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Abstract. In this paper, we define the concept of IP-subsets of a polygroup and single polygroups.
Indeed, if 〈P, ◦, 1,−1 〉 is a polygroup of order n, then a non-empty subset Q of P is an IP-subset if
〈Q, ∗, e,I 〉 is a polygroup, where for every x, y ∈ Q, x∗ y = (x◦ y)∩Q. If P has no IP-subset of order
n− 1, then it is single. We show that every non-single polygroup of order n can be constructed from
a polygroup of order n − 1. In particular, we prove that there exist exactly 7 single polygroups of
order less than 5.
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1 Introduction and preliminaries

The theory of algebraic hyperstructures which is a generalization of the concept of ordinary algebraic
structures first was introduced by Marty [16]. Since then many researchers have worked on algebraic
hyperstructures and developed it. A short review of this theory appears in [6, 7, 8, 9]. A hypergroupoid
(H, ◦) is a non-empty set H with a hyperoperation ◦ defined on H, i.e., a mapping of H ×H into the
family of all non-empty subsets of H. If (x, y) ∈ H × H, its image under ◦ is denoted by x ◦ y. If
A,B are non-empty subsets of H, then A ◦B is given by

A ◦B =
⋃
a∈A
b∈B

a ◦ b.

x ◦A is used for {x} ◦A and A ◦ x for A ◦ {x}. The hypergroupoid (H, ◦) is called a semihypergroup
if x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ H, which means that⋃

u∈x◦y
u ◦ z =

⋃
v∈y◦z

x ◦ v,

and is called a quasihypergroup if for every x ∈ H, we have x ◦ H = H = H ◦ x. This condition
is called the reproduction axiom. The couple (H, ◦) is called a hypergroup if it is a semihypergroup
and a quasihypergroup. Application of hypergroups have mainly appeared in special subclasses. For
example, polygroups which are certain subclasses of hypergroups are studied in [14] by Ioulidis and
are used to study the color algebra [4]. Quasi-canonical hypergroups (called polygroups by Comer)
were introduced in [2], as a generalization of canonical hypergroups. In [12] Heidari et al. studied
the concept of topological polygroups as a generalization of topological groups. Ahabozorgi et al.
introduced solvable polygroups [1]. The working draft [5] is a hand-written draft circulated many
years ago. It enumerated all 4 element polygroups (integral relation algebras) and determined their
color scheme representations. After this draft, several works are done. For example, Maddux [15]
using a computer, enumerated those of order 5. A polygroup is a completely regular, reversible in
itself multigroup in the sense of Dresher and Ore [11].
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Definition 1. [3, 10] A polygroup is a system 〈P, ◦, 1,−1 〉, where 1 ∈ P , −1 is a unitary operation on
P , ◦ maps P × P into the family of non-empty subsets of P , and the following axioms hold for all
x, y, z ∈ P :

(P1) x ◦ (y ◦ z) = (x ◦ y) ◦ z,

(P2) 1 ◦ x = x = x ◦ 1,

(P3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

Clearly, every group is a polygroup. The following elementary facts about polygroups follow
easily from the axioms: 1 ∈ x ◦ x−1 ∩ x−1 ◦ x, 1−1 = 1, (x−1)−1 = x, and (x ◦ y)−1 = y−1 ◦ x−1, where
A−1 = {a−1 | a ∈ A}. A polygroup in which every element has order 2 (i.e., x−1 = x for all x) is
called symmetric. There exist several kinds of homomorphism of polygroups [10]. In this paper we
consider a strong homomorphism. Let 〈P1, ·, e1,

−1 〉 and 〈P2, ∗, e2,
−I 〉 be two polygroups. Let f be a

mapping from P1 into P2 such that f(e1) = e2. Then, f is called a strong homomorphism if

f(x · y) = f(x) ∗ f(y), for all x, y ∈ P1.

Clearly, a strong homomorphism f is an isomorphism if f is one to one and onto.
In [3], an extension of polygroups by polygroups have been introduced in the following way.

