
ISSN (Print): 2077-9879
ISSN (Online): 2617-2658

Eurasian
Mathematical
Journal

2020, Volume 11, Number 3

Founded in 2010 by
the L.N. Gumilyov Eurasian National University

in cooperation with
the M.V. Lomonosov Moscow State University

the Peoples’ Friendship University of Russia (RUDN University)
the University of Padua

Starting with 2018 co-funded
by the L.N. Gumilyov Eurasian National University

and
the Peoples’ Friendship University of Russia (RUDN University)

Supported by the ISAAC
(International Society for Analysis, its Applications and Computation)

and
by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University
Nur-Sultan, Kazakhstan



EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors–in–Chief
V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Vice–Editors–in–Chief
K.N. Ospanov, T.V. Tararykova

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia),
N.K. Bliev (Kazakhstan), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud
(France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov
(Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia),
M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany),
A. Hasanoglu (Turkey), M. Huxley (Great Britain), P. Jain (India), T.Sh. Kalmenov (Kazakhstan),
B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin
(Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic),
L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), F. Lan-
zara (Italy), V.G. Maz’ya (Sweden), K.T. Mynbayev (Kazakhstan), E.D. Nursultanov (Kazakhstan),
R. Oinarov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-
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1 Introduction

Let us consider in RN+1 the domain Q defined by

Q = {(x, t) : x ∈ Ωt, 0 < t < T},

where (0, T ) is a finite interval, Ωt ∈ C0,1 (here, C0,1 is a set of all bounded domains in RN , whose
boundary can be locally described by functions belonging to C0,1(∆), where ∆ ⊂ RN−1 is a cube;
see [6]) and for every t, s ∈ (0, T ), t < s,

∅ 6= Ω0 ⊂ Ωt ⊂ Ωs ⊂ ΩT .

Let t ∈ [0, T ] and p > 1, let
Vt = W k,p

0 (Ωt)

be the Sobolev space and let V ∗t be its dual space. We denote by 〈·, ·〉t the duality between V ∗t and
Vt, and (·, ·)t denotes the inner product in L2(Ωt).

We will solve the parabolic variational inequality

u(t) ∈ Kt :

(
du(t)

dt
, v − u(t)

)
t

+〈Au(t), v − u(t)〉t

≥(f(t), v − u(t))t for all v ∈ Kt

(1.1)

for t ∈ (0, T ), where Kt is a closed convex subset of the space Vt ∩ L2(Ωt). The norm of the space
Vt ∩ L2(Ωt) is defined by

‖ · ‖Vt∩L2(Ωt) = ‖ · ‖Vt + ‖ · ‖L2(Ωt).

Moreover, let A be a nonlinear differential operator of order 2k (k ∈ Z+) of the form:

(Au)(x) =
∑
|α|≤k

(−1)|α|∂α(aα(x, δk u))
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for x ∈ ΩT , where δk u = {∂βu}|β|≤k and

∂βu(x) =
d|β|u(x)

dxβ11 ...dx
βN
N

,

β = (β1, ..., βN) is a multiindex, i.e., βi ∈ N∪{0}, i = 1, 2, ..., N, and |β| = β1+...+βN . The coefficients
{aα(·, δk u)}|α|≤k of the operator A and the function f are defined in ΩT and Q, respectively. Together
with (1.1) we consider the initial condition

u(0) = 0. (1.2)

In the special case, when Q is a cylinder, there are a number of works where even more generalized
versions of variational inequality (1.1) – (1.2) have been solved by the so-called Rothe’s method, see
e.g. [1], [5], [14] and [15]. The method of Rothe (also called the method of lines) was introduced by
E. Rothe in 1930. It has been developed and applied to numerical study, e.g. of parabolic equations
and the corresponding variational inequalities.

However, in the case when Q is a noncylindrical domain the problem of type (1.1) – (1.2) is much
less studied. If Kt = Vt then the variational inequality is equivalent to the corresponding parabolic
boundary-value problem in noncylindrical domains which was probably first considered in [2]. Later
on it was studied in [8] by the transformation method which requires sufficient smoothness of the
boundary of the domain Q in t. Problems of such type even more generalized versions were solved
in [3], [4], [9] and [10] by extended Rothe’s method introduced in [10]. In this paper we show the
application of extended Rothe’s method to variational inequality (1.1) – (1.2).

