

(2t − 1) · Ct
k = 3k − 2k. (3.2)

By (3.2) for the theories
k⊔
i=1

T 1
i , we have the following representation of decomposition formula (1.1):

3k = 2k +
k∑
t=1

(2t − 1) · Ct
k. (3.3)

For k = 1 we have 3 = 2 + 1, for k = 2: 9 = 4 + 1 · 2 + 3 · 1, for k = 3: 27 = 8 + 1 · 3 + 3 · 3 + 7 · 1,
as shown in Fig. 1, 3, 4, respectively.

Now we describe the distributions for the theories
s⊔
j=1

T 2
j .

In Fig. 5 and 6 the Hasse diagrams are shown for the theories T 2
1 tT 2

2 and T 2
1 tT 2

2 tT 2
3 , respectively.

These diagrams form distributive lattices, which are obtained as Cartesian products, respectively,
from four-element and eight-element distributive lattices by extensions of each two-dimensional cube
by four new elements such that each edge of given Boolean algebra contains new intermediate element.
The theory T 2

1 t T 2
2 has 62 = 36 countable models, where 9 of them are almost prime and 27 are

limit. The theory T 2
1 t T 2

2 t T 2
3 has 63 = 216 countable models, where 27 of them are almost prime

and 189 are limit.
Continuing the process of adding disjoint copies of the theory T 2, we observe that RK(T ), where

T =
s⊔
j=1

T 2
j , is obtained from s-dimensional cube replacing edges by three-element lines and forming
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Figure 5: Figure 6:

s-dimensional linear space Ls,3 over the field Z3. Therefore, |RK(T )| = 3s. Here, the theory T has
exactly s non-principal 1-types p1(x), . . . , ps(x), each of which, in almost prime models, either does
not have realizations, or has unique realization, or has infinitely many realizations including the least
and the greatest ones.

To calculate the number of limit models, we note that the structure Ls,3 contains the s-dimensional
cube, whose vertices, 2s ones, symbolize prime models over completions qj1,...,jm(x1, . . . , xm) of
types pj1(x1)∪ . . .∪ pjm(xm) such that these prime models have at most one realization for each type
p1(x), . . . , ps(x) and do not generate limit models. Furthermore, we choose among s types pj some
m types, responsible for the existence of limit models generated by realizations of these types, and
obtain 4m − 1 possibilities for these limit models by variations of existence or absence of least and
greatest realizations. Together with the choice of m types we choose among remaining s−m types
some r types having unique realizations. Under these conditions of choice we have (4m−1)·Cm

s ·Cr
s−m

possibilities. Summarizing these values we obtain the following equations:

∑
qi1,...,im

Il(T, qi1,...,im) =
s∑

m=1

s−m∑
r=0

(4m − 1) · Cm
s · Cr

s−m

=
s∑

m=1

(
s−m∑
r=0

Cr
s−m

)
(4m − 1) · Cm

s =
s∑

m=1

2s−m · (4m − 1) · Cm
s = 6s − 3s. (3.4)

By (3.4) for the theory
s⊔
j=1

T 2
j , we have the following representation of decomposition formula (1.1):

6s = 3s +
s∑

m=1

2s−m · (4m − 1) · Cm
s . (3.5)

For s = 1 we have 6 = 3 + 1 · 3 · 1, for s = 2: 36 = 9 + 2 · 3 · 2 + 1 · 15 · 1, for s = 3:
216 = 27 + 4 · 3 · 3 + 2 · 15 · 3 + 1 · 63 · 1, as shown in Fig. 2, 5, 6, respectively.

