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1 Introduction

The first eigenvalue of the Laplacian with the Dirichlet boundary condition is minimised on a ball
among all domains of the same measure. This fact is called the (classical) Rayleigh-Faber-Krahn
inequality (see, e.g. [2]). This also means that the norm of the inverse Dirichlet Laplacian is
maximised on the ball among all domains with the same measure. However, the minimum of the
second Dirichlet Laplacian eigenvalue is achieved not on one ball, but on the union of two identical
balls. This fact is called the Hong-Krahn-Szegö inequality. There is a number of extentions of
inequalities such type in spectral geometry to the cases of differential operators. In [14], the Rayleigh-
Faber-Krahn and Hong-Krahn-Szegö inequalities were established for the Euclidean Riesz potential
(that is, in the case of nonlocal operators), and then they were extended to more general convolution
type positive integral operators in [16] and [17]. In [18], the Rayleigh-Faber-Krahn and Hong-Krahn-
Szegö inequalities for the logarithmic potential were considered (which is an example of non-positive
operator). Then, in our papers [4, 5, 8], and [10], the Rayleigh-Faber-Krahn and Hong-Krahn-
Szegö type inequalities were obtained for various non-self-adjoint operators. All of these results
were obtained in the Euclidean space. In this paper, we prove weak Rayleigh-Faber-Krahn and
Hong-Krahn-Szegö inequalities on the so-called homogeneous groups, which are the non-compact,
connected, semi-simple Lie groups with finite centers. In [11], the author proved the weak Riesz
inequality on the non-compact, connected, semi-simple Lie groups with finite centers. Note that the
weak Riesz inequality is related to the Kunze-Stein phenomenon (see, e.g. [1] and [11]). Thus, the
weak Riesz inequality plays a key role in our proofs.

Summarising our results for the Riesz operator RΩ on the homogeneous Lie groups, in this paper,
we show the following facts:

• Weak Rayleigh-Faber-Krahn type inequality: the first eigenvalue of RΩ is maximised on the
quasi-ball among all sets of a given Haar measure on the homogeneous Lie groups;

• Weak Hong-Krahn-Szegö type inequality: the supremum of the second eigenvalue of (positive)
RΩ on the homogeneous Lie groups among bounded open sets with a given Haar measure in
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G is attained on the union of two identical quasi-balls with the distance between them going
to infinity.

In Section 2 we present preliminary results of this paper. The proofs of the stated facts will be
given in Section 3.

2 Preliminaries

Let us recall that a Lie group (on RN) G with the dilation

Dλ(x) := (λν1x1, . . . , λ
νNxN), ν1, . . . , νN > 0, Dλ : RN → RN ,

which is an automorphism (of the group G) for all λ > 0, is called a homogeneous (Lie) group.
We refer to [3] for the original appearance of such groups, and to [15] for a recent comprehensive
treatment (see, also recent paper [6], [7] and [9]). For simplicity, throughout this paper we use the
notation λx for the dilation Dλ. The homogeneous dimension of the homogeneous group G is denoted
by Q := ν1 + . . . + νN . Also, in this note, we denote a homogeneous quasi-norm on G by |x|, which
is a continuous non-negative function

G 3 x 7→ |x| ∈ [0,∞), (2.1)

with the properties

i) |x| = |x−1| for all x ∈ G,

ii) |λx| = λ|x| for all x ∈ G and λ > 0,

iii) |x| = 0 if and only if x = 0.

The quasi-ball centred at x ∈ G with radius R > 0 can be defined by

B(x,R) := {y ∈ G : |x−1y| < R}. (2.2)

For brevity B(x,R) = B if x = e (the identity element of G).
Recall the Riesz inequality on the Lie groups.

Theorem 2.1. [11] Assume that G is a noncompact, connected, semi-simple Lie group with a fi-
nite center and real rank one. Let u∗, v∗, w∗ be the symmetric rearrangements of functions u, v, w,
respectively. Then, we have the weak Riesz inequality:∫

G

∫
G
u(x)g(yx−1)w(y)dxdy ≤ CG

∫
G

∫
G
u∗(x)g∗(yx−1)w∗(y)dxdy, (2.3)

where CG is a constant depending only on G.