Suppose that P and Q are polygroups whose elements have been renamed so that P ∩ Q = {1},
where 1 is the identity of both P and Q. A new system P[Q] = (R, ∗, 1,I ) called the extension of P
by Q, is formed in the following way. Set R = P ∪ Q and let 1I = 1, xI = x−1 (in the appropriate
system), 1 ∗ x = x ∗ 1 = x for all x ∈ R, and for all x, y ∈ R∗ = R \ {1}:

x ∗ y =


x.y if x, y ∈ P
x if x ∈ Q, y ∈ P
y if x ∈ P, y ∈ Q
x ◦ y if x, y ∈ Q, y 6= x−1

x ◦ y ∪ P if x, y ∈ Q, y = x−1.

The extension construction P[Q] will always yields a polygroup.
Let P and Q be finite polygroups with n and m elements, respectively. Then by considering

P = {1, 2, 3, . . . , n} and Q = {1, n+ 1, n+ 2, . . . , n+m− 1}, the extension of P by Q is a polygroup
with n+m− 1 elements and underlying set {1, 2, 3, . . . , n, n+ 1, . . . , n+m− 1}.

In [13] an extension of a polygroup by a non-empty set have been introduced in the following
way. Let 〈P, ◦, 1,−1 〉 be a polygroup and S be a non-empty set such that P ∩S = ∅. Put R = P ∪S,
x ∗ 1 = 1 ∗ x = x for all x ∈ R and for all x, y ∈ R∗ define

x−I =

{
x−1 if x ∈ P
x if x ∈ S and x ] y =


x ◦ y ∪ S if x, y ∈ P
P ∪ S if x = y ∈ S
R∗ otherwise.

The new system 〈R,], 1,−I 〉 is called the extension of the polygroup P by the set S and denoted by
P{S}.

Theorem 1.1. [10] There exist two non-isomorphic polygroups of order two.

The cyclic group Z2 and

P2 =

[
1 2
2 {1, 2}

]
are two non-isomorphic polygroups of order 2.



Characterization of polygroups by IP-subsets 37

Theorem 1.2. [5, 15] There are 10 non-isomorphic polygroups of order three.

All 10 non-isomorphic polygroups of order three are as follows, where P = {1, 2, 3}:

P1
3 = Z2[Z2], P2

3 = Z2[P2], P3
3 = P2[Z2], P4

3 = P2[P2], P5
3 = Z3,

P6
3 =

 1 2 3
2 {1, 3} {2, 3}
3 {2, 3} {1, 2}

 , P7
3 =

 1 2 3
2 {1, 3} {2, 3}
3 {2, 3} P

 ,
P8

3 =

 1 2 3
2 P {2, 3}
3 {2, 3} P

 , P9
3 =

 1 2 3
2 2 P
3 P 3

 ,P10
3 =

 1 2 3
2 {2, 3} P
3 P {2, 3}

 .
Theorem 1.3. [5, 15] There exist 102 polygroups of order 4.

2 IP-subsets

In this section, we introduce the notion of IP-subset of a polygroup and by using this concept, we
define single polygroups. Then, we classify all single polygroups of order less than 5.

Definition 2. Let 〈P, ◦, 1,−1 〉 and Q ⊆ P . Then Q is called an IP-subset of P if 〈Q, ∗, e,I 〉 is a
polygroup where for every x, y ∈ Q

x ∗ y = (x ◦ y) ∩Q.
The set of all IP-subsets of P is denoted by IP(P ).

Example 1. Every sub-polygroup of a polygroup is an IP-subset. {1} and P are trivial IP-subsets.

Definition 3. An IP-subset of a polygroup is called pure if it is not a sub-polygroup.

Example 2. Consider the polygroup 〈P = {1, 2, 3, 4}, ◦, 1,−1 〉, where

◦ 1 2 3 4
1 1 2 3 4
2 2 {1, 2} 3 4
3 3 3 {3, 4} P
4 4 4 P {3, 4}

Then Q = {1, 2}, R = {1, 3, 4} and S = {2, 3, 4} are non-trivial IP-subsets of P . Note that Q is
a sub-polygroup of P also, R and S are pure IP-subsets.