Finally, we describe the indicated distributions for the theories
k⊔
i=1

T 1
i t

s⊔
j=1

T 2
j .
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In Fig. 7, 8 and 9, the Hasse diagrams are shown for the theories T 1
1 t T 2

1 , T 1
1 t T 1

2 t T 2
1 , and

T 1
1 tT 2

1 tT 2
1 , respectively. The theory T 1

1 tT 2
1 has 3 · 6 = 18 countable models, 6 of them are almost

prime and 12 are limit ones. The theory T 1
1 t T 1

2 t T 2
1 has 32 · 6 = 54 countable models, 12 of them

are almost prime and 42 are limit ones. The theory T 1
1 tT 2

1 tT 2
1 has 3 ·62 = 108 countable models,18

of them are almost prime and 90 are limit ones.
To calculate the number of limit models, we note that in the structure RK(T ), where T =

k⊔
i=1

T 1
i t

s⊔
j=1

T 2
j , has the k-dimensional cube Qk and the graph structure Ls,3 defined by the space

Ls,3. Here, the structure RK(T ) is represented as the lattice with the Hasse diagram defined by the
product Qk × Ls,3 of graphs, and therefore it has 2k · 3s elements. Below we will also denote the
correspondent lattices by Qk × Ls,3.

Each vertex in RK(T ) symbolizes a prime model over (unique) completion

qi1,...,it,j1,...,jm(x1, . . . , xr, y1, . . . , ym)

of type pi1(x1) ∪ . . . ∪ pit(xm) ∪ p′j1(y1) ∪ . . . ∪ p′jm(ym), where the types p1(x), . . . , pk(x) exhaust the
list of non-principal 1-types of the theories T 1

i , and the types p′1(x), . . . , p′s(x) for the list of non-
principal 1-types of theories T 2

j . Here, almost prime models, realizing the types pi1(x1), . . . , pit(xm),
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have their least realizations, as well as they have either not more than one realizations of each type
p′1(x), . . . , p′s(x), or, in the latter case p′j(x), these realizations, for a fixed type, form closed intervals.

Further, we choose among k types pi some t types, and among s types p′j somem types, responsible
for the existence of limit models generated by realizations of these types, and obtain (2t · 4m − 1)
possibilities for limit models. Together with the choice of m types we choose among remaining
s −m types p′j some r types having unique realizations. Under these conditions of choice we have
(2t ·4m−1) ·Ct

k ·Cm
s ·Cr

s−m possibilities. Summarizing these values we obtain the following equalities:

∑
qi1,...,it,j1,...,jm

Il(T, qi1,...,im) =
k∑
t=0

s∑
m=0

s−m∑
r=0

(2t · 4m − 1) · Ct
k · Cm

s · Cr
s−m

=
k∑
t=0

s∑
m=0

(
s−m∑
r=0

Cr
s−m

)
(2t · 4m − 1) · Ct

k · Cm
s

=
k∑
t=0

s∑
m=0

2s−m · (2t · 4m − 1) · Ct
k · Cm

s = 3k · 6s − 2k · 3s. (3.6)

By (3.6) for the theory
k⊔
i=1

T 1
i t

s⊔
j=1

T 2
j , we have the following representation of the decomposition

formula (1.1):

3k · 6s = 2k · 3s +
k∑
t=0

s∑
m=0

2s−m · (2t · 4m − 1) · Ct
k · Cm

s . (3.7)

For k = 1 and s = 1 we have 18 = 6 + 2 · 1 · 1 · 1 + 1 · 3 · 1 · 1 + 1 · 7 · 1 · 1; for k = 2 and s = 1:
54 = 12 + 2 · 1 · 2 · 1 + 2 · 3 · 1 · 1 + 1 · 3 · 1 · 1 + 1 · 7 · 2 · 1 + 1 · 15 · 1 · 1; for k = 1 and s = 2:
108 = 18 + 4 · 1 · 1 · 1 + 2 · 3 · 1 · 2 + 2 · 7 · 1 · 2 + 1 · 15 · 1 · 1 + 1 · 31 · 1 · 1, as shown in Fig. 7, 8, 9,
respectively.

By Theorem 2.3 and obtained decomposition formulas (3.3), (3.5), (3.7) we have the following
theorem.

Theorem 3.1. Any quite o-minimal Ehrenfeucht theory T has a Rudin–Keisler preorder, represented
by a lattice Qk × Ls,3, and a decomposition formula of the form

3k · 6s = 2k · 3s +
k∑
t=0

s∑
m=0

2s−m · (2t · 4m − 1) · Ct
k · Cm

s .

For s = 0 the decomposition formula has form (3.3), and for k = 0 we obtain (3.5).
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