By [13], in the Euclidean space, (2.3) holds with CRN = 1, which gives the classical Riesz inequality
and also, (2.3) holds for nilpotent groups (by [15], we have that the homogeneous Lie group is a
nilpotent group).
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3 Main results

Assume that Ω ⊂ G is an open Haar measurable set, and we consider the Riesz potential on L2(Ω)
of the form

RΩu(x) =

∫
Ω

u(y)

|y−1x|Q−α
dy, u ∈ L2(Ω), 0 < α < Q. (3.1)

The eigenvalues of RΩ may be enumerated in the descending order of their moduli,

|λ1| ≥ |λ2| ≥ . . . , (3.2)

where λj = λj(Ω) is repeated in this series according to its multiplicity. Let us denote by |Ω| the
Haar measure of Ω.

First, we present the weak Rayleigh-Faber-Krahn inequality for the Riesz potential on the homo-
geneous Lie groups.

Theorem 3.1. Let G be a homogeneous Lie group with homogeneous dimension Q. Then the first
eigenvalue of the operator RΩ is weakly maximised in the quasi-ball B, that is,

λ1(Ω) ≤ CGλ1(B), (3.3)

for all Haar measurable sets Ω ⊂ G with |Ω| = |B|.

Remark 1. In the Abelian (Euclidean) case G = (RN ,+), we have | · | = | · |E (| · |E is the Euclidean
distance), so we recover the (classical) Rayleigh-Faber-Krahn inequality for the Riesz potential from
[14].

Remark 2. In (3.3), the constant CG is a particular case of the constant in (2.3).

Lemma 3.1. The first eigenvalue λ1 (with the largest modulus) of the operator RΩ is positive and
simple. Also, the corresponding eigenfunction u1 can be chosen to be positive.

Proof of Lemma 3.1. All the eigenvalues are real numbers since the operator RΩ is compact and
self-adjoint. Moreover, since the kernel is real, the eigenfunctions of the operator RΩ may be chosen
to be real. First of all, we show that the first eigenfunction u1 cannot change sign in Ω ⊂ G, i.e.,

u1(x)u1(y) = |u1(x)u1(y)|, x, y ∈ Ω ⊂ G.

Otherwise, by the continuity of the function u1, there exist neighborhoods U(x0, r) ⊂ Ω and
U(y0, r) ⊂ Ω such that

|u1(x)u1(y)| > u1(x)u1(y), x ∈ U(x0, r) ⊂ Ω, y ∈ U(y0, r) ⊂ Ω,

and from ∫
Ω

|z−1x|α−Q|y−1z|α−Qdz > 0 (3.4)

we obtain

〈R2
Ω|u1|, |u1|〉
‖u1‖2

=
1

‖u1‖2

∫
Ω

∫
Ω

∫
Ω

|z−1x|α−Q|y−1z|α−Qdz|u1(x)||u1(y)|dxdy

>
1

‖u1‖2

∫
Ω

∫
Ω

∫
Ω

|z−1x|α−Q|y−1z|α−Qdzu1(x)u1(y)dxdy = λ2
1. (3.5)
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We have that the λ2
1 is the largest eigenvalue of R2

Ω and u1 is the eigenfunction corresponding to λ2
1,

i.e.
λ2

1u1 = R2
Ωu1.

Then, by the variational principle for the Rayleigh quotient we have

λ2
1 = sup

f∈L2(Ω),f 6≡0

〈R2
Ωf, f〉

‖f‖2
L2(Ω)

. (3.6)

This means that strict inequality (3.5) contradicts variational principle (3.6).
Then we will show that the first eigenfunction u1(x) can not become zero in Ω and thus can be

chosen positive in Ω. Contrariwise, there is a point x0 ∈ Ω such that

0 = λ2
1u1(x0) =

∫
Ω

∫
Ω

|z−1x0|α−Q|y−1z|α−Qdz u1(y)dy,

from which, in view of condition (3.4), the contradiction follows: u1(y) = 0 for almost all y ∈ Ω.
The positivity of u1 implies that λ1 is simple. If an eigenfunction ũ1 (corresponding to λ1)

is linearly independent of u1, then for all numbers c ∈ R any linear combination u1 + cũ1 is an
eigenfunction corresponding to λ1, hence, it cannot be equal to zero at any point in Ω. However,
this is impossible since c is an arbitrary number. Since u1 and the kernel are positive, it follows that
λ1 is positive.