The paper is organized as follows: in Section 2 we briefly present an idea of construction of the
extended Rothe method for parabolic variational inequalities. Further, in Section 3 we prove the
existence and uniqueness of solution of (1.1) – (1.2) (see Theorem 3.1). Finally, in the last section
we present further results (see Propositions 4.1 and 4.2) and comments related to the main result.

2 Rothe’s method for noncylindrical domains

In the proof of the main result (Theorem 3.1) we will see that the following assumptions ensure
the existence and uniqueness of the solution of problem (1.1) – (1.2) in the sense of Definition 1 below.

Assumptions. The coefficients of the operator A satisfy the following conditions:

(A1) The Carathéodory condition, i.e. aα(x; ·) is continuous on Rm for a.e. x ∈ ΩT and aα(·; ξ)
is measurable on ΩT for every ξ ∈ Rm, where m is the number of all multiindices of length
|α| ≤ k, i.e., m = 1 +N +N2 + ...+Nk.

(A2) The growth condition

|aα(x; ξ)| ≤ Cα

gα(x) +
∑
|β|≤k

|ξβ|p−1

 for a.e. x ∈ ΩT

for all ξ ∈ Rm, where Cα is a given positive constant and gα is a given function in Lp′(ΩT ), p′ =
p
p−1

.

(A3) The monotonicity condition∑
|α|≤k

[aα(x; ξ)− aα(x; η)](ξα − ηα) > 0 for a.e. x ∈ ΩT

and every ξ, η ∈ Rm, ξ 6= η.
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(A4) The coercivity condition∑
|α|≤k

aα(x; ξ)ξα ≥ c0

∑
|α|≤k

|ξα|p for a.e. x ∈ ΩT

for every ξ ∈ Rm with a suitable constant c0 > 0.

(A5) The symmetry condition aαβ(x; ξ) = aβα(x; ξ) for a.e. x ∈ ΩT and for all ξ ∈ Rm.

(A6) The function f satisfies the following condition: there exists a function F ∈ C(I, L2(ΩT )) ∩
V 1(I, L2(ΩT )) such that

F (x, t) = f(x, t) for all (x, t) ∈ Q

and we extend the function f to the set ΩT × [0, T ] as

f(x, t) =

{
f(x, t), (x, t) ∈ Q,
0, ΩT × [0, T ] \Q.

(A7) The sets Kt (t ∈ (0, T )) satisfy the following condition: if we denote by Kt (t ∈ [0, T ]) the set
of all elements of Kt extended by zero to the whole domain ΩT , i.e.

Kt = {u ∈ KT , u(t)
∣∣∣
Ωt
∈ Kt, u(t)

∣∣∣
ΩT \Ωt

= 0 a.e. in I},

then K0 ⊂ Kt ⊂ Ks ⊂ KT .

We apply the idea of Rothe in the following way.
We divide the interval I = [0, T ] into n subintervals I1, I2, ..., In (Ij = [tj−1, tj], j = 1, 2, ..., n)

of length h = T
n
. According to initial condition (1.2) we put z0(x) = 0, x ∈ ΩT , for t0 = 0 and

successively for j = 1, 2, ..., n we define functions zj(x) as the solutions of the following variational
inequalities:

zj ∈ Ktj : (
zj
h
, v − zj)tj + 〈Azj, v − zj〉tj

≥ (fj +
zj−1

h
, v − zj)tj for all v ∈ Ktj .

(2.1)

We obtain problems (2.1) if in (1.1) we replace the derivative ∂u
∂t

by the differential quotient zj−zj−1

h

in the points t = tj and put zj−1 = 0 on Ωtj \ Ωtj−1
, j = 1, 2, ..., n.

Inequality (2.1) can be rewritten in the form

zj ∈ Ktj : 〈Ahzj, v − zj〉tj ≥ (fj +
zj−1

h
, v − zj)tj for all v ∈ Ktj , (2.2)

where 〈Ahu, v〉t = (u
h
, v)t + 〈Au, v〉t. The operator A + 1

h
I : Kt → (Vt ∩ L2(Ωt))

∗ = Vt + L2(Ωt) is
bounded, continuous, strictly monotone and coercive. Hence, due to [6, Theorem 43.2] there exists
a unique solution zj ∈ Ktj of (2.2), which implies (2.1).