Notation. We denote the {1, x, x−1} by x̂.
Lemma 2.1. Let 〈P, ◦, 1,−1 〉 be a polygroup and x ∈ P . Then x̂ is an IP-subset of P if and only if
x̂ ∩ x2 6= ∅.
Proof. The "only if" part is straightforward. For the "if" part, suppose that x̂ ∩ x2 6= ∅, then we
consider two following cases:

Case 1. 1 ∈ x2. Then x̂ = {1, x} and x̂ is isomorphic to Z2 if x /∈ x2 and isomorphic to P2 if
x ∈ x2.

Case 2. 1 /∈ x2. Then three sub-cases can be considered.
Sub-case 1. If x̂ ∩ x2 = {x}, then x ∈ x ◦ x−1. Thus, we have x ◦ x−1 and x−1 ◦ x contain x̂ and

(x−1)2 ∩ x̂ = {x−1}. So, x̂ is isomorphic to P 9
3 .

Sub-case 2. If x̂ ∩ x2 = {x−1}, then x /∈ x ◦ x−1 ∩ x−1 ◦ x so, x ◦ x−1 = x−1 ◦ x = {1} and
(x−1)2 = {x}. Thus, x̂ is isomorphic to Z3.

Sub-case 3. If x̂ ∩ x2 = {x, x−1}, then x ∈ x ◦ x−1 ∩ x−1 ◦ x so, x ◦ x−1 = x−1 ◦ x ⊇ x̂ and
(x−1)2 = {x, x−1}. Thus, x̂ is isomorphic to P10

3 .
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Example 3. In Example 2, 2̂ = {1, 2} and 3̂ = {1, 3, 4}.

Corollary 2.1. Every finite polygroup of even order contains an IP-subset.

Proof. Every finite polygroup of even order has at least one self-inverse element, say x. Thus 1 ∈ x̂∩x2

so Lemma 2.1 implies that x̂ is an IP-subset

The following lemma provide a large class of IP-subsets.

Lemma 2.2. Let P and Q be polygroups and S be a non-empty set. Then
(1) P and Q are IP-subsets of P [Q],
(2) P is an IP-subset of P{S}.

Proof. It is straightforward.

Definition 4. Let 〈P, ◦, 1,−1 〉 be a polygroup of order n. Then every IP-subset of size n−1 is called
a maximal IP-subset of P . The set of all maximal IP-subsets of P is denoted byM(P ).

Obviously, if G is a group, then IP(G) coincides with the set of all subgroups of G soM(G) = ∅
if and only if G � Z2. Also,M(P ) contains pure IP-subsets if and only if |P | > 2.

Example 4. In Example 2, R and S are maximal IP-subsets.

Definition 5. A polygroup P is called single ifM(P ) = ∅.

Any group not isomorphic to Z2 is a single polygroup. In the following we give examples of some
single polygroups.

Example 5. The polygroup P 9
3 is single, since IP(P 9

3 ) = {{1}, {2}, {3}, P}.

Example 6. Consider the Cayley table defined on P = {1, 2, 3, 4} as follows:

◦ 1 2 3 4
1 1 2 3 4
2 2 {1, 2} {3, 4} {3, 4}
3 3 {3, 4} 2 {1, 2}
4 4 {3, 4} {1, 2} 2

Then, IP(P ) = {{1}, {2}, {1, 2}, {2, 3}, {2, 4}, P}, so P is single.

Example 7. Consider the Cayley tables defined on P = {1, 2, 3, 4, 5} as follows:

◦ 1 2 3 4 5
1 1 2 3 4 5
2 2 2 {1, 2, 3} 4 5
3 3 {1, 2, 3} 3 4 5
4 4 4 4 5 {1, 2, 3}
5 5 5 5 {1, 2, 3} 4

Then, IP(P ) = {{1}, {2}, {3}, {1, 2, 3}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}, P}, so P is single.

Definition 6. Let Q be a polygroup. The set of all polygroups P such that Q is a maximal IP-subset
of P denoted by Q+.
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Example 8. We have
Z+

2 = {P 1
3 , P

2
3 , P

3
3 , P

6
3 , P

7
3 }.

P+
2 = {P 2

3 , P
3
3 , P

4
3 , P

7
3 , P

8
3 }.

Theorem 2.1. If 1 is the unique self-inverse element of a polygroup P , then P is single.