Here and below by ∗ we denote the symmetric nonincreasing rearrangement of a function [11].
Note that for any nonnegative measurable function f one has

‖f‖Lp(G) = ‖f ∗‖Lp(G), 1 < p <∞. (3.7)

Proof of Theorem 3.1. Let Ω be a bounded Haar measurable set in G and its symmetric rearrange-
ment B is an quasi-ball centred at e (the identity element of G) with the same measure of Ω, i.e.
|B| = |Ω|. Let u be a nonnegative measurable function in Ω ⊂ G.

By using Lemma 3.1 the first eigenvalue λ1 of the operator RΩ is simple and the corresponding
eigenfunction u1 can be chosen positive in Ω ⊂ G. By using the weak Riesz inequality, we get∫

Ω

∫
Ω

u1(y)|y−1x|α−Qu1(x)dydx ≤ CG

∫
B

∫
B

u∗1(y)|y−1x|α−Qu∗1(x)dydx. (3.8)

By using the variational principle for λ1(B) and (3.7), we obtain

λ1(Ω) =

∫
Ω

∫
Ω
u1(y)|y−1x|α−Qu1(x)dydx∫

Ω
|u1(x)|2dx

≤ CG

∫
B

∫
B
u∗1(y)|y−1x|α−Qu∗1(x)dydx∫

B
|u∗1(x)|2dx

≤ CG sup
v∈L2(B),v 6=0

∫
B

∫
B
v(y)|y−1x|α−Qv(x)dydx∫

B
|v(x)|2dx

= CGλ1(B).

Now we give a spectral geometry estimate for the second eigenvalue of RΩ, the so-called Hong-
Krahn-Szegö inequality.

Theorem 3.2. Let G be a homogeneous Lie group with homogeneous dimension Q. Let the second
eigenvalue λ2(Ω) of RΩ be positive. Then the weak supremum of λ2(Ω) among all Haar measurable
sets Ω ⊂ G with a given measure is attained on the union of two identical quasi-balls with the distance
between them going to infinity.
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Remark 3. In the Abelian (Euclidean) case G = (RN ,+), we have | · | = | · |E (| · |E is the Euclidean
distance), so we recover the Hong-Krahn-Szegö inequality for the Riesz potential from [14].

Proof Theorem 3.2. Suppose that

Ω+ := {x : u2(x) > 0}, Ω− := {x : u2(x) < 0}.

In proofs we will use the notations

u2(x) ≷ 0, ∀x ∈ Ω± ⊂ Ω ⊂ G, Ω± 6= {∅},

and it follows from Lemma 3.1 that both sets Ω− and Ω+ have a positive Haar measure. By using

u±2 (x) :=

{
u2(x), in Ω±,
0, otherwise,

(3.9)

we get

λ2(Ω)u2(x) =

∫
Ω+

|y−1x|α−Qu+
2 (y)dy +

∫
Ω−
|y−1x|α−Qu−2 (y)dy, x ∈ Ω.

By using above fact with multiplying by u+
2 (x) and integrating over Ω+ we obtain

λ2(Ω)

∫
Ω+

|u+
2 (x)|2dx =

∫
Ω+

u+
2 (x)

∫
Ω+

|y−1x|α−Qu+
2 (y)dydx

+

∫
Ω+

u+
2 (x)

∫
Ω−
|y−1x|α−Qu−2 (y)dydx, x ∈ Ω.

By using (3.9), we have ∫
Ω+

u+
2 (x)

∫
Ω−
|y−1x|α−Qu−2 (y)dydx ≤ 0

Thus,

λ2(Ω)

∫
Ω+

|u+
2 (x)|2dx ≤

∫
Ω+

u+
2 (x)

∫
Ω+

|y−1x|α−Qu+
2 (y)dydx,

that is, ∫
Ω+ u

+
2 (x)

∫
Ω+ |y−1x|α−Qu+

2 (y)dydx∫
Ω+ |u+

2 (x)|2dx
≥ λ2(Ω).