We solve problem (2.2) in the following way: first we consider (2.2) for j = 1, which takes the
form

z1 ∈ Kt1 (
z1

h
, v − z1)t1 + 〈Az1, v − z1〉t1 ≥ (f1 +

z0

h
, v − z1)t1 for all v ∈ Kt1 ,
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then we extend the obtained solution by 0:

z̃1(x) =


z1(x), x ∈ Ωt1 ,

0, x ∈ ΩT \ Ωt1

and we get z̃1 ∈ KT .
Repeating the above procedure for j = 2, 3, ..., n we get functions

z̃1, z̃2, ..., z̃n ∈ KT .

Next we construct the function un(x, t), called Rothe’s function, and defined on ΩT ×I by putting

un(x, t) = z̃j−1(x) +
t− tj−1

h
(z̃j(x)− z̃j−1(x)) (2.3)

for t ∈ Ij, j = 1, 2, ..., n, and x ∈ ΩT . Below we shall write zj instead of z̃j.

In this way we get the sequence {un(x, t)}∞n=1 which is called Rothe’s sequence of approximate
solutions of problem (1.1) – (1.2).

In the next section we prove that this sequence in fact converges to the (unique) solution of our
problem.

3 Existence and uniqueness results

The notion of a solution of the problem introduced above will be given now. Let us first define the
following set:

KQ = {u ∈ L2(I, VT ∩ L2(ΩT )), u(t) ∈ Kt}.

By the definition of Kt it follows that the set KQ is also a convex closed set in L2(I, VT ∩ L2(ΩT )).

Definition 1. A function u is called a weak solution of problem (1.1) – (1.2) if the following conditions
are fulfilled:

1) u ∈ KQ,

2) u ∈ AC(I, L2(ΩT )),

3) u′ ∈ L2(I, L2(ΩT )),

4) u(0) = 0,

5)
∫ T

0
〈Au(t), v(t)− u(t)〉Tdt+

∫ T
0

(u′(t), v(t)− u(t))Tdt

≥
∫ T

0
(f, v(t)− u(t))Tdt for all v ∈ KQ.

Our main result in this section reads as follows.

Theorem 3.1. Assume that Assumptions A1-A7 hold. Then there exists exactly one solution of
problem (1.1) – (1.2) in the sense of Definition 1, i.e. exactly one function which is a weak (strong)
limit of the sequence of Rothe’s functions un(t) in the space L2(I, VT ∩ L2(ΩT )) (C(I, L2(ΩT ))).
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Proof. Uniqueness. Let u be a solution of problem (1.1) – (1.2). Let a ∈ R+ be arbitrary and let

v(t) =

{
w(t), 0 < t < a,
u(t), a ≤ t ≤ T,

where w(t) ∈ Kt for t ∈ (0, a). Putting this function into integral inequality 5) (of Definition 1) we
get that ∫ a

0

〈Au(t), w(t)− u(t)〉Tdt+

∫ a

0

(u′(t), w(t)− u(t))Tdt ≥
∫ a

0

(f(t), w(t)− u(t))Tdt.

Assume that u1 and u2 are solutions of problem (1.1) – (1.2). Replacing u, w in the last inequality
for by u1, u2, respectively, and then u, w by u2, u1, respectively, and adding the resulting inequalities
we obtain that

−
∫ a

0

〈Au2(t)− Au1(t), u2(t)− u1(t)〉Tdt−
∫ a

0

(u′2(t)− u′1(t), u2(t)− u1(t))Tdt ≥ 0.

From this and from (A3) we get that∫ a

0

(u′2(t)− u′1(t), u2(t)− u1(t))Tdt ≤ 0.

Taking into account that∫ a

0

(u′2(t)− u′1(t), u2(t)− u1(t))Tdt =
1

2

∫ a

0

d

dt
‖u2(t)− u1(t))‖2

L2(ΩT )dt

=
1

2
‖u2(a)− u1(a)‖2

L2(ΩT ) −
1

2
‖u2(0)− u1(0)‖2

L2(ΩT ) =
1

2
‖u2(a)− u1(a)‖2

L2(ΩT ),

we find that
‖u2(a)− u1(a)‖2

L2(ΩT ) = 0.