Proof. Assume by contradiction that (P, ◦, 1,−1 ) is not single and (Q, ∗, e,I ) is a maximal IP-subset
of P . We claim that e is self-inverse. Assume 1 ∈ Q, then 1 = e ∗ 1 ⊆ e ◦ 1 = e so e = 1. If 1 /∈ Q,
then e−1 = e ∗ e−1 ⊆ e ◦ e−1. Hence, e ∈ e ◦ e−1. Thus, we obtain

{e, e−1} ⊆ e ◦ e−1 ∩Q = e ∗ e−1 = {e−1}.

Therefore, in any case e = e−1 as required. Thus, since 1 is the only self-inverse element, 1 ∈ Q. So,
for every x ∈ P we have x ∈ Q if and only if x−1 ∈ Q. Hence, Q = P or |Q| < |P | − 1. So Q is not
a maximal IP-subset, which is a contradiction.

In the proof of Theorem 2.1 we show that the identity of a maximal IP-subset Q of a polygroup
P is a self-inverse element in P . So, we state this important fact as

Lemma 2.3. If (Q, ∗, e,I ) is a maximal IP-subset of a polygroup (P, ◦, 1,−1 ), then e = e−1.

Theorem 2.2. Let P be a single polygroup of order 3. Then P is isomorphic to Z3, P 9
3 or P 10

3 .

Proof. Let P be a polygroup of order 3. Then every element of P is self-inverse or 1 is the only
self-inverse element of P . In the former case by Corollary 2.1, for every x ∈ P , x̂ is a maximal
IP-subset of P so it is not single. In the latter case, Theorem 2.1 implies that P is single. Hence by
Theorem 1.2, P is isomorphic to Z3, P 9

3 or P 10
3 .

Lemma 2.4. Let 〈P, ◦, 1,−1 〉 be a polygroup such that {1, a} be the set of all self-inverse elements of
P . If b ◦ b = a for some b ∈ P , then P is single.

Proof. Assume by contradiction that Q is a maximal IP-subset of P . Then two cases can be consid-
ered:

Case 1. If 1 ∈ Q, then x ∈ Q if and only if x−1 ∈ Q. Since if x ∈ Q, then 1 ∈ x ∗ xI ⊆ x ◦ xI so
x−1 = xI ∈ Q. Therefore, we have a /∈ Q because non self-inverse elements occur in pairs and just
one cannot be omitted. Hence, b ∗ b = ∅ that is impossible.

Case 2. If 1 /∈ Q, then by Lemma 2.3, a is the identity element of Q. So, we obtain a = a ∗ a =
a ◦ a ∩Q. Therefore, a ◦ a = {1, a}. On the other hand

b ◦ b = a ⇒ b−1 ◦ b−1 = a
⇒ b−1 ∈ a ◦ b
⇒ b−1 ◦ b ⊆ (a ◦ b) ◦ b = a ◦ (b ◦ b) = {1, a}
⇒ b−1 ◦ b = {1, a}
⇒ b−1 ∗ b = a
⇒ bI = b−1.

Since bI = b, so b is a self-inverse in P , is a contradiction. Therefore, P is single.

Theorem 2.3. There exist exactly 4 single polygroups of order 4.
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Proof. The groups Z4 and Z2×Z2 are single polygroups of order 4. Let P4 and P ′4 be the polygroups
such that their Cayley tables are defined as follows:

P4 1 2 3 4
1 1 2 3 4
2 2 {1, 2} {3, 4} {3, 4}
3 3 {3, 4} 2 {1, 2}
4 4 {3, 4} {1, 2} 2

P ′4 1 2 3 4
1 1 2 3 4
2 2 {1, 2, 3, 4} {2, 3, 4} {2, 3, 4}
3 3 {2, 3, 4} 2 {1, 2}
4 4 {2, 3, 4} {1, 2} 2

By Lemma 2.4 the polygroups P4 and P ′4 are single. On the other hand by a simple computer
programing one can see that

P+
3 =

⋃
Q∈P3

Q+

contains 98 non-single polygroups of order 4, up to isomorphism, where P3 is the set of all polygroups
of order 3. Now, Theorem 1.3 completes the proof.
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