By the variational principle,

λ1(Ω+) = sup
v∈L2(Ω+),v 6≡0

∫
Ω+ v(x)

∫
Ω+ |y−1x|α−Qv(y)dydx∫
Ω+ |v(x)|2dx

≥
∫

Ω+ u
+
2 (x)

∫
Ω+ |y−1x|α−Qu+

2 (y)dydx∫
Ω+ |u+

2 (x)|2dx
≥ λ2(Ω).

Also with previous case, we obtain
λ1(Ω−) ≥ λ2(Ω).

Then we get
min{λ1(Ω+), λ1(Ω−)} ≥ λ2(Ω). (3.10)
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Suppose that B+ and B−, the geodesic quasi-balls of the same Haar measure as Ω+ and Ω−, respec-
tively. From the Rayleigh-Faber-Krahn inequality in the Theorem 3.1, we have

CGλ1(B+) ≥ λ1(Ω+), CGλ1(B−) ≥ λ1(Ω−). (3.11)

From (3.10) and (3.11), we get

CG min{λ1(B+), λ1(B−)} ≥ λ2(Ω). (3.12)

Let us consider the set B+ ∪B−, with the quasi-balls B+ and B− placed at the distance l, that is,

l = dist(B+, B−),

Assume that u~1 be the first normalised eigenfunction of RB+∪B− . Denote by u+ and u− the first
normalised eigenfunctions of operators RB± , respectively. We introduce the function v~ ∈ L2(B+ ∪
B−) in the following form:

v~(x) :=

{
u+(x), in B+,
γu−(x), in B−.

(3.13)

We have that the functions u+, u−, u
~
1 are positive and we can find a real number γ such that v~ is

orthogonal to u~1 . Note that∫
B+∪B−

∫
B+∪B−

v~(x)v~(y)|y−1x|α−Qdxdy =
4∑
i=1

Ai, (3.14)

where
A1 :=

∫
B+

∫
B+

u+(x)u+(y)|y−1x|α−Qdxdy,

A2 := γ

∫
B+

∫
B−

u+(x)u−(y)|y−1x|α−Qdxdy,

A3 := γ

∫
B−

∫
B+

u−(x)u+(y)|y−1x|α−Qdxdy,

A4 := γ2

∫
B−

∫
B−

u−(x)u−(y)|y−1x|α−Qdxdy.

By the Rayleigh quotient for the second eigenvalue, we have

λ2(B+ ∪B−) = sup
v∈L2(B+

⋃
B−), v⊥u1, ‖v‖=1

∫
B+∪B−

∫
B+∪B−

v(x)v(y)|y−1x|α−Qdxdy.

Since v~ is orthogonal to u1, we obtain

λ2(B+ ∪B−) ≥
∫
B+∪B−

∫
B+∪B−

v~(x)v~(y)|y−1x|α−Qdxdy =
4∑
i=1

Ai.

On the other hand, since u± are the first normalised eigenfunctions (by Lemma 3.1 both are positive
everywhere) for each quasi-ball B±, we have

λ1(B±) =

∫
B±

∫
B±

u±(x)u±(y)|y−1x|α−Qdxdy.
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Summarising the above facts, we get

λ2(B+ ∪B−) ≥
4∑
i=1

Ai ≥
∑4

i=1Ai
1 + γ2

=
A1 +A4 +A2 +A3

λ1(B+)−1A1 + λ1(B−)−1A4

. (3.15)

Taking into account that 0 < α < Q, the kernel |y−1x|α−Q tends to zero as x ∈ B±, y−1 ∈ B∓ and
l→∞, we note that

lim
l→∞
A2 = lim

l→∞
A3 = 0,

therefore
lim
l→∞

λ2(B+ ∪B−) ≥ max{λ1(B+), λ1(B−)}, (3.16)

where l = dist(B+, B−). Inequalities (3.12) and (3.16) imply that the optimal set for λ2 does not
exist. Also by denoting Ω ≡ B+

⋃
B− with l = dist(B+, B−)→∞, and B+ and B− being identical,

from inequalities (3.12) and (3.16) we get

lim
l→∞

λ2(B+
⋃

B−) ≤ CG min{λ1(B+), λ1(B−)}

≤ CG max{λ1(B+), λ1(B−)} ≤ CG lim
l→∞

λ2(B+ ∪B−), (3.17)

and this implies that the maximising sequence for λ2 is given by the union of two identical quasi-balls
with the distance between them going to ∞.
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