Hence u2 = u1, since a was arbitrary. The proof of the uniqueness is complete.
Existence. Let us consider the inequality

〈Azj, v − zj〉tj + (
zj − zj−1

h
, v − zj)tj ≥ (fj, v − zj)tj for all v ∈ Ktj . (3.1)

Choose v = zj−1 in (3.1); by the properties of zj we can extend the integrals in (3.1) to the whole
domain ΩT and we have that

〈Azj, zj − zj−1〉T + (
zj − zj−1

h
, zj − zj−1)T ≤ (fj, zj − zj−1)T .

Adding the resulting inequalities in both sides from j = 1 to i we get that
i∑

j=1

〈Azj, zj − zj−1〉T +
1

h

i∑
j=1

(zj − zj−1, zj − zj−1)T ≤
i∑

j=1

(fj, zj − zj−1)T .

If we denote

S1
i =

i∑
j=1

〈Azj, zj − zj−1〉T ,

S2
i =

1

h

i∑
j=1

(zj − zj−1, zj − zj−1)T ,

S3
i =

i∑
j=1

(fj, zj − zj−1)T ,
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then we can rewrite the last inequality as

S1
i + S2

i ≤ S3
i . (3.2)

According to (A5) of assumptions we find that

S1
i =

1

2

i∑
j=1

{2〈Azj, zj〉T − 2〈Azj−1, zj〉T}

=
1

2
{〈Azi, zi〉T +

i∑
j=1

[〈Azj, zj〉T − 2〈Azj−1, zj〉T + Azj−1, zj−1〉T ]}

=
1

2
{〈Azi, zi〉T +

i∑
j=1

〈Azj − Azj−1, zj − zj−1〉T}.

From this and from (A4) and (A6) of assumptions we obtain that

S1
i ≥

1

2
〈Azi, zi〉T ≥ C‖zi‖pWk,p(ΩT )

, (3.3)

S2
i =

1

h

i∑
j=1

‖zj − zj−1‖2
L2(ΩT ), (3.4)

S3
i ≤

i∑
j=1

‖fj‖L2(ΩT ) ‖zj − zj−1‖L2(ΩT ) ≤
h

2

i∑
j=1

‖fj‖2
L2(ΩT ) +

1

2h

i∑
j=1

‖zj − zj−1‖2
L2(ΩT )

≤h
2
iV (f)2 +

1

2
S2
i ≤ TV (f)2 +

1

2
S2
i ,

where

V (f) = sup
I
‖f(t)‖L2(ΩT ) + sup

{ti}

n∑
i=1

‖f(ti)− f(ti−1)‖L2(ΩT ),

for all finite partitions {ti} of the interval [0, T ].
From this and from (3.2) – (3.4) it follows that

S2
i ≤ S3

i ≤ TV (f)2 +
1

2
S2
i ,

and, consequently,
S2
i ≤ 2TV (f)2,

i.e.
1

h

i∑
j=1

‖zj − zj−1‖2
L2(ΩT ) ≤ C (3.5)

and
S3
i ≤ 2TV (f)2.

According to (3.2) and (3.3) we find that

‖zi‖Wk,p(ΩT ) ≤ C. (3.6)
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The estimate
‖zi‖L2(ΩT ) ≤ C (3.7)

follows from the following calculation:

‖zi‖2
L2(ΩT ) ≤

( i∑
j=1

‖zj − zj−1‖L2(ΩT )

)2

≤ i

i∑
j=1

‖zj − zj−1‖2
L2(ΩT )

= ihS2
i ≤ T 2V (f)2.

Now we consider the Rothe sequence {un(t)}∞n=1 given by (2.3). From (3.6) and (3.7) it follows
that

‖un(t)‖VT∩L2(ΩT ) = ‖zj−1 +
t− tj−1

h
(zj − zj−1)‖VT∩L2(ΩT )

≤ (1− t− tj−1

h
)‖zj−1‖VT∩L2(ΩT ) +

t− tj−1

h
‖zj‖VT∩L2(ΩT ) ≤ C

for every t ∈ I and n = 1, 2, ....
Thus, we get that

‖un‖2
L2(I,VT∩L2(ΩT )) =

∫ T

0

‖un(t)‖2
VT∩L2(ΩT )dt ≤ C2T

for n = 1, 2, .... From this and from the reflexivity of the space L2(I, VT ∩ L2(ΩT )) it follows that
the Rothe sequence {un}∞n=1 has a subsequence {unk}∞k=1, which converges weakly to some function
u ∈ L2(I, VT ∩ L2(ΩT )), i.e.

unk ⇀ u in L2(I, VT ∩ L2(ΩT )). (3.8)

We will show that the function u is the desired solution. Denote Zj =
zj−zj−1

h
. Then we can write

(2.3) in the form

un(t) = zj−1 + Zj(t− tj−1) in Ij = [tj−1, tj], j = 1, 2, ..., n.

Now we define the functions Un : t 7→ L2(ΩT ), (n = 1, 2, ...) by

Un(t) =


Zn

1 , t = 0,

Zj, t ∈ (tj−1, tj], j = 1, 2, ..., n.

From (3.5) it follows that the sequence {Un}∞n=1 is bounded, because

‖Un‖2
L2(I,L2(ΩT )) =

∫ T

0

‖Un(t)‖2
L2(ΩT )dt =

n∑
j=1

∫ tj

tj−1

‖Zj‖2
L2(ΩT )dt

=
n∑
j=1

‖zj − zj−1

h
‖2
L2(ΩT )(tj − tj−1) =

1

h

n∑
j=1

‖zj − zj−1‖2
L2(ΩT ) ≤ C.

Hence, we can choose a subsequence {Unk}∞k=1 converging weakly to some function U ∈ L2(I, L2(ΩT )),
i.e.

Unk ⇀ U in L2(I, L2(ΩT )). (3.9)

Thus, there exists ω defined by

ω(t) =

∫ t

0

U(τ)dτ.
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According to (3.8), (3.9) and the relation∫ t

0

Unk(τ)dτ = unk(t)

we find that
w = u.

(To obtain the last equality we apply Lebesgue’s dominated convergence theorem.) Then we get that

u ∈ AC(I, L2(ΩT )),

u′(t) = U(t) a.e. in I,

i.e.,

u(t) =

∫ t

0

U(τ)dτ

and
u(0) = 0.

Now we claim that the Rothe sequence converges uniformly to the solution u, i.e.

unk → u in C(I, L2(ΩT )). (3.10)

In view of ∂unk (t)

∂t
= Unk(t) a.e. in I and from Lemma A6 of [11] it follows that the Rothe sequence

{un(t)}∞n=1 is equicontinuous, i.e. the first condition of Lemma A5 of [11] is satisfied. The second
condition in the lemma holds according to the fact that

W k,p(ΩT ) ∩ L2(ΩT ) ↪→↪→ L2(ΩT ),

which is well-known, where ↪→↪→ denotes the compact embedding of the spaces, see e.g. [7]. Hence,
our claim follows from Lemma A5, see [11].

From the above considerations and from Lemma A3 of [11] it follows that

u ∈ KQ,

which implies that the sequence {ūn}∞n=1, defined by

ūn(t) =

{
z0, t ∈ [t0, t1],

zj−1, t ∈ (tj−1, tj], j = 2, 3, ..., n,

is a subset of the set KQ and this set is a convex, closed set in L2(I, VT ∩ L2(ΩT )). (Here, we apply
Theorem 25.2 in [6], stating that every convex, closed set in a reflexive Banach space is weakly
closed.)

Thus, we have proved that the function u satisfies conditions 1) − 4) of Definition 1. Now, we
will show that this function satisfies also integral inequality 5). We consider integral inequality (3.1)
written for nk, i.e.

〈Azj, v − zj〉tj + (
zj − zj−1

h
, v − zj)tj ≥ (fj, v − zj)tj for all v ∈ Ktj ,

j = 1, 2, . . . , nk. Let v ∈ KQ ∩ L∞(I, VT ∩ L2(ΩT )) be arbitrary. We can rewrite the last inequality
in the form

〈Aũnk(t), v(t)− ũnk(t)〉T + (Unk(t), v(t)− ũnk(t))T ≥ (fnk(t), v(t)− ũnk(t))T (3.11)
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for almost all t ∈ I, where Unk(t) is defined as above and

ũnk(t) =


z0, t = 0,

zj, t ∈ (tj−1, tj], j = 1, 2, ..., nk,

and

fnk(t) =


f1, t = 0,

fj, t ∈ (tj−1, tj], j = 1, 2, ..., nk.

From the uniform convergence of the Rothe sequence and from the fact that

max
[0,T ]
‖unk(t)− ũnk(t)‖L2(ΩT ) ≤

C

nk

it follows that the sequence {ũnk}∞k=1 also converges uniformly to the solution u. Moreover, it can be
shown (by using Lemma A6) that for this sequence also the following estimate holds:

‖ũnk(t)− ũnk(t′)‖2
L2(ΩT ) ≤ C |t− t′|. (3.12)

By the limiting process we get that

‖u(t)− u(t′)‖2
L2(ΩT ) ≤ C |t− t′|. (3.13)

From (3.12) – (3.13) and from the boundedness of the sequence {Unk}∞k=1 in the space L2(I, L2(ΩT ))
it follows that the sequence

{(Unk(t), u(t)− ũnk(t))T}∞k=1

has a subsequence which converges to zero for all t ∈ I, i.e.

(Unk(t), u(t)− ũnk(t))T → 0 as k →∞, (3.14)

since, by applying Hölder’s inequality, we have that∫ T

0

|(Unk(t), u(t)− ũnk(t))T | dt

≤
∫ T

0

‖Unk(t)‖L2(ΩT )‖u(t)− ũnk(t)‖L2(ΩT ) dt ≤ C max
ΩT
‖u(t)− ũnk(t)‖L2(ΩT ).

From this we find that ∫ T

0

|(Unk(t), u(t)− ũnk(t))T | dt→ 0 as k →∞,

which implies the existence of a subsequence which converges to zero almost everywhere in I. Finally,
we note that (3.12) and (3.13) imply (3.14).

Putting v(t) = u(t) in (3.11) we obtain that

〈Aũnk(t), ũnk(t)− u(t)〉T ≤ (fnk(t), ũnk(t)− u(t))T + (Unk(t), u(t)− ũnk(t))T .

From this and according to (3.14) we have that

lim
k→∞

sup〈Aũnk(t), ũnk(t)− u(t)〉T dt ≤ 0.
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The operator A is pseudomonotone (see [13, Chapter 2]), which implies that

〈Aũ(t), ũ(t)− v(t)〉T ≤ lim
k→∞

inf〈Aũnk(t), ũnk(t)− v(t)〉T . (3.15)

Using the monotonicity of A and the boundedness of ũn in L∞(I, VT ∩ L2(ΩT )) we find that

〈Aũnk(t), ũnk(t)− v(t)〉T ≥ −C(‖v‖L∞(I, VT∩L2(ΩT ))).

Moreover, according to Fatou’s lemma we get from (3.15) that∫ T

0

〈Aũ(t), ũ(t)− v(t)〉T dt ≤ lim
k→∞

inf

∫ T

0

〈Aũnk(t), ũnk(t)− v(t)〉T dt. (3.16)

After integrating (3.11) over the interval I, we obtain that∫ T

0

〈Aũnk(t), v(t)− ũnk(t)〉Tdt+
∫ T

0

(Unk(t), v(t)− ũnk(t))Tdt

≥
∫ T

0

(fnk(t), v(t)− ũnk(t))Tdt.
(3.17)

The convergences ∫ T

0

(Unk(t), v(t)− ũnk(t))Tdt→
∫ T

0

(u′(t), v(t)− u(t))Tdt

and ∫ T

0

(fnk(t), ũnk(t)− v(t))Tdt→
∫ T

0

(f(t), u(t)− v(t))Tdt

as k →∞, follow from (3.8), (3.9), (A6) and Lemma A3 in [11]. By using these facts and (3.16) we
obtain that ∫ T

0

〈Au(t), v(t)− u(t)〉Tdt+
∫ T

0

(u′(t), v(t)− u(t))Tdt

≥
∫ T

0

(f(t), v(t)− u(t))Tdt.

Moreover, since the set KQ ∩ L∞(I, VT ∩ L2(ΩT )) is dense in KQ and due to the definition of v we
conclude that the function u satisfies integral inequality 5) of Definition 1.

Thus, we have proved that there exists a subsequence {unk}∞k=1 of Rothe’s sequence {un}∞n=1,
which converges to the solution u of problem (1.1) – (1.2). Moreover, from the uniqueness of the
weak solution it follows that not only the subsequence but also the sequence itself converges weakly
(strongly) in L2(I, VT ∩ L2(ΩT )) (C(I, L2(ΩT ))) to the solution u.

4 Further results and discussion

In this section we present some results which are related to the main result in the previous section.

Proposition 4.1. Let the assumptions of Theorem 3.1 be satisfied except that instead of (A6) the
function f satisfies the Lipschitz condition: for some C > 0

‖f(t)− f(t′)‖L2(Ωt) ≤ C|t− t′| for all t, t′ ∈ I.

Then
max
t∈I
‖un(t)− u(t)‖2

L2(ΩT ) ≤
C

n
.
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Remark 1. This result is interesting also from the numerical point of view.

Proof. Let us consider integral inequality (3.17) written for k instead of nk, i.e.,∫ T

0

〈Aũk(t), v(t)− ũk(t)〉Tdt+
∫ T

0

(Uk(t), v(t)− ũk(t))Tdt

≤
∫ T

0

(fk(t), v(t)− ũk(t))Tdt.
(4.1)

Putting for k = m,

v(t) =

{
un(t) t ∈ (0, τ),

um(t) t ∈ [τ, T ),

and for k = n,

v(t) =

{
um(t) t ∈ (0, τ),

un(t) t ∈ [τ, T ),

we obtain after adding that
τ∫

0

〈Aũn(t)− Aũm(t), ũn(t)− ũm(t)〉Tdt

+

τ∫
0

(
∂(un(t)− um(t))

∂t
, ũn(t)− ũm(t))Tdt

≤
τ∫

0

(fn(t)− fm(t), ũn(t)− ũm(t))Tdt.

(4.2)

From this and (A3) we find that∫ τ

0

(
∂(un(t)− um(t))

∂t
, ũn(t)− ũm(t))Tdt ≤

∫ τ

0

(fn(t)− fm(t), ũn(t)− ũm(t))Tdt

and ∫ τ

0

(
∂(un(t)− um(t))

∂t
, un(t)− um(t))Tdt

≤
∫ τ

0

(fn(t)− fm(t), ũn(t)− ũm(t))Tdt

+

∫ τ

0

(
∂(un(t)− um(t))

∂t
, un(t)− ũn(t) + ũm(t)− um(t))Tdt.

(4.3)

It easy to see that ∫ τ

0

(
∂(un(t)− um(t))

∂t
, un(t)− um(t))Tdt

=
1

2

∫ τ

0

∂‖un(t)− um(t)‖2
L2(ΩT )

∂t
dt =

1

2
‖un(t)− um(t)‖2

L2(ΩT )

∣∣∣τ
0

=
1

2
‖un(τ)− um(τ)‖2

L2(ΩT ).

The integrals in the right-hand side in (4.3) can be estimated as follows:∫ τ

0

(fn(t)− fm(t), ũn(t)− ũm(t))Tdt ≤
∫ τ

0

‖fn(t)− fm(t)‖L2(ΩT ) ‖ũn(t)− ũm(t)‖L2(ΩT )dt
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≤ max
I
‖f(Tn(t))− f(Tm(t))‖L2(ΩT )

∫ τ

0

‖ũn(t)− ũm(t)‖L2(ΩT )dt ≤ C (
1

n
+

1

m
),

where the functions Tn(t) and Tm(t) are defined as

Tk(t) =

{
to t = 0,

tj t ∈ (tj−1, tj], j = 1, 2, . . . , k

with k = n and k = m, respectively. Moreover,∫ τ

0

(
∂(un(t)− um(t))

∂t
, un(t)− ũn(t) + ũm(t)− um(t))Tdt

≤
∫ τ

0

‖∂(un(t)− um(t))

∂t
‖L2(ΩT )

[
‖un(t)− ũn(t)‖L2(ΩT ) + ‖ũm(t)− um(t)‖L2(ΩT )

]
dt

≤ C max
t∈I

[
‖ũn(t)− un(t)‖L2(ΩT ) + ‖ũm(t)− um(t)‖L2(ΩT )

]
≤ C (

1

n
+

1

m
).

From the above considerations we conclude that

‖un(τ)− um(τ)‖2
L2(ΩT ) ≤ C (

1

n
+

1

m
).

By the limiting process in the last estimate when m→∞ we get our conclusion.

Proposition 4.2. Let the assumptions of Theorem 3.1 be satisfied except that instead of Assumptions
A3 and A4 the form 〈Au, v〉t is assumed to be strongly monotone, i.e., for some C0 > 0

〈Au− Av, v − u〉t ≥ C0‖u− v‖pVt . (4.4)

Then Rothe’s sequence {un}∞n=1 strongly converges to the solution u in the space L2(I, VT ), i.e.,

‖un − u‖L2(I, VT ) → 0 as n→∞.

Proof. Let us consider integral inequality (4.2) written for τ = T, i.e.,∫ T

0

〈Aũn(t)− Aũm(t), ũn(t)− ũm(t)〉Tdt

+

∫ T

0

(
∂(un(t)− um(t))

∂t
, ũn(t)− ũm(t))Tdt ≤

∫ T

0

(fn(t)− fm(t), ũn(t)− ũm(t))Tdt.

From this and from (4.4) we get that

C

∫ T

0

‖ũn(t)− ũm(t)‖2
VT
dt ≤

∫ T

0

(fn(t)− fm(t), ũn(t)− ũm(t))Tdt

−
∫ T

0

(
∂(un(t)− um(t))

∂t
, ũn(t)− ũm(t))Tdt.

The integrals in the right-hand side of this inequality tend to zero as n,m→∞, which follows from
(A6) and from the fact that the Rothe sequence {un}∞n=1 converges uniformly to the solution u and
that the derivatives of these functions are bounded in L2(I, L2(ΩT )). Hence, we have that∫ T

0

‖ũn(t)− ũm(t)‖2
VT
dt ≤ C(

1

n
+

1

m
),

which implies that the Rothe sequence is a fundamental sequence in the space L2(I, VT ). By the
limiting procedure in the last estimate as n,m→∞ we obtain the conclusion.



On extended Rothe’s method for nonlinear parabolic variational inequalities in noncylindrical domains 63

Finally, we will discuss what the variational inequality really means for some particularly chosen
operators A and sets Kt (t ∈ I). Let us consider problem (1.1) – (1.2).

• If the set Kt = Vt, then variational problem (1.1) – (1.2) is equivalent to the following parabolic
boundary value problem:

∂u

∂t
+ Au = f in Q,

u(x, t) =
∂u

∂ν
(x, t) = ... =

∂k−1u

∂νk−1
(x, t) = 0 0 < t < T, x ∈ ∂Ωt,

u(x, 0) = 0 x ∈ Ω0.

Moreover, if the assumptions hold, then, according to Theorem 3.1, this problem has exactly
one solution in the sense of Definition 1. In this sense the result of the previous section in fact
generalizes the results in [9] and [10].

• Let A be defined by

Au = −
n∑

i,j=1

∂

∂xi

(
ai,j(x)

∂u

∂xj

)
+ a0(x)u,

where
a0, ai,j ∈ L∞(ΩT ), ai,j(x) = aj,i(x),

n∑
i,j=1

ai,j(x)ξi ξj ≥ α|ξ|2, a.e. in ΩT ,

a0(x) ≥ α0 > 0, a.e. in ΩT ,

and let
Kt = {v |v ∈ Vt = W 1,2

0 (Ωt), |grad v(x)| ≤ 1 a.e. in Ωt}.

Then, by Theorem 3.1, the corresponding parabolic variational inequality has exactly one
solution, which is also a weak solution of the following boundary value problem:

∂u

∂t
+ Au = f in Q′,

|gradxu(x, t)| = 1 in Q \Q′,

u(x, t) = 0 0 < t < T, x ∈ ∂Ωt,

u(x, 0) = 0 x ∈ Ω0,

where Q′ = {(x, t) ∈ Q, |gradxu(x, t)| < 1}.

• Let the operator A be defined by

Au = −
n∑
i=1

∂

∂xi

(∣∣∣ ∂u
∂xi

∣∣∣p−2 ∂u

∂xi

)
+ |u|p−2u

and let
Kt = {v ∈ Vt = W 1,p

0 (Ωt), v(x) ≥ 0, a.e. in Ωt}.
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Then, in view of Theorem 3.1, the corresponding parabolic variational inequality has exactly
one solution, which is also weak solution of the following boundary value problem:

∂u

∂t
+ Au = f in Q,

u(x, t) ≥ 0 in Q,

u(x, t) = 0 0 < t < T, x ∈ ∂Ωt,

u(x, 0) = 0 x ∈ Ω0.
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